

FACULTY OF SCIENCE AND TECHNOLOGY
DEPARTMENT OF PHYSICS AND TECHNOLOGY

Mean Shift Spectral Clustering Using
Kernel Entropy Component Analysis

Jørgen Andreas Agersborg

FYS-3921 Master’s Thesis in Electrical Engineering

June 2012

i

Abstract

Clustering is an unsupervised pattern recognition technique for finding nat-
ural groups in data, whether it is a grouping of web pages found by a search
engine or segmenting satellite images into different types of ground cover.
There exists a variety of different ways to perform clustering ranging from
heuristics rules designed for a specific dataset to general procedures which
can be applied to all datasets with varying degrees of success. The k-means
algorithm is a well known example of the latter approach that can be ex-
pected to give good results when the data is easily separable.

Another example of general clustering procedures are spectral clustering
methods which involve a non-linear data transformation that allows them to
handle complex cluster structures. They are considered to be the state of
the art in the clustering literature, but are computationally demanding and
unable to handle large datasets. To overcome the size limitations, this thesis
uses a two-stage approach. The first stage can be seen as a preprocessing to
reduce the size of the input for the spectral clustering in the second stage.

The preprocessing is accomplished by using a simple clustering method
on the dataset. These clusters represents a partitioning and is a more natural
way of representing the dataset than randomly selecting a subset of samples.
One can then adjust the number of partitions so spectral clustering methods
can be used.

The procedure is called Mean Shift Spectral Clustering (MSSC) as the
mean shift clustering algorithm is used in the first stage. Each partition
found by mean shift consists of data points that are close to the same mode
in the estimated probability density function. Hence the partitions will be
representative of the geometric structure of the dataset.

This thesis realizes for the first time the idea of spectral clustering based
on the partitions found by mean shift. The Kernel Entropy Component
Analysis (KECA) spectral clustering method, a recent development in the
field of spectral clustering, is used for this purpose and compared with the
better known Kernel Principal Component Analysis (KPCA) method.

A comprehensive collection of MATLAB functions has been developed to
allow the testing of this procedure which is able to handle large and high
dimensional datasets. It is able to cluster images directly with as many
feature vectors as there are pixels. The experiments show how the clustering
accuracy varies as a function of the primary parameters. This gives a good
overall characterization of the method and what can be expected when used
for unfamiliar datasets.

The MSSC procedure is shown to provide good clustering results when
following some basic principles for selecting parameters.

ii

Acknowledgments
First of all I would like to start by thanking my supervisor, Robert Jenssen.
Your inspiring lectures and enthusiasm directed my studies towards signal
processing and further into the field of pattern recognition, a choice I have
never regretted. The feedback during the process of writing this thesis has
always been very constructive and has helped keep me on track.

My parents have provided much appreciated support by occasionally
bringing me food at the office. In hectic periods this has given me much
needed relief from frozen pizzas and dinners that only require a microwave or
boiling water. The latest visits brought large amounts of fruit, presumably
because you feared that my diet might cause me to develop scurvy.

To Vidar, I appreciate your interesting dilemmas, clustering discussions
and general tomfoolery. Also, to the rest of the people at Norutbrakka, I
am thankful for the pleasure of your company. A big thanks to Thomas
and Jonas who have read through the thesis, particularly for the extensive
feedback from the latter. Kristine, thank you for giving me motivation and
keeping me company in the final stages of the writing.

Finally, to the two cows seen in several plots in this thesis; I don’t know
who you are, but I’m sure you’ll appear in many brightly coloured dreams
and nightmares for a long time to come. If I ever have to segment an image
with a cow again, it will be too soon.

Jørgen Agersborg
Tromsø, June 2012

Contents

1 Introduction 1
1.1 Structure of this Thesis . 6
1.2 Notation . 7

2 Some Clustering Procedures 11
2.1 Introduction . 11

2.1.1 Types of Clustering Procedures 11
2.1.2 Methods and Algorithms Presented 12

2.2 The K-Means Algorithm . 13
2.2.1 Generalized Hard Algorithm Scheme 13
2.2.2 The K-Means Algorithm as a Special Case of GHAS . 16

2.3 EM with Gaussian Mixture Models 24
2.3.1 Mixture Models . 24
2.3.2 Estimating Gaussian Mixture Model Parameters 28
2.3.3 Clustering by EM of Mixture Parameters 33

2.4 The Mean Shift Algorithm . 35
2.4.1 Kernel Density Estimation 36
2.4.2 Mean Shift Algorithm Variations 39

2.5 Kernel PCA Spectral Clustering 46
2.5.1 Principal Component Analysis 46
2.5.2 The Kernel Trick . 49
2.5.3 Kernel PCA . 50

2.6 Laplacian Eigenmaps . 56
2.6.1 Defining The Graph 57
2.6.2 Graph Laplacian . 60
2.6.3 Laplacian Clustering Methods 68

3 Information Theoretical Learning 71
3.1 Introduction . 71
3.2 Information . 72
3.3 Shannon Entropy . 73

iii

iv CONTENTS

3.4 Renyi Entropy . 75
3.5 Entropy in Physics . 77
3.6 Divergence . 79

4 Kernel Entropy Component Analysis 81
4.1 Introduction . 81
4.2 Estimating Renyi’s Quadratic Entropy 81
4.3 The KECA Transformation 83
4.4 KECA Spectral Clustering . 85

5 Novel Mean Shift Spectral Clustering 93
5.1 Introduction . 93
5.2 A Two-Stage Clustering Approach 94
5.3 The First Stage . 94
5.4 The Second Stage . 96
5.5 Proposed Changes in MSSC 97
5.6 Parameters in Two-Stage Clustering 98

6 Results 101
6.1 Examples to Illustrate MSSC 101

6.1.1 The Iris Dataset . 101
6.1.2 The Cows Image . 108
6.1.3 Toy Data Example . 116

6.2 Image Segmentation . 119
6.2.1 Plane Picture . 120
6.2.2 Water Buffalo Picture 121

6.3 Additional Datasets . 123
6.3.1 Wisconsin Breast Cancer Dataset 123
6.3.2 Wine Dataset . 125

7 Conclusion 127
7.1 Suggestions for Further Work 128

7.1.1 General Suggestions 128
7.1.2 First Stage . 129
7.1.3 Second Stage . 130

Chapter 1

Introduction

The information age has brought with it enormous amounts of easily acces-
sible digital data where meaningful groups can be found. Organizing simi-
lar objects in groups has been an important scientific technique for a long
time, where a classic example is categorization of living organisms into taxo-
nomic ranks in biology. Other prominent examples of grouping data includes
image segmentation [7], web page organization [38], characterizing genome
sequences [44], customer type grouping for market research [3] and social net-
work analysis [45]. Yet another application of clustering is data compression
for organizing the data and summarizing it by cluster prototypes [16].

