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Abstract

This paper presents a novel approach for approximate
integration over the uncertainty of noise and signal
variances in Gaussian process (GP) regression. Our
efficient and straightforward approach can also be ap-
plied to integration over input dependent noise vari-
ance (heteroscedasticity) and input dependent sig-
nal variance (nonstationarity) by setting independent
GP priors for the noise and signal variances. We use
expectation propagation (EP) for inference and com-
pare results to Markov chain Monte Carlo in two sim-
ulated data sets and three empirical examples. The
results show that EP produces comparable results
with less computational burden.

1 Introduction

Gaussian processes (GP, Rasmussen and Williams,
2006) are commonly used as flexible non-parametric
Bayesian priors for functions. They provide an an-
alytical framework that can be applied to various
probabilistic learning tasks, for example, in geostatis-
tics, gene expression time series (Hensman et al.,
2013), and density estimation (Riihiméki and Ve-
htari, 2014). A typical assumption is that the pa-
rameters of the GP model stay constant over the in-
put space. However, this is not reasonable when it
is clear from the data that the phenomenon changes
over the input space (see, e.g., Silverman, 1985).

As an improvement to these cases, Goldberg et al.
(1997) proposed heteroscedastic noise inference for
Gaussian processes using a second GP to infer the
log noise variance and doing the inference by Markov



chain Monte Carlo (MCMC). More recent work
on heteroscedastic noise models include solving the
problem by transformation of the mean and variance
parameters to natural parameters of Gaussian distri-
bution (Le et al., 2005), considering a two-component
noise model (Naish-Guzman and Holden, 2007), and
an expectation maximization like algorithm (Kerst-
ing et al., 2007). Adams and Stegle (2008) used ex-
pectation propagation (EP, Minka, 2001a,b) to the
model input-dependent signal variance (signal mag-
nitude) in GPs by factoring the output signal to a
product of a strictly positive modulating signal and
a non-restricted signal, with independent GP priors
for both of the signals.

Non-stationarity can also be incorporated to the
length-scales as proposed by Gibbs (1997) and fur-
ther developed by Paciorek and Schervish (2004),
where both used MCMC for the approximative in-
ference. In general, the length-scale and the signal
variance of a GP are underidentifiable and the pro-
portion of them is more important to the predictive
performance (Diggle et al., 1998; Zhang, 2004; Diggle
and Ribeiro, 2007). Therefore, we assume that a GP
with input-dependent signal variance and a GP with
input-dependent length-scale would produce similar
predictions. Thus, in this paper we concentrate on
the input-dependent signal variance.

In this work, we present a straightforward and fast
approach to integration over the uncertainty of the
noise and signal variance in GP regression using EP.
This approach can also be applied to input-dependent
noise and signal variance by giving them indepen-
dent GP priors. We extend the heteroscedastic noise
model by Goldberg et al. (1997) to EP inference, and
extend the nonstationary model by Adams and Ste-
gle (2008) to analytical predictions. We consider the
joint posterior of the modulating signal and the non-
restricted signal and show that modeling the poste-
rior correlations leads to significant improvements in
the convergence of the EP algorithm compared to the
factorized approximation. We also obtain stable an-
alytical gradients of the log marginal likelihood.

We still need to infer other covariance function pa-
rameters such as the characteristic length-scale by
maximizing the marginal likelihood or posterior den-
sity, or using quadrature or MCMC integration. The

performance of the EP implementation is compared
to full MCMC (Neal, 1998) which produces the ex-
act solution in the limit of an infinite sample size. We
also compare the EP approximation of the latent pos-
terior to an MCMC approximation, where we sample
only the posterior of the latent values but use the
EP-optimized hyperparameters.

This paper is structured as follows. In Section 2 we
briefly go through Gaussian process regression. Sec-
tion 3 is dedicated to the models and methods includ-
ing the EP algorithm for posterior approximation,
marginal likelihood evaluation and predictions. The
experiments in Section 4 present the performance of
our EP approach in two simulated data sets and three
empirical problems. Finally the methods and results
are discussed in Section 5.

