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ABSTRACT

In this paper we present the supervised iterative projections
and rotations (S-IPR) algorithm, a method to optimise a set
of discriminative subspaces for supervised classification. We
show how the proposed technique is based on our previous
unsupervised iterative projections and rotations (IPR) algo-
rithm for incoherent dictionary learning, and how projecting
the features onto the learned sub-spaces can be employed as
a feature transform algorithm in the context of classification.
Numerical experiments on the FISHERIRIS and on the USPS
datasets, and a comparison with the PCA and LDA methods
for feature transform demonstrates the value of the proposed
technique and its potential as a tool for machine learning.

Index Terms— Feature transforms, sparse approxima-
tion, dictionary learning, supervised classification.

1. INTRODUCTION: CLASSIFICATION AND
FEATURE TRANSFORM

Supervised classification is one of the classic problems in ma-
chine learning where a system is designed to discriminate the
category of an observed signal, having previously observed
representative examples from the considered classes [1].

Typically, a classification algorithm consists of a training
phase where class-specific models are learned from labelled
samples, followed by a testing phase where unlabelled data
are classified by comparison with the learned models. Both
training and testing comprise various stages. Firstly, we ob-
serve a signal that measures a process of interest, such as the
recording of a sound or image, or a log of the temperatures
in a particular geographic area. Then, a set of features are
extracted from the raw signals using signal processing tech-
niques. This step is performed in order to reduce the dimen-
sionality of the data and provide a new signal that allows gen-
eralisation among examples of the same class, while retaining
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enough information to discriminate between different classes.
Following the features extraction step, a feature trans-

form can be employed to further reduce the dimensionality
of the data and to enhance discrimination between classes.
Thus classification benefits from feature transforms espe-
cially when features are not separable, that is, when it is not
possible to optimise a simple function that maps features
belonging to signals of a given class to the corresponding cat-
egory. A further dimensionalty reduction may be performed
when dealing with high dimensional signals (such as audio
or high resolution images) by fitting the parameters of global
statistical distributions with features learned on portions of
the signal. Models learned on different classes are finally
compared using a distance metric to the model learned form
an unlabelled signal, which is typically assigned to the nearest
class.

Standard methods for feature transform will be briefly re-
viewed in Section 2, as their limitations lead to the main mo-
tivation for this work. To provide the context of the proposed
method, the incoherent dictionary learning problem will be
introduced in Section 3, while Section 4 will contain the main
contribution of this paper consisting in learning incoherent
subspaces for classification. Numerical experiments are pre-
sented in Section 5, and conclusions are drawn in Section 6.

2. ALGORITHMS FOR FEATURE TRANSFORM

Two of the main feature transform techniques include prin-
cipal component analysis (PCA) [2] and Fisher’s linear dis-
criminant analysis (LDA) [1]. This section provides a brief
description of their rationale without explicitly derive their
expressions to avoid overcrowding the paper.

Let
{
xm ∈ RN

}M
m=1

be a set of vectors containing fea-
tures extracted from M training signals. The goal of PCA is
to learn an orthonormal set of basis functions

{
φk ∈ RN

}N
k=1

such that ||φk||2 = 1 and 〈φi,φj〉 = 0 ∀i 6= j that are placed
along the columns of a so-called dictionary Φ ∈ RN×N . The
bases are optimised from the data to identify their principal
components, that is, the sub-spaces that retain the maximum
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variance of the features.
Let Ψ

def
= Φ1:L ∈ RN×L denote the sub-dictionary con-

structed from the L < N principal components of the dataset.
A new set of transformed features yPCA = ΨΨTx is com-
puted by projecting the data onto the sub-space spanned by
the columns of Φ1:L (that is, onto the L-dimensional princi-
pal sub-space). This operation reduces the dimensionality of
the features by projecting them onto a linear subspace em-
bedded in RN . It is an unsupervised technique that does not
exploit knowledge about the classes associated with the train-
ing set, but implicitly relies in the assumption that the prin-
cipal component directions encode relevant differences be-
tween classes.

On the contrary, LDA is a supervised method for feature
transform whose objective is to explicitly maximise the sep-
arability of classes in the transformed domain. The within-
classes scatter matrix is defined to measure how features be-
longing to the same class are clustered around their mean vec-
tor (the vector obtained by averaging all observations associ-
ated with a given category), and the between-classes scatter
matrix is defined to measure the distances between the mean
vectors. A square linear transform M ∈ RN×N is optimised
to obtain a new set of features yLDA = Mx according to an
objective that promotes features belonging to the same class
to be near each other (according to a Euclidean distance), and
far apart from features belonging to different classes. LDA ex-
plicitly seeks to enhance the discriminative power of features,
but does not perform dimensionality reduction.