Often data is represented by many variables and is therefore high dimen-
sional. While humans are excellent at finding clusters in two and possibly
three dimensions by visual inspection, automatic algorithms are needed for
high dimensional data. Even in two and three dimensions, manual group
assignments as an overall strategy is not feasible once time and cost are
taken into account. A better approach is to use computers to find the group
structure and then let humans interpret what they mean.

Clustering is an unsupervised pattern recognition technique which auto-
matically seeks to gather objects in "natural" groups [20, Chapter 12]. In
addition to providing a natural classification, clustering gives an insight into
the underlying structure of the data. The goal is that the objects in each
cluster are similar while the different clusters are dissimilar. To do this we
need to define a proximity measure that quantifies what we mean by these
terms. A proximity measure is either a similarity measure or a dissimilarity
measure, where a much used example of the latter is the Euclidean distance.

The different ways of defining proximity is part of the reason why many
different clustering procedures have been developed, ranging from simple
heuristics suitable for a particular type of dataset to general iterative schemes
which seeks to optimize some associated optimality criterion. Ideally one

1

2 CHAPTER 1. INTRODUCTION

should use a clustering approach that produce good results in a wide variety
of situations, since the general assumption for clustering is that we know
little or nothing about the data in advance.

A well known general clustering procedure is the k-means algorithm [22].
This is most often implemented with the Euclidean distance1. Given a set of
cluster representatives, in the first step each point is assigned to its closest
representative. The second step updates the cluster representatives by setting
them equal to the mean of the data vectors assigned to them in the previous
step. These two steps are repeated until some convergence criterion is met,
see Section 2.2 for details.

(a) Dataset 1. (b) Dataset 2.

Figure 1.1: Two datasets.

The k-means algorithm is optimal for clustering dense, spherically shaped
and linearly separable clusters [16]. Fig. 1.1a shows an example of such a sit-
uation, and the k-means algorithm can be expected to give a good clustering
results.

This is not the case if we assume that in addition to the points in the
upper right corner, each of the two half circles in (b) should be different
clusters. Clearly, while it is easy to separate the corner cluster from the
other two, it is not possible to define a straight line that separates the two
half circles.

Figure 1.2 shows the clustering result of the k-means algorithm for three
clusters. This is not a good result, but is it possible solve this without
defining an ad hoc decision curve between the two half circles?

This is where spectral clustering methods excel. By performing a non-
linear data transformation, the data is transformed to some space where it

1Or the squared Euclidean distance, in which case the k-means algorithm can be derived
from optimizing the associated cost function as will be shown in Section 2.2.1.

3

Figure 1.2: K-means solution.

is easier to separate between the clusters. Since they are able to handle non-
linearities as well as easier datasets such as in Fig. 1.1a, spectral clustering
methods are considered to be the state of the art [28] and they often outper-
forms traditional clustering algorithms such as k-means [41]. An introduction
to spectral methods can be found in [26] while [36] introduces a graph-based
spectral algorithm for image segmentation problems.

Spectral methods are based on finding the eigenvalues and eigenvectors of
a data affinity matrix which contains proximity measures between all pairs of
data points. However, this means that spectral methods are not suitable for
large datasets, since the size of the matrix increases as the number of data
points squared.

When clustering large datasets, such as images, one often has to choose
between using a simple clustering procedure on the entire set or using an
advanced method on a subset of the original data and then use some heuristic
to assign the rest of the data to the clusters found. Needless to say, the final
result will then depend both on the subset used and the method for assigning
the other points to the clusters.

4 CHAPTER 1. INTRODUCTION

In this thesis we propose an alternative to this dilemma. The idea is
to use a two-stage clustering approach where the first stage can be seen as
a form of preprocessing to the reduce the size of the input to the spectral
clustering method in the second stage. The method is called Mean Shift
Spectral Clustering (MSSC), as the mean shift clustering algorithm [6, 12] is
used in the first stage.

Thus the preprocessing in the first stage is performed by using a simple2

clustering method on the dataset. Since the mean shift algorithm is based on
estimating the underlying probability density function, this initial clustering
represents a natural partitioning of the dataset. Then in the second stage,
spectral clustering is performed on an affinity matrix based on these parti-
tions. Using proximity measures based on information theory (see Chapter
3) the entire dataset is used when constructing this matrix.

Figure 1.3: MSSC solution.

Figure 1.3 shows the clustering result by using MSSC on the dataset seen
2While the mean shift algorithm used in MSSC is not really considered "simple" com-

pared to many other clustering procedures, it can be used on much larger datasets than
spectral methods.

5

in Fig. 1.1b. The black dots show the center of the partitions found by mean
shift. While useful for large datasets, MSSC may also improve performance
in cases where one could have used spectral methods directly. This we shall
see when we return to this example in Section 6.1.3.

This thesis also introduces a very recent development in the field of clus-
tering, the Kernel Entropy Component Analysis (KECA) spectral clustering
method, into the MSSC framework. KECA is based on preserving entropy
and was first presented in [18] motivated by trying to shift the focus of clus-
tering procedures away from various forms of normality assumptions. Its
performance in this setting is compared with the well known spectral clus-
tering method Kernel Principal Component Analysis [14, 25].

An extensive framework of code has been developed and used to illumi-
nate many aspects of MSSC. This has allowed the method to be tested on
some well known pattern recognition benchmarks, with the focus being on
illustrating how the different parameter choices affects the clustering result.
This was considered more important than simply presenting the best result
as one generally does not know the true labels in a clustering setting, thus
limiting the effectiveness of tweaking parameters. A two-stage approach will
significantly increase the number of possible parameter combinations and re-
sults will be presented based on combining variations of the most important
ones.

The experiments have a particular focus on the effect of the kernel size.
This is a parameter which is hard to optimize. There is no commonly ac-
cepted approach to selecting the kernel size that do not involve making cer-
tain assumptions about the dataset.

The idea of a two-stage approach was first presented in [28]. While the ar-
ticle named it Mean Shift Spectral Clustering, the second stage in the method
presented was not actually spectral clustering, see Section 5.4. It was based
on the partition affinity matrix, but used a heuristic approach resembling
hierarchical clustering with a much higher computational complexity than
spectral methods.

Novel improvements developed in this thesis include:

• Performing actual spectral clustering based on the mean shift parti-
tions.

• Introducing the KECA spectral clustering method, a recent develop-
ment in the field in MSSC and comparing it with the better known
KPCA, which is also new in the MSSC setting.