2 Gaussian Process Regression

In standard GP regression the output y is modeled
as a function f plus some additive noise € such that
y(x) = f(x) +e If e ~ N(0,0?), y can be expressed

y(x) ~ N(f(x),0?). (1)

The function f is given a Gaussian process prior,

f(X) ~ gP(m(x)7 k:(x, X,)>7 (2)
defined by its mean and covariance functions. In this
work we use zero mean Gaussian processes for no-
tational convenience. As for the covariance function,
we use the common squared exponential (exponential
quadratic):

d 2
k%) = o exp ( . ) e

=1

where x,x’ € R, O‘J% is the magnitude or signal

variance of the covariance function and ¢; is the char-
acteristic length-scale corresponding to the ith input
dimension.

Given a data matrix X = [x1,X2,...,X,], we can
write our GP prior for the latent function f(x) = f

" f~ N(0, K(X, X)) =N(0,Kg), (4)



where the elements [K¢]; ; = k(x;,x;) are computed
with (3).

In this work, we focus on models where either the
noise variance in (1), or both the noise and signal
variances in (3) depend on the input. These cases
are handled analogously to (2), where the noise and
signal variances are just some functions of the input,
and the observation is combination of the three sig-
nals:

log(o%(x)) ~ GP(m(x), kn(x, %)),

5 , (5)

log(73(x)) ~ GP(m(x), km(x, x')).
From now on @ = log(c?(x)) and ¢ = log(aj% (x)). We
set the GP prior for the logarithm of the variances to
handle the positive restriction. We use the squared
exponential covariance function also for k,(x,x’) and
km(x,x’), although other covariance functions could
be used as well.

3 Approximate Inference

In this section we go through the EP approximation,
different models we use, and the algorithmic details.

3.1 Expectation Propagation

Expectation propagation is a general algorithm for
forming an approximating distribution (from the ex-
ponential family) by matching the marginal moments
of the approximating distribution to the marginal
moments of the true distribution (Minka, 2001a,b).
The notation in this section follows mainly the nota-
tion of Rasmussen and Williams (2006).

With Gaussian processes we wish to form the pos-
terior distribution of the latent variables f given the
observations and inputs p(f | X,y). However, the
posterior distribution cannot be computed analyti-
cally in most cases, because the likelihood function
and the prior distribution cannot be combined ana-
lytically. EP forms a Gaussian approximation to the
posterior distribution by approximating the indepen-
dent likelihood terms with Gaussian site approxima-
tions #;. This enables the analytical computation of
the posterior distribution because both the likelihood

approximation and the prior are Gaussian:
pyi | i) = Ziti(f:) = ZiN(fi | i, ), (6)

where ZZ-,/]Z- and f]Z are the parameters of the site
approximations, or site parameters. We use EP to
approximate the posterior of f such that

p(E] X,y) = ol |0 [T o | 1)

1 -
~ ZEPp(f|X)1;[tz(f1) q(f|X7y)a (7)
where Z is the normalization constant or marginal
likelthood, Zgp is the EP approximation to the
marginal likelihood, p(f | X) is the prior of the latent
variables f, and ¢(f | X,y) is the Gaussian approxi-
mation to the exact posterior distribution p(f | X,y).

3.2 Noise Variance

To integrate over the uncertainty of the noise vari-
ance in GP regression, we approximate the Gaussian
likelihood as a product of two independent Gaussian
site approximations #; for the mean f; and for the
logarithm of the noise variance 6:

p(yi | fi,0%) = N(yi | fi,0%) = N(y; | fi. €?)