The method proposed in this paper is aimed at learn-
ing discriminative sub-spaces that allow dimensionality re-
duction, while at the same time enhancing the separability
between classes. It is derived from our previous work on
learning incoherent dictionaries for sparse approximation.

Related works that extend both PCA and LDA include the
supervised PCA proposed by Barshan et al. [3], and methods
for manifold learning reviewed by Van Der Maaten et al. [4].
Finally, the sparse sub-space clustering technique developed
by Elhamifar and Vidal [5] applies concepts and algorithm
from the field of sparse approximation to tackle unsupervised
clustering problems.

3. INCOHERENT DICTIONARY LEARNING

A sparse approximation of a signal x ∈ RN is a linear com-
bination of K ≥ N basis functions

{
φk ∈ RN

}K
k=1

called
atoms described by:

x ≈ x̃ =

K∑
k=1

αkφk (1)

where the vector of coefficients α contains a small number
of non-zero components, corresponding to a small number of
atoms actively contributing to the approximation x̃. Given a

signal x and a dictionary, various algorithms have been pro-
posed to find a sparse approximation that minimises the resid-
ual error ||x− x̃||2[6].

Dictionary learning aims at optimising a dictionary Φ for
sparse approximation given a set of training data. It is an
unsupervised technique that can be thought as being a gen-
eralisation of PCA, as both methods learn linear subspaces
that minimise the approximation error of the signals. Dic-
tionary learning, however, is generally more flexible than
PCA because it can be employed to learn more general non-
orthogonal over-complete dictionaries [7].

3.1. The incoherent dictionary learning problem

Dictionaries for sparse approximation have important intrin-
sic properties that describe the relations between their atoms,
like the mutual coherence µ(Φ) = max

i 6=j
〈φi,φj〉 that is de-

fined as the maximum inner product between any two differ-
ent atoms. The goal of incoherent dictionary learning is to
learn atoms that are well adapted to sparsely approximate a
set of training signals, and that are at the same time mutually
incoherent [8].

Given a set ofM training signals contained in the columns
of the matrix X ∈ RN×M and a matrix A ∈ RK×M indi-
cating the sparse approximation coefficients, the incoherent
dictionary learning problem can be expressed as:

Φ? = arg min
Φ

||X −ΦA||F (2)

such that µ(Φ) ≤ µ0

||αm||0 ≤ S ∀m

where µ0 is a fixed mutual coherence constraint, the `0
pseudo-norm ||·||0 counts the number of non-zero compo-
nents of its argument and S is a fixed number of active atoms.
Algorithms for (incoherent) dictionary learning generally fol-
low an alternate optimisation heuristic, iteratively updating Φ
andA until a stopping criterion is met. In the case of the iter-
ative projections and rotations algorithm (IPR) algorithm [8],
a dictionary de-correlation step is added after updating the
dictionary in order to satisfy the mutual coherence constraint.

Given X , fixed µ0, S and a stopping criterion (such as
a maximum number of iterations), the optimisation of (2) is
tackled by iteratively performing the following steps:

• Sparse coding: fix Φ and compute the matrix A using a
suitable sparse approximation method.

• Dictionary update: fix A and update Φ using a suitable
method for dictionary learning.

• Dictionary de-correlation: given X , Φ and A update the
dictionary Φ to reduce its mutual coherence under the level
µ0.



3.2. The iterative projections and rotations algorithm

The IPR algorithm has been proposed in order to solve the
dictionary de-correlation step, while ensuring that the updated
dictionary provides a sparse approximation with low residual
norm, as indicated by the objective function (2) [8].

The IPR algorithm requires the calculation of the Gram
matrixG = ΦTΦ which contains the inner products between
any two atoms in the dictionary. G is iteratively projected
onto two constraint sets, namely the structural constraint set
Kµ0 and the spectral constraint set F . The former is the set
of symmetric square matrices with unit diagonal values and
off-diagonal values with magnitude smaller or equal than µ0:

Kµ0

def
=

{
K ∈ RK×K : K = KT , ki,i = 1,max

i>j
|ki,j | ≤ µ0

}
.