• Having different kernel size parameters in first and second stage to
emphasize the different roles of the two stages.

6 CHAPTER 1. INTRODUCTION

• While having different kernel sizes eliminates the need to save the kernel
matrix from the first stage, we introduce the option of storing the
associated distance matrix. For many kernel functions this allows the
construction of the kernel matrix based on calculations done in mean
shift with a different bandwidth.

• Using the option to blur (see Section 2.4.2) in the mean shift algorithm
to reduce its sensitivity to the kernel size.

1.1 Structure of this Thesis

A selection of clustering procedures are discussed in Chapter 2. Two spectral
methods relevant for the second stage and three non-spectral methods which
can be used in the first stage are presented. For the benefit of the reader the
clustering procedures are discussed thoroughly. Each section contains the
motivation behind the approach and how to cluster with the procedure as
well as figures to illustrate the performance. Kernels are briefly introduced in
connection with the non-parametric probability density estimation approach
Parzen windowing, which is used for the mean shift algorithm in Section 2.4.
The concept of kernels are further expanded in Section 2.5 when used to find
the kernel Principal Component Analysis (KPCA) data transformation.

Information Theoretical Learning (ITL), which introduces the use of in-
formation theory descriptors such as entropy and divergence for a wide range
of applications, is presented in Chapter 3. The chapter starts with the
concept of information, the Shannon entropy and the connection with en-
tropy in physics to provide a brief introduction into this comprehensive field.
ITL however focuses on the Renyi entropy in Section 3.4 and the associated
Cauchy-Schwarz divergence measure found in Section 3.6.

These ITL descriptors are then used in Chapter 4 for defining KECA,
which is based on preserving the estimated quadratic Renyi entropy of the
dataset [18]. Using KECA for a data transformation often induces an angular
structure in the transformed set. A spectral clustering method utilizing this
particular structure is given in Section 4.4.

Chapter 5 concludes the theory part of this thesis by summarizing MSSC
presented in [28]. The first sections explains the two-stage approach in more
detail, including how the partition affinity matrix can be constructed by
using the Cauchy-Schwarz divergence to utilize information from the entire
dataset. Section 5.5 presents the novel changes in MSSC done in this thesis,
followed by a discussion about parameter choices.

The experiments are reported in Chapter 6 and include the clustering of

1.2. NOTATION 7

some common benchmarks. These results are used to illustrate and discuss
the important aspects of MSSC. As mentioned the focus is to give an under-
standing on how different parameter choices affects the result, rather than
tweaking the parameters to find the optimal performance.

This thesis is concluded in Chapter 7. This chapter also includes a com-
prehensive list with brief points that can be considered for future work in
order to expand MSSC.

1.2 Notation

It should come as no surprise that the clustering literature, like most if not all
scientific fields, contains about as many notational conventions as there are
published authors in the field. While this thesis includes information from
many different articles and books, care has been taken to remain consis-
tent throughout the chapters. The following general mathematical notation
applies:

1. Small bold letters denotes vectors: a, b, µ. All vectors are column
vectors unless explicitly stated otherwise.

2. Capital bold letters denotes matrices: A, B, Σ.

3. The superscript T is used for the transpose operator: AT , bT .

4. All variables are real.

Some important variables, vectors and matrices can be found in the fol-
lowing table.

8 CHAPTER 1. INTRODUCTION

Notation Dimension Description
x l × 1 stochastic vector or its realization (then often

with a subscript)
X dataset of data vectors
X n× l dataset organized in a matrix with observa-

tions as rows
y s× 1 transformed data vector
Y transformed dataset
Y n× s dataset after transformation organized in a

matrix
µ l × 1 expectation or mean vector, µ = E {x}
K kernel function
K n× n kernel matrix
Ki,j 1 element i, j of kernel matrix, Ki,j =

K(xi,xj)
e n× 1 eigenvector of K
E n× n matrix with eigenvectors e as columns
λ 1 eigenvalue of K
Λ n× n diagonal matrix of eigenvalues
f probability density function (pdf) of contin-

uous random variable or vector
f probability mass function of discrete random

variable or vector (same symbol as pdf)
H entropy
V information potential
H l × l full bandwidth matrix
h 1 bandwidth or kernel size parameter

Notice that the kernel matrix K has dimension m × m when constructed
based the m partitions rather than the full data set of n feature vectors (see
Chapter 5. This also influences the size of all vectors and matrices related
to K.

Several abbreviations are used throughout the thesis. They are usually
written explicitly when used for the first time in a chapter. A few of the
more common are listed below.

1.2. NOTATION 9

EM Expectation Maximization
ITL Information Theoretical Learning
KDE Kernel Density Estimation
KECA Kernel Entropy Component Analysis
KPCA Kernel Principal Component Analysis
pdf Probability Density Function
pmf Probability Mass Function

RKHS Reproducing Kernel Hilbert Space

Some terms have different names that are used interchangeably in this thesis,
for instance Parzen windowing is another name for kernel density estimation.
Another example is that the feature vectors x are also referred to as data
points or data vectors.

10 CHAPTER 1. INTRODUCTION

Chapter 2

Some Clustering Procedures

2.1 Introduction

2.1.1 Types of Clustering Procedures

In [16], clustering procedures are broadly divided into two groups, hierarchical
and partitional.

Hierarchical methods recursively finds nested clusters. The hierarchical
group can be further subdivided into two groups. For agglomerative clus-
tering, each data point starts in its own cluster and at each step the most
similar pair of clusters is merged. The other algorithm is divisive clustering;
all points start in the same cluster which is recursively divided into smaller
clusters.

Partitional methods do not impose a hierarchical structure, and once "the
clustering rules" for the dataset have been found, it is divided into clusters
according to these rules. In some clustering methods the rules are found
by iterative procedures. The cluster assignment of a data point may change
after each iteration, until the algorithm finds an assignment that is optimal in
some sense. The k-means algorithm presented in Section 2.2 and Expectation
Maximization for Gaussian mixture models in Section 2.3 are two examples
of such iterative procedures.

Some partinional procedures use the proximity measures between the data
points rather than the data points themselves. The proximity measures are
organized in a matrix which is called the similarity matrix. These are called
spectral clustering methods because they make use of the spectrum (eigenval-
ues and the corresponding eigenvectors) of the similarity matrix in some way.
Kernel Principal Component Analysis (Section 2.5) and Laplacian eigenmaps
(Section 2.6) are two spectral clustering methods.