The posterior approximation of the latent variables f
and 6 can now be written in a factorized form, if we
set an independent prior distributions for f and 6

p(£,0| Xy)=q(f | X,y)q(0 | X,y).  (9)

3.3 Signal Variance

If we wish to use the same approach as for noise vari-
ance to also integrate over the uncertainty of the sig-
nal variance, we need to move the signal variance
from the GP prior to the likelihood function. Oth-
erwise we would need to integrate over an n-by-n
matrix determinant, which is computationally expen-
sive. To move the signal variance to the likelihood
function, we reparameterize f as f = o¢f, where o
is the square root of the signal variance. Now, if



Cov[f] = 03K, then Cov[f] = K, where K is covari-
ance matrix computed with identity signal variance
in (3). As noted in Section 2, we model the logarithm
of the signal and noise variances to take into account
the restriction for them to be positive. Because both
f and ¢ model the mean of the distribution, we ex-
pect them to have strong correlation. Thus, instead
of doing a factorized approximation as for the noise
variance, we approximate the likelihood with two site
approximations: one for the noise variance and a joint
two-dimensional Gaussian for v; = (fi, ¢):

p(yl | flaov(b) = N(yl | €¢/2ﬁ760)
~ Ziti(fi,9) t:(0)-
Assuming independent priors for the latent variables

f, ¢ and 6, the posterior approximation is also anal-
ogous to the noise variance case, such that

p(£,0.0| X, y)~qf. ¢ | X,y)q0 | X,y). (11)

It should be noted that we also tested the fully fac-
torized approximation #;(f;, ) = t;(f;)t:(4), but it
gave worse predictions, and the EP algorithm needed
clearly more iterations to converge.

(10)

3.4 Input-Dependent Noise and Sig-
nal Variance

We can easily extend the presented likelihood approx-
imations to also include input-dependency on signal
and noise variances (or either one), by setting inde-
pendent GP priors for both the logarithm of the noise
variance and logarithm of the signal variance:

p(v | X)=N(0,K,).
If we integrate over the input-dependent signal vari-
ance, we have

K; 0 } ’ (13)

Ko = {o Kg
otherwise we have K, = K¢. The covariance matri-

ces are computed from the squared exponential co-
variance function (3). By setting the GP priors, we

assume that the signal and noise variances are also
some unknown functions that depend on the input x.
The site approximations are of the same form inde-
pendent of the input-dependency of the parameters
£(0:) = N(fig,i; %0.4), (14)
£3(v5) = N(f, 3, 30 5)-

If we integrate over the (input-dependent) signal vari-
ance, we have

~ ﬂf 1:| S _
fy, = -0 and X,; =
’ [Mw

fii
fo.i

ifﬂ%’i‘| ) (15)

g

M

otherwise f,, ; = fi; and 3, = Y;; Here we have
used ¥ for both the scalar variance of the univariate
Gaussian and the covariance matrix of the bivariate
Gaussian, but it should be clear from the context
which one it represents.

The posterior distributions can be computed with

Q(v | Xay> = N(vazv) ocp('v | X) Hfz(vz)

7

= N(v | Ova)N<U | Foys 2v)a (16)
a(0 | X,5) = Npg, To) o p(8 | X) [ #:(6:)
= N(U | OvKB)N(e | ﬂe»SB)v (17)

=1 _ ~—1
where prg = 33 f1g, g = (K; ' + %5 )7, g, =
32, fiy, and B, = (Ky' + 3, )71. The joint
site covariance 3y is diagonal while 3, has a block
form if we integrate over the input-depenedent signal
variance

sz %
E¢f DI

where each block is diagonal. Cross-diagonal terms,

X, = Xy, collect the marginal covariances Xy, ;

v

, (18)

and the main-diagonal terms, f]t: and §¢, collect the
marginal variances ¥, and X4 ;. If we do not inte-

grate over the signal variance, we have ¥, =3 -

3.5 EP Algorithm

The full EP algorithm is presented in Algorithm 1.
The main points in the algorithm are the same as



in the standard EP approach for Gaussian processes
(Rasmussen and Williams, 2006, pp. 52-60). How-
ever, there are some implementation details that
should be noted:

1. The overall stability of the EP updates can be
improved by working in the natural parameter space
of the site approximations. This means that we use
the natural parameterization, v = f]_lﬁ and 7 =
$~1, for the site approximations. This way we can
avoid inverting the site covariance matrices at every
iteration.

2. Even though the algorithm should be stable and
robust, there are some cases where the site updates
exhibit oscillations, for example, due to weird hyper-
parameter values in the covariance functions. Thus,
the updates should be damped after computing the
new site approximations in step 4,

A1 = 0(rY

i _Tg)ld)7

new old new old
TV =10+ Ay, vV =02 + Ay,

Av; = 5] —

=)

with some suitable damping factor ¢, for example § =
0.8.

