
2013 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, SEPT. 22–25, 2013, SOUTHAPMTON, UK

EFFICIENT RECALIBRATION

VIA DYNAMIC MATRIX COMPLETION

Sofia Nikitaki1,2, Grigorios Tsagkatakis1 and Panagiotis Tsakalides1,2

1 Institute of Computer Science, Foundation for Research and Technology - Hellas (FORTH-ICS)
2 Department of Computer Science, University of Crete,

Heraklion, Crete, Greece

email:{nikitaki, greg, tsakalid}@ics.forth.gr

ABSTRACT

Fingerprint-based localization techniques have witnessed sig-

nificant progress as they provide highly accurate location es-

timation with minimal hardware interventions. However, the

required calibration phase is time and labour consuming. In

this work, we propose a reduced effort recalibration tech-

nique for fingerprint-based indoor positioning systems. Par-

ticularly, we reduce the number of received fingerprints by

performing spatial sub-sampling. The recovery of the full

map from partial measurements is formulated as an instance

of a Dynamic Matrix Completion problem where we exploit

the spatio-temporal correlations among the fingerprints. An-

alytical studies and simulations are provided to evaluate the

performance of the proposed technique in terms of recon-

struction and location error.

Index Terms— matrix completion, fingerprint-based in-

door localization, recalibration, received signal strength mea-

surements, spatio-temporal correlations.

1. INTRODUCTION

Location and mobility management are major functions

for providing seamless and ubiquitous environments. Self-

organizing ad-hoc networks, health care monitoring, personal

tracking and efficient routing schemes are some of the poten-

tial applications [1].

The last decade, wireless technologies have entered the

realms of indoor location based services. Particularly, IEEE

802.11, the dominant local wireless networking standard, is

omnipresent and thus appealing to be used for localization

purposes. The majority of indoor localization schemes exploit

the power of the received signals, the so-called Received Sig-

nal Strength (RSS), in wireless local area networks (WLAN)

as it provides a reliable and straightforward source of data.

RSS-based localization systems can be classified into two
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categories, namely fingerprint-based and distance-prediction

based [1].

Distance-prediction based systems estimate the position

of the mobile user by measuring its distances from at least

three anchor nodes such as wireless Access Points (APs),

wireless mesh routers, or sensor nodes [2]. These systems

utilize a known RF propagation model in order to translate

the signal information into an Euclidean distance. However,

the power of the signal and thus the RSS measurements are

affected from various multipath phenomena, low probability

of the desirable line-of-sight path, and specific parameters

(floor layout, moving objects), which make formulating a

reliable radio propagation model a challenging task.

On the other hand, fingerprint-based localization systems

create signature maps in order to represent the physical space

by capturing the variations of the dynamic nature of indoor

radio propagation [3, 4, 5]. These systems consist of two

distinct phases: the calibration/training and the location es-

timation/runtime phase. During the training phase, location

fingerprints are collected in a regular spatial grid. During run-

time, signal strength measurements received from the mobile

device are accumulated and compared with the fingerprints

obtained during training in order to perform localization.

Location estimation methods can be classified into three

categories, namely, the deterministic, the probabilistic, and

the recently introduced approaches based on spatial sparsity.

In [5], we proposed a compressed sensing (CS) scheme that

outperforms traditional localization techniques in terms of lo-

cation accuracy. Although, fingerprint-based systems achieve

the best performance, the time and effort required during the

initial calibration and subsequent recalibrations remains their

major disadvantage.

In our previous work [6], we proposed a reduced effort

calibration phase for fingerprint-based systems. Particularly,

we reduced the number of required RSS fingerprints by sens-

ing a subset of the available channels in a WLAN. In this

work, we extend our previous study by proposing a novel

recalibration procedure that dynamically adapts to the envi-
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ronmental changes while minimizing the recalibration effort.

Our key observation is that in non-stationary indoor envi-

ronments, the training fingerprints are constantly changing

over time while the subsequent measurements may explicitly

depend on past observations. Thus, we exploit the spatio-

temporal correlations of the training fingerprints to reduce the

training phase effort by reconstructing the signature map from

fewer RSS measurements.