A further distinction, between clustering methods and clustering algo-

11

12 CHAPTER 2. SOME CLUSTERING PROCEDURES

rithms, is presented in [16]. A clustering method is a general strategy to find
a solution to a clustering problem, while an algorithm is a realization of the
clustering strategy defined by the method. K-means, which is presented in
Section 2.2 is an algorithm, whereas Kernel Principal Component Analysis
spectral clustering in Section 2.5 is a clustering method where the strategy
is to find a new data representation by a non-linear transformation before
clustering.

2.1.2 Methods and Algorithms Presented

Only partitional clustering methods are presented in this thesis as the meth-
ods used for Mean Shift Spectral Clustering (MSSC) are partitional. The
first three chapters are about non-spectral clustering algorithms, with Sec-
tion 2.2 covering the well known k-means algorithm. Section 2.3 describes
clustering by using a Gaussian mixture model for the data and estimating
the model parameters by Expectation Maximization (EM). The k-means can
be seen as a special case of this method.

The mean shift algorithm and its application to clustering is presented in
Section 2.4. It differs from k-means and EM for Gaussian mixtures in that
it is a non-parametric method. The mean shift algorithm does not require
the number of clusters as an input parameter. While it is not a spectral
clustering method, it does have something in common with Kernel Principal
Component Analysis (KPCA) in that it uses kernels.

Section 2.5 describes KPCA as a spectral clustering method. It uses
kernels to perform a non-linear mapping (in mean shift, kernels are used for
density estimation) which hopefully will ease the task of clustering. Laplacian
eigenmaps in Section 2.6 is a graph based method which seeks to preserve
the neighbourhood information. It is a spectral method with natural ties to
clustering because it will provide a clustering solution if the graph is not fully
connected.

Each section starts with an introduction which explains the reasoning
behind the particular clustering approach. In Sections 2.2, 2.4 and 2.6, a
special case of the general method is derived first. This will provide insight
into when to use a particular clustering method as it shows cases where the
algorithm is optimal in some sense. Because, as pointed out in [16], "there
is no best clustering algorithm".

There are also some plots of toy data examples for each section. These
are meant to illustrate some aspects of each method, but are not meant to
accurately summarize the overall performance of a method for real world
applications.

An important aspect of all supervised and unsupervised learning is data

2.2. THE K-MEANS ALGORITHM 13

representation (choice of features), which influences the performance of all
clustering algorithms [16]. Very little attention is given to the data represen-
tation (feature vectors) in this chapter, though any clustering method will fail
to give a meaningful grouping of the data if the data is poorly represented.

2.2 The K-Means Algorithm

The k-means algorithm is one of the best known clustering algorithms [16].
Since it has relatively low computational complexity it is widely used, par-
ticularly for large data sets. K-means is an iterative clustering algorithm
where the number of clusters, k, is an input parameter. It uses a crisp (hard)
membership function, which means that each data sample is assigned to one
and only one cluster. This leads to a non-differentiable cost function. Hence
optimization is divided into two steps, where first the cluster representatives
and then the memberships are kept constant while the other is optimized.

Each cluster is represented by a point-representative, which causes the
algorithm to favour dense clusters. The cost function is a function of the
memberships and the dissimilarity measure. The k-means algorithm can be
derived from minimizing a cost function if the dissimilarity measure is the
squared Euclidean distance. Then it can easily be shown that the point rep-
resentatives that minimize the cost function are the k cluster means. Hence
the name k-means.

The cluster memberships of the data samples are not known in advance
and the initial cluster representatives are usually initialized at random. How-
ever, the number of clusters are assumed to be know. In the first step, each
data sample is assigned to its closest cluster representative. Then new clus-
ter representative for a particular cluster is set equal to the mean of the
data samples assigned to that cluster. These steps are repeated to some
convergence criteria are met.

2.2.1 Generalized Hard Algorithm Scheme

This section is based on the definitions in [39, Chapter 14.5]. Generalized
Hard Algorithm Scheme (GHAS) is a family of clustering algorithms that are
based around the same principles; hard membership functions and dissimi-
larity based cost function optimization. We will now look at what exactly
this involves and use it to derive the GHAS.

14 CHAPTER 2. SOME CLUSTERING PROCEDURES

The Membership Vector

We now wish to perform clustering on a dataset X consisting of n data
(feature) vectors xi , i = 1, 2, . . . , n of dimension l× 1. We write the dataset
as: X = {x1,x2, ...,xn}. Assume that each data vector belongs to one and
only one cluster, and that the total number of clusters is k. We can then
define a 1× k membership vector, ui, for each data vector xi, with elements

uij ∈ {0, 1} , j = 1, . . . , k (2.1)

where uij = 1 if and only if xi is in cluster j. If xi is not in cluster j, uij = 0,
which gives

k∑
j=1

uij = 1 (2.2)

In clustering we do not have training data with known labels (cluster
assignments) available. The membership vectors ui must then be estimated
from the data. A meaningful group assignment of data points is the goal of
all clustering algorithms. Another common trait for all algorithms is that
one has to make some assumptions. While some of these assumptions are
clearly stated, for instance as we will see that for k-means we assume that
there are k clusters, other assumptions are more vague.

By defining the membership vector we have already made an assumption;
that the data vectors belong to a single cluster. This can be quite reasonable
in some cases, whereas in other cases it might be better to allow a data vector
to belong to multiple clusters, so-called fuzzy membership. For illustrative
purposes let us consider two simple examples.

Suppose we have designed some automatic system that want to classify
different animals into different species, then (counting cross breeds as dis-
tinct species) a hard membership function would make the most sense. An
animal can not be 50% lion and 50% eagle. However, if we cluster a set of
feature vectors derived from web pages it might be reasonable to allow web
pages to be members of more than one cluster. For instance we might see
that one cluster corresponds to news pages and another to entertainment
web pages and get various web pages in between, ranging from newspapers
prone to sarcasm with a "weak" membership in the entertainment cluster to
"infotainment" pages with equal memberships in the two, to entertainment
pages somewhat influenced by the news.

As mentioned we need to estimate the membership vector. There are
several approaches to this estimation. A common choice is to specify a cost
function that our membership assignment seeks to minimize. This then leads
to an optimization problem.

2.2. THE K-MEANS ALGORITHM 15

The Cost Function

We define the cost function for GHAS to be

J(θ, U) =
n∑
i=1

k∑
j=1

uijd(xi,θj) (2.3)

where d(xi,θj) is a dissimilarity measure between data vector xi and cluster
Cj parameterized by its associated parameter "vector" θj. Note that the
parameter "vector" might contain a combination of scalars, vectors and ma-
trices; for instance for a multivariate normal distribution it might contain
the expectation vector and covariance matrix of the distribution. It might
also contain so-called cluster representatives; one or more data vectors which
in some way are representative for the cluster.