3. In step 3 of the algorithm we minimize KL
divergence with respect to Gaussian distributions.
This means that we match the first and second mo-
ments of the one-dimensional distributions and in
addition to these the cross-moment if we have a bi-
variate Gaussian #;(v;). The integrals over f; or ﬁ
can be computed analytically in every case in steps
2 and 3. If we don’t integrate over signal vari-
ance, this can be done trivially as both the cavity
and likelihood are Gaussian with respect to f;. If
we integrate over signal variance, we can utilize the
standard factorization of the multivariate Gaussian
q-i(fi,¢i) = q-i(fi | #i)q—i(¢i). The integrals over ¢
and ¢ must be computed numerically, but this can be
done effectively, for example, with Simpson’s method.

4. We use parallel EP updates for the site pa-
rameters. This means that we compute the site up-
dates for every site approximations before we update
the posterior distribution and compute the marginal
likelihood. This usually results in a few more EP it-
erations than sequential EP, but the overall speed of
the algorithm is faster.

Algorithm 1 Parallel EP algorithm

Initialize fi; 9 = fijo =%, ; =%, + =0fori=1,2,...,n.
Set ¢(0 | X,y) =p(€ | X) and q(v | X,y) = p(v | X).
repeat

fori=1ton do
if input-dependent signal variance then

v; = (fi, ¢i)
else

v = fi
end if

1. Compute the cavity distributions:
q—i(vs) o< qi(vi)/ti(vi)
q-i(6) o qi(6)/%:(8)
with
-1 -1 _$-1
E,Z’,. = 21,4 - ZZ".
i =% (5 e, — 55 ),
when
qi(+) ~ N(pi,-, ..
Ez() ~ N(/]i,~7i:i,<)

2. Compute the normalization Z;:

Zi= [[ ot | 0is0)a-s(0)a-:(6) dv, 8

3. Find the best marginal posterior approximation for
¢i(v;) and ¢;(0;) by
i, KL(Z; 'p(yi | vi,0)g—i(vi)a—i(0)llai (i)
;Tl(lgl) KL(Z; 'p(yi | v, 0)a—i(vi)g—i(6)[|ai(6)).
4. Update the site approximations #; by
ti(vi) o< q;(vi)/q—i(vi)
t;(0) < q;(0)/q-i(6)
analogously to step 1.
end for
5. Update the posterior distributions with (16)—(17).

6. compute the marginal likelihood with (22).
until Convergence

3.5.1 Marginal Likelihood

Marginal likelihood can be used for model selec-
tion under GP framework as it has good calibration
and the maximum of the marginal likelihood usu-
ally corresponds to good predictions (Rasmussen and
Williams, 2006; Nickisch and Rasmussen, 2008; Ri-



ihimaéki et al., 2013). Marginal likelihood in Gaussian
processes is defined as

Z=ply | X) = / p(E| X)p(y | £)df.  (19)

For our noise and signal variance GPs, an EP approx-
imation to the marginal likelihood is

Z =~ Zgp = q(y | X)

— [ vto 1 0006 | ) ] Zitwi)is(6:) dv s, (20)

K2

where v = (f', ¢) or v = f. Following Cseke and
Heskes (2011), we define the term

1 1
log Z(m, V) = imTV*Im + A log | V| + %log(27r).
(21)

Now the EP approximation for marginal likelihood
can be computed with

log Zgp = log Z(pg, Xp) + log Z(p,,, Xy,)
+> " (log Z(p—i 9. B—i0) — 10g Z (110, Si.0))

+ 3 (108 Z(piw: Xeiw) — 10 Z (1,0, Biw))

—1log Z(0, Ky) —log Z(0, Kg) + » log Zi, (22)

where p and 3 are the parameters of the posterior
distribution approximation ¢(:|X,y), p; and ¥; are
the ith marginal terms of u and ¥, p_; and ¥ _; are
the ith marginal mean and variance parameters of
the cavity distributions ¢_;(-), and K are the prior
covariances from the GP.