The organization of the paper is as follows: In Section 2

we present a short overview of related work while in Section

3 we discuss the motivation of the proposed framework. Sec-

tion 4 presents the necessary MC background and Section 5

describes the proposed recalibration technique based on Dy-

namic Matrix Completion. Experimental results are provided

in Section 6, while we conclude in Section 7.

2. RELATED WORK

Fingerprint-based localization systems require significant ef-

fort, resources, and time in order to create the signature maps

that represent the signal characteristics in the physical space.

Achieving a satisfactory localization performance requires

the recalibration of the signature map every time that envi-

ronmental changes, which affect the power or the number

of APs, occur in the area of interest. Recent efforts in the

field have shown a growing interest in reducing the training

phase without significantly compromising the quality of the

location estimation.

Authors in [4] adopt traditional interpolation approaches

to complete the training map using fingerprints received from

a small number of training points. In order to recalibrate

the localization system on-line, authors in [7] utilize the RSS

measurements transmitted between anchor nodes. Then, a set

of clusters is used and the signature map is updated via in-

terpolation techniques. In [8], the number of labeled data is

minimized by extracting information from a set of unlabeled

data, and an interpolation approach is used in order to rein-

force the signature map. Interpolation is based either on intu-

itive guidelines or on linear regression techniques.

To reduce the maintenance effort of the training phase, in

[9] the signature map is estimated dynamically based on the

runtime measurements. For this purpose, neighboring APs

exchange RSS measurements and utilize Gaussian regression

to model the path loss and the corresponding RSS values. Al-

though [9] offers a recalibration phase, the system requires

specific hardware. In contrast, our approach does not require

any extra hardware.

Recent works try to decrease the training effort by crowd-

sourcing. Zee in [10] leverages the inertial sensor of a mobile

phone to get a rough movement pattern by step counting and

compares these measurements to prior information about the

environment. On the contrary, our proposed system exploits

the already existing WiFi infrastructure and most importantly

it provides a dynamic recalibration of the indoor environment.

3. MOTIVATION

One of the major shortcomings of fingerprint-based systems is

the exhaustive survey and maintenance of the signature map,

a task that requires substantial cost and labor. To address this

problem, we use a grid representation of the space and we pro-

pose to perform random sampling, where the mobile device

(MD) collects RSS measurements from pseudo-randomly se-

lected cells in the area of interest. Sub-sampling in the space

domain reduces the calibration effort and consequently en-

ergy consumption at the MD. While random sensing has nu-

merous benefits, recovering unobserved measurements is fea-

sible if spatio-temporal correlations between the RSS finger-

prints exist.

In indoor environments, signal strength measurements are

affected by path loss and shadowing effects, which represent

the signal degradation, due to the distance traveled and the ob-

stacles, respectively. Thus, a key observation is that training

fingerprints are spatially correlated in the sense that training

locations in proximity have similar feature vectors. To sup-

port this claim, we created RSS fingerprints from 15 APs at

144 different positions. For this purpose we adopt the multi-

wall path loss model for signal propagation in [11]. Observe

in Figure 2 that only a small number of the singular values

are actually dominant, indicating the low rank property of the

signature map.
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Fig. 1. Singular values of the signature map at a random time

instance. The rank of the signature map equals the number of

non-zero singular values.

Additionally, in dynamic indoor environments the signal

strength fingerprints change over time, even at fixed positions,

due to multipath phenomena. Signal fluctuations resulting

from environmental dynamics, such as the presence of obsta-

cles, walls, and doors, remains the main challenge for finger-

print based systems. The degree of correlation between RSS

measurements over different time instances varies according

to the temporal variation characteristics of the dynamic phe-

nomena. Particularly, a strong temporal correlation is ob-



served with the presence of the LOS path but it is degraded

when LOS is obstructed. Compared to the state-of-the-art re-

calibration techniques, our work exploits the spatio-temporal

correlations of the RSS fingerprints in order to recover the

unobserved measurements.

4. MATRIX COMPLETION

Matrix Completion (MC) builds on the observation that a ma-

trix which is low rank or approximately low rank can be re-

covered using just a subset of randomly observed data [12].