Ideally, a cost function gives a large value when we make incorrect as-
signments. In unsupervised learning the correct labels are unknown and in
practice our choice of cost function will define what kind of clusters we are
looking for.

The Iterative Algorithm

Let us fix the parameter vectors, θj , j = 1, . . . , k. Since for each xi only
one uij is non-zero, it is easy to see that we minimize the cost function
in Eq. (2.3) by assigning xi to the closest cluster defined by the specified
dissimilarity measure. Thus

uip =

{
1, if d(xi,θp) = minj=1,...,k d(xi,θj)
0, otherwise (2.4)

Now, having found a cluster assignment, we can use the points assigned to
each cluster to estimate its associated parameter vector θj by keeping the
membership functions constant. We do this by minimizing the cost function
with respect to each of the parameter vectors. Taking the derivative with
respect to a particular parameter vector θp gives

∂

∂θp
J(θ, U) =

∂

∂θp

n∑
i=1

k∑
j=1

uijd(xi,θj)

=
n∑
i=1

uip
∂d(xi,θp)

∂θp

equating this to 0 gives
n∑
i=1

uip
∂d(xi,θp)

∂θp
= 0 p = 1, ..., k (2.5)

16 CHAPTER 2. SOME CLUSTERING PROCEDURES

which can be further simplified by using the expression for uip from (2.1):∑
xi∈Cp

∂d(xi,θp)

∂θp
= 0 p = 1, ..., k (2.6)

The iteration procedure for GHAS can then be summarized:

1. Initialize the parameter vectors.

2. Assign data vectors to the nearest cluster.

3. Update the estimate of the parameter vector of each cluster based on
the data assigned to it.

4. Repeat Steps 2 and 3 until some convergence criterion is met.

2.2.2 The K-Means Algorithm as a Special Case of GHAS

The k-means algorithm is a hard algorithmic clustering method and can
be seen as a special case of Generalized Hard Algorithm Scheme (GHAS).
Note that we will see later in Section 2.3.3 that k-means also can be seen
as a special case of the Expectation-Maximization algorithm. Because of
its intuitive approach and simplicity, finding special conditions under which
an algorithm is equivalent to k-means can provide valuable insight into an
otherwise complicated clustering algorithm.

Assumptions

As a special case of GHAS, k-means use a hard membership function as de-
fined in Eq. (2.1) and Eq. (2.2). It also characterizes a cluster by a single
point representative, thus the parameter vectors θj is a data vector (assumed)
belonging to cluster Cj. This also gives us the option of choosing the dissim-
ilarity measure between point and cluster to be a distance measure between
two points.

The k-means algorithm can be derived from the cost function in Eq. (2.3)
if the dissimilarity measure is the squared Euclidean distance between the
data vector xi and cluster representative θj:

d(xi,θj) = ||xi − θj||2

=
l∑

p=1

[xi(p)− θj(p)]
2

2.2. THE K-MEANS ALGORITHM 17

where the || · || denotes the Euclidean norm. Some write the Euclidean norm
as || · ||2 to indicate the use of a L2-norm, but here the subscript will be
dropped to simplifying the notation. Hence || · || = || · ||2 and the subscript
will be reserved for cases where we use other norms. In vector notation we
can write this (dropping the subscripts on x and θ) as

||x− θ||2 = (x− θ)T (x− θ) (2.7)

Inserting this into the cost function in Eq. (2.3) gives

J(θ, U) =
n∑
i=1

k∑
j=1

uij||xi − θj||2 =
n∑
i=1

k∑
j=1

uij(xi − θj)
T (xi − θj) (2.8)

Before we proceed to minimize this cost function, we will look at the initial-
ization of the k-means algorithm.

Initialization

The name of the algorithm comes from the fact that we seek a solution in-
volving k clusters. This is a weakness of k-means and several other clustering
algorithms as we might not know in advance the number of clusters we are
seeking. However, due to its low computational complexity, it is possible
to run the algorithm several times for different values of k and evaluate the
result.

One way of achieving this is to optimize the Aikaike Information Criterion
(AIC) or the Bayesian Information Criterion (BIC). An algorithm that uses
ACI or BIC and does not require k as an input parameter presented in [29]
as X-means. This will provide a solution which seeks to optimize the cost
function AND the number of clusters according to the criterion defined.

In general these strategies seeks to compensate for the fact that the overall
cost decreases as the number of clusters increases. In the extreme case, when
the number of clusters k is equal to the number of data points n, each point
will be in its own one point cluster and the cost defined in Eq. (2.8) will be
zero. We will not focus on this here and simply assume that we know the
number of clusters k.

Having chosen a k we need to initialize the k cluster representatives θj.
This is usually done by randomly drawing (without replacement) k of the
data vectors. As k-means might converge to a local minima, it might be
beneficial to re-run the algorithm with a different initialization.

18 CHAPTER 2. SOME CLUSTERING PROCEDURES

The Algorithm

We now fix the (initial) cluster representatives and wish to minimize the
cost function in Eq. (2.8) with respect to the cluster assignments uij. As
mentioned for the GHAS, it is easy to see that this is done by assigning
each data vector to its closest cluster representative. Then Eq. (2.4) can be
written as

uip =

{
1, if ||xi − θp||2 = minj=1,...,k ||xi − θj||2
0, otherwise (2.9)

We then fix the cluster assignments and optimize with respect to the cluster
representatives. For a given cluster representative we do this by taking the
derivative with respect to θp and equating this to zero:

∂J(θ, U)

∂θp
= 0

∂

∂θp

n∑
i=1

k∑
j=1

uij(xi − θj)
T (xi − θj) = 0

∂

∂θp

n∑
i=1

k∑
j=1

uij
(
xTi xi − 2xTi θj + θTj θj

)
= 0

n∑
i=1

uip2(xi − θp) = 0∑
xi∈Cp

2(xi − θp) = 0

⇒
∑
xi∈Cp

xi =
∑
xi∈Cp

θp∑
xi∈Cp

xi = θp
∑
xi∈Cp

1

By denoting the number of data vectors in cluster Cp as np and using that
np =

∑
xi∈Cp 1, we get the final expression for updating the cluster represen-

tatives
θp =

1

np

∑
xi∈Cp

xi (2.10)

We recognize this as the mean of the data vectors assigned to cluster Cp.
This is done for each k cluster representatives, and hence the name k-means.