Note that for # the marginal parameters are one-
dimensional, but for v they are two-dimensional if
we integrate over the signal variance like for the site
approximations in (15).

3.5.2 Predictions

For predicting a future observation y* for input x*,
we need to compute the predictive distribution

I, X, y) = / / Py, 0%, 0%[x", X, y) do* d6”

_ //p(y*|v*,9*)q(’u*|x*,X, V)a(0*|x*, X, y) dv* 6",
(23)

where

q(v*x", X, y) = /p(v*lv)Q(le, y)df — (24)
can be easily computed using properties of Gaussian
processes. Note that if we assume stationary signal
or noise variance, the respective posterior distribu-
tions reduce to one-dimensional Gaussian distribu-
tions. This means that g(v|X,y) becomes n + 1 di-
mensional, and the posterior predictive distribution
equals the posterior distribution. Because we approx-
imate the posterior predictive distribution of the la-
tent variables and the predictive distribution of y* by
a Gaussian distribution, we can always compute the
predictions analytically, regardless whether we have
input-dependent signal or noise variance. For a GP
with EP marginalized noise variance we get the fol-
lowing predictive distributions

Ely* | x*, X,y] = E[f" | x*, X,y]
Viy* [ x*, X, y] = V[f* | x*, X,y]

(25)

1
+exp (E[0* | x*, X, y] + SV | x*, X,y]). (26)

For a GP with EP marginalized noise and signal vari-
ance the results are quite lengthy and are omitted
here to save space (see supplementary material).

3.5.3 Factorized Approximation and Con-
verge

In this section we discuss certain key properties of
the posterior approximations introduced in Sections
3.2-3.4. More precisely, we illustrate the importance
of the utilized factorization assumptions in terms of
both accuracy and convergence of the resulting EP
algorithm.



(a) EP posterior approximations (contours) and the MCMC
samples from the latent posterior.
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(b) Covergence of EP with factorized (red) and joint (blue)
approximations.

Figure 1: Example comparisons of EP posterior ap-
proximations with MCMC samples from the latent
posterior and the covergence of the EP algorithm.
Red contours correspond to the factorized approxi-
mation ¢(f | X,y)q(@ | X,y) and the blue contours
correspond to the full joint approximation q(f’,qb |

X.y).

Panel (a) of Figure 1 visualizes the marginal poste-
rior distributions of the latent values related to both
the unscaled function values f; (x-axis) and the mag-
nitude process ¢; (y-axis). Each of the four subplot

shows the latent values associated with four different
observations (likelihood terms) resulting from a non-
trivial simulated data set (see Section 4). MCMC
samples from the true posterior distribution are plot-
ted with black dots together with two different EP
approximations: the partially coupled approxima-
tion ¢(f, ¢)q(0) introduced in Section 3.4 (blue con-
tours) and a fully factorized approximation of the
form ¢(f)q(¢)q(0) (red contours). Subplots on the
left show strong posterior dependencies between the
latent values resulting from the combined effect of
the within-observation couplings fi = f; exp(¢i/2)
and the between-observation correlations controlled
by the GP priors. On the other hand, subplots on the
right show much weaker couplings indicating that the
the within-observation coupling does not necessarily
introduce strong posterior dependencies. Compari-
son of the joint posterior approximations of ¢; with
either ¢;, fi, or f; = fiexp(¢;/2) did not show strong
dependencies, which is why we used a factorized ap-
proximation for 6 to facilitate computations.

According to our experiments, neglecting the pos-
terior couplings does not significantly affect the pre-
dictive performance compared to the fully-factorized
approximation. However, representing these cou-
plings has a significant effect on the convergence
properties of the EP algorithm. Subfigure (b) of Fig-
ure 1 shows the EP marginal likelihood approxima-
tions as a function of EP iteration in both settings.
The fully-coupled approximation (red line) converges
very slowly compared to the partially coupled ap-
proximation (blue line); the former requires often
hundreds of iterations whereas the partially-coupled
approach converges usually in less than 50 iterations.
In our experiments the convergence properties of the
full-coupled algorithm could not be improved by ad-
justing damping.