Denote the matrix M ∈ R
J×D that we would like to recover

as precisely as possible. The goal according to the MC for-

mulation is to recover M using the available measurements

that can be gathered by the linear operator A : RJ×D → R
N

such that:

y = A(M), (1)

where y ∈ R
N .

Clearly, the recovery of the J ×D entries of an arbitrary

matrix M is impossible from a number of measurements N ,

when N ≪ J ×D. This occurs as the linear system of equa-

tions described in (1) is underdetermined. Fortunately, the

MC framework shows that such a recovery is possible, in the

case where the rank of matrix M is small enough compared

to its dimensions. We recall that the rank of a matrix is defined

as the number of its linearly independent rows or columns.

In order to recover the unknown low-rank matrix M , the

following optimization problem needs to be solved

min {rank(M̂) : A(M̂) = A(M)}. (2)

The general rank minimization problem is NP-hard. How-

ever, it can be replaced by the tightest nuclear norm mini-

mization problem given that the linear map A satisfies a mod-

ified Restricted Isometry Property (RIP), i.e., uniform random

sampling is performed in rows and columns. Consequently,

finding the matrix with the lower-rank translates to the fol-

lowing optimization problem:

min {‖M̂‖⋆ : A(M̂) = A(M)}, (3)

where the nuclear norm is defined as the sum of the singular

values of M , i.e.‖M‖⋆ =
∑min{J,D}

k=1
σk(M) and σk(M)

is the kth largest singular value. Specifically, the recovery

of the unknown matrix is feasible from N ≥ cD6/5r log(D)
random measurements, where D > J and rank(M) = r.

The problem in (3) can be treated as a general convex op-

timization problem and solved by any off-the-shelf interior

point solver (e.g., CVX [13]), after being reformulated as a

semidefinite program. Additionally, efficient algorithms have

been proposed for solving the low rank matrix completion

problem for massive data sets, e.g., Singular Value Thresh-

olding (SVT) [14].

Fig. 2. A visual illustration of the proposed recalibration tech-

nique during the training phase. The MD randomly selects

locations at time t, i.e. cells of grid here, to create RSS finger-

prints from the packets transmitted from APs. The Location

Server performs the Dynamic Matrix Completion to complete

the missing fingerprints.

5. PROPOSED DYNAMIC RECALIBRATION

TECHNIQUE

In this Section, we describe our proposed recalibration ap-

proach, which considers the spatio-temporal correlations of

the RSS fingerprints among the APs. Consider a typical

WLAN scenario with a MD equipped with an active wireless

adapter card. The MD connected to a channel, periodically

receives beacons sent by the APs at that channel and records

its RSS value. Moreover, we consider a Location Server that

is wireless connected with the MD.

Fingerprint-based techniques discretize the spatial space

into a finite set of D equivalent size cells, where each cell of

the grid corresponds to a physical position. During recalibra-

tion at time t, the MD moves to the various cells and collects

signal strength measurements from the J APs that cover the

area of interest. This procedure results in the generation of

the signature map M t represented as:

M t =











P1,1,t P1,2,t · · · P1,D,t

P2,1,t P2,2,t · · · P2,D,t

...
...

. . .
...

PJ,1,t PJ,2,t · · · PJ,D,t











J×D

, (4)

where Pj,i,t corresponds to the mean value of the RSS mea-

surements received from the jth AP at location i at time t.
In dynamic indoor environments, the RSS fingerprints

suffer from large variations over time, even in fixed positions,

caused by multipath phenomena. The relationship of RSS

measurements between path-loss and distance over time can

be expressed as:

yt = Cyt−1
+ ǫ, (5)



where yt, yt−1
∈ R

J×1 represent the measured RSS values

at time t and t−1, respectively, received at a fixed position [7].

C ∈ R
J×J expresses the temporal correlation of the path-

loss for specific distances, while ǫ indicates the environmental

noise.