Here we started out with an assumption of a hard membership function
and k clusters that we wanted to represent (parametrize) by a single point

2.2. THE K-MEANS ALGORITHM 19

and proceed to optimize this by minimizing the squared Euclidean distance
between the vectors assigned to a cluster. However, other dissimilarity mea-
sures than the squared Euclidean distance could be used. The core of the
algorithm is to assign points to the closest cluster representative and then
finding new cluster representatives as the mean of the assigned points.

The iterative procedure can then be summarized by Eq. (2.9) and Eq.
(2.10):

1. Initialize the cluster representatives θj , j = 1, . . . , k. This can be done
by drawing without replacement from the data vectors in feature space
X = {x1,x2, ...,xn}.

2. Assign data vectors to the closest cluster C. Using the definition in
Equation (2.9) will minimize the cost defined in Eq. 2.8.

3. For each cluster Cj , j = 1, . . . , k calculate a new cluster representative
θj as the mean of the points assigned to Cj in the previous step as
defined in Equation (2.10).

4. Repeat steps 2 and 3 until no data vectors changes clusters.

It is possible to have some other convergence criterion in step 4, for instance
based on the cost function, but this solution is sub-optimal compared to
letting it run until no points change cluster assignments.

20 CHAPTER 2. SOME CLUSTERING PROCEDURES

Figure 2.1: Dataset with two different initial sets of cluster representatives.

Figure 2.1 shows a toy dataset composed of three two dimensional multi-
variate normal distributions with different expectation vectors and covariance
matrices. The data is plotted in three different colours according to which
density they belong to.

Two different sets of initial cluster representatives are also shown in the
figure, marked by black squares. In both cases the number of clusters pro-
vided to the algorithm was k = 3. We shall first look at the k-means algo-
rithm with the empty black squares as the initial cluster representatives θ.
Initially, two are located on the outskirts of the green cluster and one is in
the middle of the red cluster.

2.2. THE K-MEANS ALGORITHM 21

Figure 2.2: Convergence after 6 iterations.

Each subplot in Fig. 2.2 shows the clusters after an iteration. The black
squares shows the location of each mean vector after each iteration. It should
be apparent which cluster they belong to, even though they are not marked
with the corresponding cluster colour. The algorithm converges after six iter-
ations and the output is the clustering solution in the bottom right subplot.

The subplot illustrates nicely how the k-means algorithm is supposed
to work. Even though the initial guess of staring points was wrong, the
algorithm manages to provide a good clustering solution. If we look at Fig.
2.1, we see that though there are no initial points in the cluster on the left, the
top and bottom cluster representatives each claim some of its point and start
moving towards it. As the bottom cluster representative also represents the
lowest cluster, it moves slower and is "pushed away" as the top representative
claims the entire left cluster. The top right cluster is quite stable from the
second iteration to convergence.

Note that the reason the colours in Fig. 2.2 does not match the colours
in Fig. 2.1 is because the colours are based on which cluster the k-means
algorithm label as 1, 2 and 3. This is done somewhat arbitrarily depending
on the order and position of the initial guess of θ.

22 CHAPTER 2. SOME CLUSTERING PROCEDURES

Figure 2.3: Convergance after 5 iterations.

Figure 2.3 shows the result of the k-means algorithm with the filled black
squares in Fig. 2.1 as initial points; two located in the cluster on the left and
one in the top right cluster. The algorithm converged after five iterations,
where the criterion for convergence was that no change in cluster assignments
should be made between iterations.

We see that the algorithm has converged to a local minimum. This pos-
sibility was mentioned in Section 2.2.2. Running the algorithm again with
different initial cluster representatives might solve the problem if we select
the solution with the lowest cost function.

2.2. THE K-MEANS ALGORITHM 23

Figure 2.4: Cost function and number of cluster changes.

The left subplot of Fig. 2.4 shows the cost function (Eq. (2.8)) after each
iteration for the iterative procedures shown in Fig. 2.2 (blue line) and Fig.
2.3 (red line). There is little change in the cost function corresponding to
the iteration procedure show in Fig. 2.3, as would be expected since there is
only minor changes in the cluster assignments.

This is shown in the right half of the figure which shows the number
of data points that change clusters after each iteration, only a single point
changes clusters after the third and fourth iteration. The first assignment of
data vectors to the initial cluster representatives is not considered (as this
would imply a change for all n = 480 data vectors).

The problem of convergence to local minima becomes more common as
the clusters have significantly different sizes. This is one of the drawbacks of
k-means. Some techniques for improving the algorithm can be found in [39,
Chapter 14.5].

24 CHAPTER 2. SOME CLUSTERING PROCEDURES

2.3 EM with Gaussian Mixture Models

This section is based on the description in [5, Chapter 9].
The EM-algorithm takes its name from the two steps preformed; the

Expectation step and the Maximization step. The algorithm was originally
developed to maximize difficult likelihoods by a sequence of maximization
problems whose limit is the answer to the original problem. It is also used
for to compensate for missing or censored data.

The algorithm is particularly suited for clustering in mixture model prob-
lems. Here the number and form of the distributions involved in the mixture
model are assumed to be known. If the mixture components are Gaussian,
the Expectation Maximization is particularly easy. This is because the mul-
tivariate normal distribution is only dependent on two parameters, the mean
vector and the covariance matrix. In addition the maximum likelihood esti-
mators for these are relatively simple to find.

After providing an initial guess for the parameters and probabilities of
mixture components, the E and M steps are preformed iteratively until some
convergence criteria are met. In the end, clustering is performed by assign-
ing each data sample to the cluster which it has the highest probability of
belonging to.

2.3.1 Mixture Models

General Mixture Models

With a mixture model for a stochastic vector x, the probability density func-
tion (pdf), f(x), can be modeled as a linear combination of density functions
on the form

f(x) =
J∑
j=1

f(x|j)Pj (2.11)

where Pj , j = 1, . . . , J are the mixture probabilities, that is the probability
of belonging to component j. As it is a probability we have that

0 ≤ Pj ≤ 1 , j = 1, 2, . . . , J (2.12)

and a point can only belong to one mixture component, thus

J∑
j=1

Pj = 1 (2.13)

2.3. EM WITH GAUSSIAN MIXTURE MODELS 25

For the conditional probability density functions f(x|j) we have∫
x

f(x|j)dx = 1 (2.14)

From these conditions it should be apparent that the expression in Eq. (2.11)
is a valid probability density function.

Given a sufficient of number mixture components J , any continuous den-
sity function can be modeled arbitrary closely [24].

If we have a mixture of parametric distributions, each of the J components
will have associated parameters. These can be organized in J parameter
"vectors", θj. As was mentioned in Section 2.2.1, these "vectors" might
contain a combination of scalars, vectors and matrices. Equation (2.11) then
becomes

f(x) =
J∑
j=1

f(x|j)Pj (2.15)

Where conditioning on j implies that the distribution is parameterized by
parameter vector θj.