This behavior can be explained by slow propaga-
tion of information between the latent values from
different likelihood terms with the fully-coupled ap-
proximation. Because each likelihood term is up-
dated separately from the others, information on the
posterior dependencies in other site terms is not avail-
able during the update. These findings are fully con-
gruent with the convergence differences in multi-class
GP classification when between-class dependencies



are omitted (Riihiméaki et al., 2013).

4 Experiments

In this section we go through the different data sets
we use for experiments, different methods and the
assessment criteria for the results.

Simulated data 1. The first simulated data was
generated by the following setup:

f(z) = sin(),

of(z) =N(xz | —2.5,1) + N(z | 2.5, 1),

o(z) = 0.08 + N( | =8.3) + N(z | 8,3), V)
y(x) =op(2)f(z) +e

where € ~ N(0,0(z)). The training data was gen-
erated by first drawing 200 random z values from
U(-8,8). After this we computed the mean signal
by combining the modulating signal o(z) and f(z).
Then some random noise with standard deviation
o(z) was added. For the test set we used uniform grid
of 1000 points in the interval (—8,8) and computed
the function values analogously to training set, with-
out adding noise. The experiment was repeated 100
times for different realizations of the training data set
to assess the variation in the final predictions of the
test set.

Simulated data 2. The second simulated dataset
was generated with

= exp(2sin(0.2x)),
x) = exp(0.75sin(0.52 + 1)) + 0.1,

y(x) = of(2)f(z) +e.

The training and test data were generated analo-
gously to the first experiment. We used 150 training
points and the different generating signals for the ob-
servations. The second experiment was also repeated
100 times as in the first experiment.

Motorcycle. The motorcycle data (Silverman,
1985) consists of 133 accelerometer readings in a sim-
ulated motorcycle crash.

Concrete. The second empirical experiment uses
concrete quality data (Vehtari and Lampinen, 2002;

(28)

Jylanki et al., 2011), where the output is volume per-
centage of air in concrete, air-%, with 27 different
input variables. The input variables depend on the
properties of the stone materials, additives and the
amount of cement and water.

SP500. The last empirical experiment is con-
cerned with predicting the SP500 index. The data
set consists of monthly averages of the index be-
tween years 2001-2014, with a total of 169 observa-
tions. We demonstrate on this data how a GP with
input-dependent noise variance works as a stochastic
volatility model.

We compare 8 different methods: GP (Standard
GP regression), EP(n) and MCMC(n) (integra-
tion over input-dependent noise variance with EP
and MCMC), EP(n4+m) and MCMC(m+n) (in-
tegration over input-dependent signal and noise vari-
ance with EP and MCMC), EP-MC(n) and EP-
MC(m+n) (EP optimized hyperparameters for co-
variance functions and sampling of the posterior of
the latent variables).

Figure 2 presents the behaviour of the EP (m+n)
for the one-dimensional experiments.

In standard GP regression we use maximum a pos-
teriori (MAP) values for all the model parameters
(signal variance, noise variance, length-scales). In the
EP methods, when integrating over input-dependent
noise variance, we use MAP values for signal variance
and length-scales, and when integrating over input-
dependent signal and noise variance, we use MAP
values for the length-scales. Latent MCMC means
that we use EP optimized MAP values for the co-
variance function parameters and sample only from
the latent posterior.

We also ran the experiments by integrating over
stationary (not input-dependent) signal and noise
variances. However, results with these methods co-
incide with standard GP regression and the results
can be regarded trivial. Thus they are not reported
in this paper in order to save space.

The performance of the different methods was as-
sessed by computing the mean log-predictive density
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Figure 2: One-dimensional data sets and the EP predictions with uncertainty intervals. Thin black lines
correspond to the true signal in the simulated data sets, and the thick gray lines are the GP predictions
with EP. The grey area is the 95% credible interval of the prediction. Red lines correspond to the standard
GP prediction with MAP values for the signal and noise variance (credible intervals only shown for SP500).