The latter is the set of symmetric positive semidefinite square
matrices with rank smaller than or equal to N :

F def
=
{
F ∈ RK×K : F = F T , eig(F ) ≥ 0, rank(F ) ≤ N

}
where the operator eig(·) returns the vector of eigenvalues of
its argument.

Starting from the Gram matrix of an initial dictionary Φ,
the IPR method iteratively performs the following operations.

• Projection onto the structural constraint set. The projection
K = PKµ0 (G) can be obtained by:

1. setting ki,i = 1,

2. limiting the off-diagonal elements so that, for i 6= j,

ki,j = Limit(gi,j , µ0) =

{
gi,j if |gi,j | ≤ µ0

sgn(gi,j)µ0 if |gi,j | > µ0

(3)

• Projection onto the spectral constraint set and factoriza-
tion. The projection F = PF (G) and subsequent factori-
sation are obtained by:

1. calculating the eigenvalue decomposition (EVD) G =
QΛQT ,

2. thresholding the eigenvalues by keeping only the N
largest positive ones.

[Thresh(Λ, N)]i,i =

{
λi,i if i ≤ N and λi,i > 0

0 if i > N or λi,i ≤ 0

where the eigenvalues in Λ are ordered from the largest
to the smallest. Following this step, at most N eigenval-
ues of the Gram matrix are different from zero,

3. factorizing the projected Gram matrix into the product
G = ΦTΦ by setting:

Φ = Λ1/2QT . (4)

• Dictionary rotation. Rotate the dictionary Φ to align it to
the training set by solving the problem:

W ? = arg min
WWT=I

||X −WΦA||F . (5)

The optimal rotation matrix can be calculated by:

1. computing the sample covariance between the observed
signals and their approximations C def

= (ΦA)XT ,

2. calculating the SVD of the covariance C = UΣV T ,

3. setting the optimal rotation matrix toW ? = V UT ,

4. rotating the dictionary Φ←W ?Φ.

More details about the IPR algorithm can be found in [8],
including details of its computational cost.

4. LEARNING INCOHERENT SUBSPACES

The IPR algorithm learns a dictionary where all the atoms are
mutually incoherent. Therefore, given any two disjoint sets
Λ
⋂

Γ = ∅ that identify non-overlapping collections of atoms,
the sub-dictionaries ΦΛ,ΦΓ are also mutually incoherent.

Starting from this observation, the main intuition driving
the development of a supervised IPR (S-IPR) algorithm for
classification is to learn mutually incoherent sub-dictionaries
that approximate features from different classes of signals.
The sub-dictionaries are in turn used to define incoherent sub-
spaces, and features are projected onto these sub-spaces yield-
ing discriminative dimensionality reduction.

4.1. The supervised IPR algorithm

Let {cm ∈ C}Mm=1 , C = {C1, C2, . . . , CP } be a set of la-
bels that identify the category of the vectors of features xm,
whose elements belong to a set C of P possible categories.
The columns of the matrix Xp contain a selection of the fea-
tures extracted from signals belonging to the p-th category.

To learn incoherent sub-dictionaries from the entire set of
features, we must first cluster the atoms to different classes1,
and then only proceed with their de-correlation if they are as-
signed to different categories (while allowing coherent atoms
to approximate features from the same class). To this aim,
we employ the matrixA to measure the contribution of every
atom to the approximation of features belonging to each class.

Let αkp indicate the k-th row of the matrix Ap containing
the coefficients that contribute to the approximation of Xp,
and Np indicate the number of its elements. A coefficient
γk,p is defined as:

γk,p
def
=

1

Np

∣∣∣∣αkp∣∣∣∣1 , (6)

1Note that the term cluster implies that a this stage the algorithm needs to
make an unsupervised decision, since there is no any a-priori reason to assign
a given atom to any particular class.



and every atom φk is associated with the category to which it
maximally contributes p?k = arg max

p
{γk,p}.

Grouping together atoms that have been assigned to the
same class leads to a set of sub-dictionaries whose size and
rank depends on the number of atoms for each class, and to
their linear dependence. As a general heuristic, if features
corresponding to different classes do not occupy the same
sub-space (according to the active elements inA), a full-rank
dictionary Φ with K ≥ N � P ensures that p?k identify P
non-empty and disjoint sub-dictionaries {Φp}Pp=1.