Efficient calibration of the signature map translates to pe-

riodically sensing the area of interest in order to capture the

dynamic indoor propagation phenomena. The proposed Dy-

namic Matrix Completion framework is able to recover the

unknown matrix at time t under the assumption that the ma-

trix is low-rank and follows a random sampling process. Dur-

ing training, the MD instead of visiting the whole workspace

at time t, randomly, with equal probability, selects K cells,

where K < D. Once the selection is performed, the MD

creates training fingerprints only for a subset of the area. It

is obvious that spatial sub-sampling will result in an overall

reduction of the calibration time.

Minimizing the number of visiting cells results in the in-

complete signature map M t. Particularly, the MD receives a

subset Ωt ⊆ [J ]× [D] of M t’s entries, where |Ω|t = K × J .

Let At be the sampling operator defined by

[At(M)]j,i =

{

Pj,i, (j, i) ∈ Ωt

0, otherwise.
(6)

Ωt is a subset of the complete set of entries [J ]× [D]. More-

over, Ωt ∪ ΩC
t = [J ] × [D]. The complementary sampling

operator AC
t (M t) collects the unobserved measurements at

time t. Additionally, we define the sampling operator AI =
At−1 ∩ AC

t as the intersection of the training measurements

of the cells visited at time t− 1 and not at time t.
Effective location estimation requires the recovery of the

signature map (4) that will be used during the runtime phase.

In order to recover the signature map, we exploit the RSS

samples received on previous time instances. Consequently,

the Localization Server recovers the signature map at time t
based on the current partial measurements while also incor-

porating the information of the measurements obtained in the

past (i.e. at time t − 1). The proposed Dynamic MC method

searches for the matrix M t that has the minimum nuclear

norm, subject to the values of M t ∈ Ωt being equal to the

observed measurements at time t, and the sampled values at

time t−1 being correlated with values at time t via the matrix

C (eq. 5).

To enforce this constraint, the original matrix M t and the

matrix C can be recovered as the solution of the following

optimization problem:

min
M̂t,C

‖M̂ t‖⋆

subject to ‖At(M̂ t)−At(M t)‖
2

F ≤ ǫ1

‖AI(C ·M t−1)−AI(M t)‖
2

F ≤ ǫ2,

(7)

where M̂ t is the recovered signature map at time t, ǫ1, ǫ2 ≥ 0
represent the tolerance in approximation error and ‖ · ‖F de-

notes the Frobenious norm. The matrix C expresses the rela-

tionship between the values of M t ∈ ΩC
t ∩Ωt−1. Particularly,

C is changing as the number of the common training cells at

time t− 1 and t increases. The more orthogonal the sampling

operators are over time the more accurate the matrix C is.

The problem in (7) is a general convex optimization prob-

lem and can be solved by an off-the-shelf interior point solver,

such as CVX.

6. EXPERIMENTS

The benefits and characteristics of the proposed recalibration

technique based on Dynamic Matrix Completion are studied

and analysed through simulations. Two different performance

metrics are considered, namely, the reconstruction quality of

the recovered signature map with respect to the original one

and the corresponding localization error. The effectiveness of

the proposed scheme is investigated in various environments

and network characteristics. We compare the proposed tech-

nique with the traditional MC approach that serves as a base-

line 1. Regarding the reconstruction quality, the error was

measured as ‖M̂ t −M t‖F /‖M t‖F . To evaluate the impact

of the proposed technique in location estimation, the Nearest

Neighbour in Signal Space (NNSS) algorithm was employed

[3, 4].

According to the multi-wall path loss model [11], the re-

ceived power at the ith position from the jth AP is given by

Pr = Pt− L0 − 10nlog(dij)−

W
∑

w=1

kw · Lw − si (8)

where L0 is the path loss at distance 1m, n denotes the path

loss exponent, dij is the Euclidean distance between the jth

and the ith cell. kw and Lw are the number and loss co-

efficients due to the obstacles, W denotes the number of

obstacles while si describes the shadowing effect. We chose

L0 = 37.5dBm, n = 3 for NLOS, and Lw = 3.4dB for

light walls/obstacles. The shadowing variable is a zero-mean

Gaussian random variable (in dB) with standard deviation

σ = 2dB. Pt is the AP transmit power, which is fixed at

15dBm for IEEE 802.11b based WLANs. The values of ǫ1
and ǫ2 are equal to 1e − 03 and 1e − 01, respectively. We

considered an 144m2-wide area and a 1m× 1m grid-spacing

(D = 144), covered by 15 APs (J = 15). Each data point in

the results is averaged over 20 independent trials.