Table 1: The table shows MLPD values for different methods, where higher values correspond to better
predictions. For the concrete data ISO means that we have an isotropic covariance functions for all the
latent variables, and ARD denotes automatic relevance determination for f and f , and an isotropic covariance
function for the rest of the latent variables.

Method Simulated 1~ Simulated 2~ Motorcycle Concrete (ISO) Concrete (ARD)  SP500
GP 0.95 £0.026 —1.70=£0.034 —0.71 0.06 0.11 0.27
EP (n) 1.22 £ 0.025 —1.49+0.032 —0.41 0.13 0.21 0.42
EP (m+n) 1.23 £ 0.028 —1.47+0.029 —0.42 0.22 0.26 0.41
EP-MC (n) 1.22 £ 0.025 —1.49+£0.032 —0.40 0.11 0.23 0.43
EP-MC (m+n) | 1.24 £+ 0.023 —1.47 £0.029 —0.41 0.21 0.28 0.42
MCMC 0.95 £ 0.020 —-1.70=£0.025 —0.71 0.07 0.13 0.28
MCMC (n) 1.22 £ 0.021 —-1.55+0.150 —0.39 0.10 0.22 0.19
MCMC (m+n) | 1.24 £ 0.019 —1.49+0.030 —0.40 0.20 0.19 0.26




(MLPD) for N test data points

N
1 * * * * *
MLPD = Nz;/logp(yi |2}, X, y)p(y; | «f) dy},

(29)
where p(y; | 7, X,y) is the posterior predictive den-
sity for yf and p(y} | x7) is the true distribution of
y;. For the three empirical datasets, we computed
the approximate MLPD of the n training data points
with 10-fold cross-validation:

1 n
MLPD =~ - ;Ing(yi | 2i, X,y —i),

(30)

where p(y; | x;, X_;,y—;) is the cross-validated pos-
terior predictive density for y;. Higher MLPD values
correspond to better predictions.

MLPD values from the experiments are shown in
Table 1. We can conclude from the results that inte-
grating over the input-dependent noise variance in-
creases predictive capability greatly in our experi-
ments compared to standard GP regression. Fur-
thermore, integrating over the input-dependent sig-
nal variance tends to enchance the predictions even
more. In some cases integration over the signal vari-
ance is not needed prediction wise, but our results
show that even in these cases, it does not harm the
predictive quality. The results show that our EP im-
plementation is comparable to the MCMC methods.

The predictive distribution with the SP500 data
in Figure 2d illustrates the practical benefits of the
input-dependent noise: The period of steady growth
between samples 40-80 has clearly lower signal vari-
ance compared to the more volatile periods related
to financial crisis of 2008 (samples 90-110) and the
subsequent shaky growth characterized by debt crises
and monetary interventions (samples 110-140).

With our implementation, MCMC was roughly two
orders of magnitude slower than EP. This depends
highly on the implementation and number of MCMC
draws required for convergence. For example, with
the SP500 and Concrete data with ARD lengthscales
for f, the state-of-the-art MCMC methods based on
elliptical slice sampling had convergence issues even
after thousands of samples, as the results indicate.
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5 Discussion

In this work we have introduced a straightforward
but an easily implementable and computationally ef-
ficient way to integrate over the uncertainty of the
noise and signal variance in Gaussian process regres-
sion. Our implementation is easy to apply also for
input-dependent noise and signal variance, and it fur-
ther extends the well-known nonstationary GP mod-
els. We have tested our EP implementation on sev-
eral different data sets and showed that the EP re-
sults are on par with state-of-the-art MCMC meth-
ods. Furthermore, our results show EP can be used
in complex problems where even the state-of-the-art
MCMC methods have convergence problems.

The scope of this paper was not to compare GPs to
other models, but to investigate how integration over
signal and noise variance works in the GP framework.
Thus, we have ommited comparisons to other models
in this work.

The results indicate that there exists phenomena,
where it is advantageous to have input dependent sig-
nal variance in addition to the input dependent noise
variance. While adding the input-dependent noise
variance greatly enhances the predictive quality, we
are still left with oscillation of the estimated mean.
Using the input-dependent signal variance in addi-
tion to the noise makes the estimates smoother and
further enhances the predictions.
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