Once the atoms have been clustered, the Gram matrixG is
computed and iteratively projected as in the method described
in Section 3.2, with the difference that equation (3) is modi-
fied in order to only constraint the mutual coherence between
atoms assigned to different categories

Limit(gi,j , µ0,p
?) =

{
gi,j if |gi,j | ≤ µ0 or p?i = p?j

sgn(gi,j)µ0 if |gi,j | > µ0 and p?i 6= p?j
(7)

A further modification of the standard IPR algorithm pre-
sented in [8] consists in the update of the Gram matrix, per-
formed by computing its element-wise average with the pro-
jection K = PKµ0 (G) (rather than by using the projection
alone). This heuristic has led to improved empirical results
by preventingG from changing too abruptly.

The complete supervised S-IPR method is summarised
in Algorithm 1. Note that the mutual coherence µp?(Φ) =
arg max
p?i 6=p?j

〈φi,φj〉 indicated in this algorithm measures the

inner product between any two atoms assigned to different
categories since atoms assigned to the same category are
allowed to be mutually coherent.

4.2. Classification via incoherent subspaces

The S-IPR algorithm allows to learn a set of sub-dictionaries
{Φp} that contain mutually incoherent atoms. These cannot
be directly used to define discriminative subspaces because,
depending on N and on the rank of each sub-dictionary,
atoms belonging to disjoint sub-dictionaries might span iden-
tical subspaces. Instead, we fix a rank Q ≤ bN/P c and
choose a collection of Q linearly independent atoms from
each sub-dictionary Φp, using the largest values of γk,p to
define a picking order. Thus, we obtain a set {Ψp}Pp=1 of
incoherent sub-spaces of rank Q embedded in the space RN ,
and use them to derive a feature transform for classification.

Each feature vector xm that belongs to the class cm is pro-
jected onto the relative subspace, yielding a set of transformed
features {ym}Mm=1.

ym = ΨcmΨ†cmxm (8)

where Ψ† denotes the Moore-Penrose pseudo-inverse of the
matrix Ψ and needs to be used in place of the transposition
operator because the columns of Ψ are in general not orthog-
onal.

Algorithm 1: Supervised IPR

Input: X,Φ,A, µ0, c, I
Output: Φ?

1 i← 1;
// Cluster atoms

2 Ap ← [αj ]∀j ∈ Cp;
3 γk,p ←

∣∣∣∣αkp∣∣∣∣1 /Np;
4 p?k = arg max

p
{γk,p};

5 while i ≤ I and µp?(Φ) > µ0 do
// Calculate Gram matrix

6 G← ΦTΦ;
// Project onto structural c.s.

7 diag(K)← 1;
8 K ← Limit(G, µ0,p

?);
9 G← 1

2G+ 1
2K;

// Project onto spectral c.s. and
factorize

10 [Q,Λ]← EVD(G);
11 Λ← Thresh(Λ, N);
12 Φ← Λ1/2QT ;

// Rotate dictionary

13 C ←X(ΦA)
T ;

14 [U ,Σ,V ]← SVD(C);
15 W ← V UT ;
16 Φ←WΦ;
17 i← i+ 1;
18 end

When an unlabelled signal is presented to the classifier,
the corresponding vector of features x is projected onto all
the learned sub-spaces. Then, the nearest sub-space is chosen
using an Euclidean distance measure, and the corresponding
projection y used as the transformed feature.

p? = arg min
p

∣∣∣∣x−ΨpΨ
†
px
∣∣∣∣

2
(9)

y = Ψp?Ψ
†
p?x (10)

The subspace p? can be directly used as an estimator of the
category of the signal c?. Alternatively, a simple k-neaerst
neighbour classifier can be employed on the transformed fea-
tures, and a class can be inferred as:

c? = knn(y,Y , c) (11)

where Y represents the matrix of training features after the
transform stage. This latter approach is especially suitable
when working with a large number of classes in a space of
relatively small dimension (as in the numerical experiment
presented in Section 5.1 where P = 3 and N = 3), as in this
case multiple classes might be assigned to the same subspace.



5. NUMERICAL EXPERIMENTS

5.1. Classifying the FISHERIRIS dataset

To illustrate the S-IPR algorithm for feature transform, we ap-
ply it to the FISHERIRIS dataset [9]. This contains data for the
classification of 150 iris specimens into the classes setosa,
versicolor and virginica. The features corresponding to mea-
surements on the sepal length, sepal width and petal length
for the flowers are stored in the matrix X ∈ R3×150. As a
pre-processing step, we subtract the mean and normalise the
standard deviation of the features to avoid large variations or
offsets in any of the dimensions of the data.