Gaussian Mixture Models

A Gaussian mixture model is a special case of the general mixture model
where every mixture component is a l-dimensional multivariate normal dis-
tribution. In other words

x|j ∼ Nl(µj,Σj) (2.16)

where µj and Σj are the expectation vector and covariance matrix of com-
ponent j. Thus Eq. (2.15) becomes

f(x) =
J∑
j=1

N (µj,Σj)Pj (2.17)

=
J∑
j=1

Pj (2π)−l/2|Σj|−1/2 exp

(
−1

2
(x− µj)

TΣ−1j (x− µj)

)
(2.18)

Before we proceed to estimate these parameters and describe the clustering
algorithm, we look at Gaussian mixture models in terms of latent variables
as this will prove to be a useful formulation.

26 CHAPTER 2. SOME CLUSTERING PROCEDURES

Mixture in Terms of Latent Variables

We now introduce the latent stochastic variable z, where z is a J × 1 vector
where the elements are either 0 or 1:

zj ∈ {0, 1} (2.19)

The vector denotes which one of the J mixture components a data point is
"drawn from". Thus

J∑
j=1

zj = 1 (2.20)

as the data point can only belong to one mixture component.
We now look at the joint density of x and z:

f(x, z) = f(x|z)f(z) (2.21)

Note that f(z) is actually discrete, thus it is a probability mass function
(pmf) and not a pdf. This means that f(z) is the probability of the stochastic
vector z taking a particular realization where the k’th element equals 1,
k ∈ [1, J], and all other elements are 0. Hence it is just the probability of
an arbitrary data point belonging to the k’th mixture component, which is
already defined to be Pk. Then it is easy to see that

f(z) =
J∏
j=1

P
zj
j (2.22)

The second component of Eq. (2.21) is the conditional density of x given z.
If the k’th element of z is 1, then this is just a multivariate normal density
with mean vector µk and covariance matrix Σk. Thus

f(x|z) =
J∏
j=1

[
N (µj,Σj)

]zj (2.23)

We can now find the (marginal) density for x, f(x) by summing (2.21) over

2.3. EM WITH GAUSSIAN MIXTURE MODELS 27

z:

f(x) =
∑
z

f(x|z)f(z)

=
∑
z

[
J∏
j=1

[
N (µj,Σj)

]zj J∏
j=1

P
zj
j

]

=
∑
z

[
J∏
j=1

[
N (µj,Σj)Pj

]zj]

=
J∑
j=1

N (µj,Σj)Pj

Which is the formula for the mixture normal from Eq. (2.17). It might seem
like nothing was gained by introducing z. However, in unsupervised learning
settings such as clustering, we do not know which data vector belongs to
which mixture component. In fact, we do not even know if the data actually
comes form a mixture distribution, it is just something we use to model the
data.

Thus we need to estimate the stochastic vector z. For this clustering
algorithm we will use Maximum Likelihood Estimation (MLE), and being
able to work on the joint distribution f(x, z) simplifies calculations.

Another advantage is that using Bayes’ theorem we can define the condi-
tional probability of z given x, here denoted as γ(zk)

γ(zk) ≡ P (zk = 1|x) =
P (zk = 1)P (x|zk = 1)∑J
j=1 P (zj = 1)P (x|zj = 1)

(2.24)

=
PkN (x|µk,Σk)∑J
j=1 PjN (x|µj,Σj)

(2.25)

Then Pk can be seen as the prior probability of zk = 1 and γ(zk) as corre-
sponding the posterior probability given the observation x. Thus γ(zk) is the
posterior probability of a data vector belonging to mixture component k. It
can also be seen as the responsibility component k takes for "explaining" the
observation x [5].

28 CHAPTER 2. SOME CLUSTERING PROCEDURES

2.3.2 Estimating Gaussian Mixture Model Parameters

Maximum Likelihood Estimation

Given the dataset X = {x1,x2, ...,xn} of l× 1 data vectors, we construct the
n× l matrix X with each data vector corresponding to a row (observation):

X =


xT1
xT2
...

xTn

 (2.26)

where we assume that the observations X comes from a known parametric
distribution with parameter vector θ ; f(x1,x2, . . . ,xn). We can then define
the likelihood function

L(θ|X) = f(x1,x2, . . . ,xn|θ) (2.27)

as a function of the parameter vector θ for observations X. Maximum Like-
lihood Estimation is a method for finding estimates for the parameters in θ.
The objective is to find an estimate θ̂ that maximizes Eq. (2.27):

θ̂ = arg
[
max

θ
L(θ|X)

]
(2.28)

Often it is more convenient to work with the natural logarithm of the
likelihood function [42, Chapter 9]. Because the logarithm is a monotonically
increasing function, maximizing it is equivalent to maximizing the likelihood
function. The log likelihood function is defined as

l(θ|X) = ln [L(θ|X)] (2.29)

This is particularly useful when the parametric distribution f(x1,x2, . . . ,xn)
belongs to the exponential family. When Eq. (2.29) is continuously differen-
tiable in θ, the estimate θ̂ may be obtained by looking for the maximum by
differentiating the log-likelihood function [33, Chapter 6].

For data vectors x1,x2, . . . ,x2 drawn independently from the same mul-
tivariate normal distribution, we get the well known maximum likelihood
estimators

µ̂MLE = x̄ =
1

n

n∑
i=1

xi (2.30)

where x̄ is called the sample mean. For covariance the MLE is

Σ̂MLE = Sn =
1

n

n∑
i=1

(xi − x̄)(xi − x̄)T (2.31)

2.3. EM WITH GAUSSIAN MIXTURE MODELS 29

where Sn is called the sample covariance matrix. The subscript is to separate
it from the unbiased estimate Sn−1 = n−1

n
Sn. x̄ is an unbiased estimate for

µ.
Let the vector p be the J×1 vector of mixture probabilities of the mixture

components
p = [P1, P2, . . . , PJ]T (2.32)

Similarly, let µ and Σ denote the set all component expectation vectors µj

and covariance matrices Σj respectivly, j = 1, . . . , J . The log likelihood
function of a mixture of l-dimensional multivariate normal distribution can
then be written as

l(p,µ,Σ|X) =
n∑
i=1

ln

{
J∑
j=1

PjN (xi|µk,Σk)

}
(2.33)

Maximizing Eq. (2.33) poses a significant problem. The single component
case, which the MLE estimators in Eq. (2.30) and Eq. (2.31) were derived
from, did not depend on p and did not have a sum inside the logarithm.