For the next experiment, we create changing conditions

over time by introducing one obstacle in the middle of the

room. Figures 3-4 indicate the recovery of the signature map

based on (7) and the corresponding location error as a func-

tion of the number of visiting cells. We observe that the

performance of the proposed dynamic recalibration scheme

is improved both in reconstruction and location error, as the

1Detail performance analysis concerning the effectiveness of the MC cal-

ibration technique vs. the Interpolation method can be found in [6].
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Fig. 3. The reconstruction error of the signature map as a

function of the number of visiting cells. The experiment in-

volves 15 available APs. Dynamic MC achieves the lowest

reconstruction error especially for a small number of visiting

cells.
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Fig. 4. The location error, during runtime, for 15 APs as a

function of the number of visiting cells. Observe that the pro-

posed recalibration technique results in lower location errors.

number of visiting cells increases. Observe that the dynamic

approach is able to achieve lower reconstruction and location

error as compared to the MC approach, especially for small

sampling ratios. Particularly, for the NSSS, dynamic MC

leads to improvements of 42% (i.e., 2 m) over the location

error achieved by the MC approach for sampling 10% of the

total number of cells.

Figures 5-6 illustrate the performance of the proposed

method as a function of the total number of available APs,

when the sampling ratio of the received RSS fingerprints is

0.3. The total number of APs that cover the workplace affects

the structure of the signature map. Specifically, as the num-

ber of APs increases, the accuracy of the proposed technique

increases. Indeed, as the number of available APs increases,

more correlated RSS fingerprints are produced resulting in
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Fig. 5. Signature map reconstruction, during training phase,

as a function of the total number of available APs covering the

area of interest. In this experiment, we visit 30% of the cells

in the testbed area. The number of APs defines the structure

of the signature map.
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Fig. 6. Location error, during runtime phase, as a function of

the total number of available APs. In this experiment, we visit

30% of the cells in the testbed area.

a signature map that has an even lower rank relative to its

dimensions. Interestingly, the localization performance is not

highly affected after a certain number of APs. Observe that

the dynamic MC framework converges faster to the optimum

number of APs.

Finally, we investigated the robustness of the proposed

recalibration technique under different environmental condi-

tions. For this purpose, we introduced five obstacles in the

workspace at time t. Figures 7-8 demonstrate the reconstruc-

tion and the location error, respectively. In this setup, we con-

sidered 15 available APs. It is clear that, for complicated sce-

narios, the dynamic approach results in lower reconstruction

and location errors, especially for small sampling ratios. The

dynamic MC is affected by the increased noise. Particularly,

we observe that after a certain sampling ratio, the prior in-

formation slightly increases the reconstruction accuracy. This
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Fig. 7. Reconstruction error as a function of the number of

visiting cells in the extreme case scenario of introducing five

obstacles at time t. The experiment involves 15 APs. The

proposed Dynamic MC results in lower reconstruction errors

even in complicated scenarios.

behavior is expected in adaptive systems, where previous in-

formation becomes less reliable as the noise increases.

7. CONCLUSIONS

In this paper, we presented a novel recalibration procedure

for RSS fingerprint-based localization systems. The proposed

technique, based on space sub-sampling, exploits the inher-

ent spatial correlation structure among the RSS fingerprints,

while considering prior information from RSS measurements

collected in the past. We relaxed the acquisition and com-

munication requirements while the time required for recal-

ibration was significantly reduced. We adopted a Dynamic

Matrix Completion approach to recover the original signature

map just from visiting a subset of cells in the area of interest.

The experimental results indicated that our Dynamic MC re-

construction method can achieve superior performance when

compared to a straight MC technique, in terms of reconstruc-

tion error and localization accuracy. Future work will inves-

tigate theoretical bounds that quantify the impact of prior in-

formation on the reconstruction quality.
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