The dictionary learning is run using the SMALLBOX
toolbox and the Incoherent dictionary learning add-on2. We
learn an over-complete dictionary Φ consisting of K = 10
atoms and a sparse approximation A that uses S = 2 ac-
tive atoms for each signal. Incoherent sub-dictionaries are
learned by the S-IPR method, setting the mutual coherence to
the theoretical lower bound attainable by a N ×K dictionary
µmin =

√
(K −N)/N(K − 1) ≈ 0.5 [10]. A maximum

number of I = 20 iterations is set as the stopping criterion.
These parameters are within the range used in previous stud-
ies of incoherent dictionary learning [8], and have not been
optimised for this task.

The proposed method is used to learn Q = 1 dimensional
sub-spaces, and is compared to PCA with a number of com-
ponents L = 2 and to LDA. Figure 1 shows the results of the
experiment. The original features show a clear cluster cor-
responding to the setosa class, and overlapping data for the
other two classes. Applying PCA reduces the dimensionality
of the 3-dimensional features to a rank 2 principal sub-space,
but worsens the separation between classes. Both LDA and
the proposed method are able to improve the separation of the
three classes, but in remarkably different ways: while the for-
mer optimises the linear separability of different classes, fea-
tures derived from S-IPR are projected onto low-dimensional
discriminative subspaces.

To assess the classification performance of the various
techniques, we created a random 5-fold partition of the train-
ing set used for cross-validation, and classified the trans-
formed features using KNN with 5 neighbours. The misclas-
sification rate MCR defined as the number of misclassified
samples divided by the total number of samples is displayed
for the various methods in the first row of Table 1. S-IPR
and LDA are both able to attain a 7% misclassification error,
improving on the 10% obtained on the original features. The
worst result is achieved by PCA, whose dimensionality reduc-
tion has the effect of mixing together features belonging to
different classes, and achieves an error of 44%.

2http://code.soundsoftware.ac.uk/projects/smallbox.

none PCA LDA S-IPR

MCR - FISHERIRIS 0.10 0.44 0.07 0.07
MCR - USPS 0.343 0.433 0.359 0.315

Table 1: Misclassification error evaluated using different fea-
ture transform methods on the FISHERIRIS and USPS datasets
(none indicates no feature transform).

5.2. Classification of the USPS digits dataset

In order to evaluate the proposed method on a more challeng-
ing dataset that contains signals of higher dimension, we run
a similar experiment on the USPS digits dataset, which con-
sists of a collection of 16× 16 pixels images of hand-written
digits 3. We selected the digits 1, 3 and 8 resulting in a total
of 1405 examples stored in the matrixX ∈ R256×1405.

We investigated the effect of the parameters
K = {256, 512, 1024}, Q = {2, 4, 8, 16, 32, 64, 128} and
S = {2, 25, 128, 256} on the misclassification error, and
compared the S-IPR to PCA and LDA. For PCA, the number of
principal components L is automatically set by the algorithm
to choose an approximation that retains 95% of the variance
of the data. The second row of Table 1 shows the results
obtained with the best choice of parameters K? = 512 (cor-
responding to a 2 times over-complete dictionary), Q? = 64
and S? = 128. In this case, S-IPR achieves a 31.5% mis-
classification error, while the other two techniques do not
improve the K-NN classification on to the original features,
which scores 34.3%.

Analysing the MCR as a function of the parameters K, Q
and S, the most relevant trend observed empirically on this
dataset is that a value Q < 16 steeply increases the mis-
classification error. This suggests that the dimensionality of
the incoherent sub-spaces must be large enough to retain dis-
criminative characteristics of the original high-dimensional
data. The dependency of MCR on the other two parameters
is less significant, suggesting that dictionary learning leads to
discriminative subspaces regardless of the number of active
atoms S or the number of atoms in the dictionary K.

6. CONCLUSION

We have presented the S-IPR algorithm for learning incoher-
ent subspaces, and employed it as a feature transform method
in the context of supervised classification. The encourag-
ing experimental results obtained on the FISHERIRIS and
the USPS datasets suggest that the proposed algorithm can
overcome limitations of standard feature transforms methods,
making it a viable tool for machine learning research and
practice. A better theoretical understanding of the perfor-
mance of S-IPR (especially in relation to other methods for

3http://www.cs.nyu.edu/ roweis/data.html.
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Fig. 1: Features transform for the fisheriris dataset. Red circular markers correspond to setosa, green square markers to versi-
color and blue diamond markers to virginica.

subspace and manifold learning), and further validations of
the technique on challenging classification problems consti-
tute the most promising avenues for future research.
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