MLE for Gaussian Mixture Models

Setting the derivatives of the log likelihood in Eq. (2.33) with respect to the
expectations µk equal to zero we get

0 =
n∑
i=1

PkN (xi|µk,Σk)∑J
j=1 PjN (xi|µj,Σj)

Σ−1k (xi − µk) (2.34)

We recognize the first term as γ(zk) from Eq. (2.25) for a given xi. Defining
nk as

nk =
n∑
i=1

γ(zik) (2.35)

which we interpret at the effective number of points assigned to cluster Ck.
We can now rewrite Eq. (2.34)

0 =
n∑
i=1

γ(zik)Σ
−1
k (xi − µk) (2.36)

By multiplying by Σk, which is assumed to be nonsingular, and rearranging
we get

µ̂k =
1

nk

n∑
i=1

γ(zik)xi (2.37)

30 CHAPTER 2. SOME CLUSTERING PROCEDURES

which is a weighted mean, with the weight function being the posterior prob-
ability of a given data point belonging to the component. This seems reason-
able, the probability of a point belonging to a particular mixture component
determines how much we weight its contribution.

By similar reasoning it is possible to obtain MLE estimates of the covari-
ance matrices Σk

Σ̂k =
1

nk

n∑
i=1

γ(zik)(xi − µ̂k)(xi − µ̂k)
T (2.38)

and, by including Eq. (2.13) as a constraint and using Lagrange optimization,
prior probabilities Pk

P̂k =
nk
n

(2.39)

which is the ratio of the effective number of points in cluster Ck divided by
the total number of points in the dataset.

All these estimators seems reasonable and appears to correspond well with
the MLE for the single component case in Eq. (2.30) and Eq. (2.31). However,
these results do not constitute a closed-form solution for the mixture model
parameters as the responsibilities γ(zik) depends on those same parameters
in a complicated way given by Eq. (2.25).

Instead we will use an iterative scheme for finding a solution to the MLE
problem. This will be the Expectation Maximization algorithm.

The EM Algorithm

The Expectation Maximization algorithm takes its name from the two steps
preformed. For estimating the Gaussian mixture parameters, the expectation
step consists of replacing the responsibilities γ(zik) by their expected value
based on the current estimate of parameters. Then the new parameters
(µk,Σk, Pk) can be estimated by maximizing the likelihood function with
respect to the different parameters.

The EM algorithm (where we drop the hat on µ̂k, Σ̂k, P̂k for notational
convenience) can then be summarized as :

1. Initialization. Initialize the means µk, covariances Σk and mixing coef-
ficients Pk for k = 1, . . . , J .

2. E step. Evaluate the responsibilities based on the values of the current
parameter estimates

γ(zik) =
PkN (xi|µk,Σk)∑J
j=1 PjN (xi|µj,Σj)

2.3. EM WITH GAUSSIAN MIXTURE MODELS 31

for k = 1, . . . , J .

3. M step. Re-estimate the parameters using the current current responsi-
bilities

µnew
k =

1

nk

n∑
i=1

γ(zik)xi

Σnew
k =

1

nk

n∑
i=1

γ(zik)(xi − µnew
k)(xi − µnew

k)T

P new
k =

nk
n

where

nk =
n∑
i=1

γ(zik)

for k = 1, . . . , J .

4. Check for convergence. This can be done based on the log likelihood
function

l(p,µ,Σ|X) =
n∑
i=1

ln

{
J∑
j=1

PjN (xi|µk,Σk)

}

or on the convergence of the parameters. If the convergence criterion
is not satisfied return to Step 2.

32 CHAPTER 2. SOME CLUSTERING PROCEDURES

Figure 2.5: Dataset with three normal components.

Figure 2.5 shows a dataset generated by three multivariate normal com-
ponents. In this example the data from the different components (marked
with different colours) are overlapping and thus this presents a challenging
estimation problem.

2.3. EM WITH GAUSSIAN MIXTURE MODELS 33

Figure 2.6: Gaussian mixtures fitted by EM.

However, as shown in Fig. 2.6, the EM algorithm manages to provide a
reasonable good representation of the components. This is partly because
the components had different covariance structure; blue had no correlation
and medium variance, green had a large negative correlation and red had a
large overall variance and a small positive correlation. Convergence took 93
iterations.

2.3.3 Clustering by EM of Mixture Parameters

Cluster Assignment

Select the number of clusters J , this will be the number of mixture compo-
nents.

We now wish to assign each l×1 data vector in the dataset X = {x1,x2, ...,xn}
to the mixture component which maximizes the posterior probability of the
data vector belonging to that component. That is assign for each xi , i =
1, . . . , n to cluster Cm when

γ(zim) = max
k=1,...,J

γ(zik) (2.40)

34 CHAPTER 2. SOME CLUSTERING PROCEDURES

Figure 2.7: Dataset with mixture contours.

where the responsibilities γ(zik) are defined in Eq. (2.25).

Figure 2.7 shows a dataset generated by a combination of three multi-
variate normal (Gaussian) densities with the same parameters used in Fig.
2.1. The EM algorithm used to fit three Gaussian mixture components to
the data and the figure shows the contour of each of these.

The three mean vectors were initializes as points drawn randomly from
the data (just like k-means) and the covariance matrices were initialize as
diagonal with the sample covariance (Eq. 2.31) of each variable (column of
X) as the diagonal elements.

Convergence was reached after 10 iterations. Assigning the points to the
component with the highest posterior probability would correctly classify this
dataset. Even though some of the points of the high variance cluster on the
left is quite close to the bottom cluster, this cluster is correctly estimated to
be very dense. The mixture probabilities and mean vectors returned by the
algorithm is the same as those calculated by using the real cluster labels.

2.4. THE MEAN SHIFT ALGORITHM 35

Relationship with K-Means

Whereas k-means uses a hard (crisp) membership function, clustering with
the EM algorithm corresponds to a fuzzy membership functions because
γ(zik) ∈ [0, 1]. Another difference is that the k-means algorithm does not
consider the covariance matrices.

However, it is possible to derive the k-means as a special case of EM for
Gaussian mixtures. Consider a Gaussian mixture model where the covariance
matrices are given by

Σk = εI , k = 1, 2, . . . , J (2.41)

where I is the l × l identity matrix. These are not updated in the M-step.
Inserting this into Eq. (2.25) and using simple algebra gives that the

posterior probability for a particular data point xi is given by

γ(zik) =
Pk exp {||xi − µk||2/2ε}∑J
j=1 Pj exp

{
||xi − µj||2/2ε

} (2.42)

If we now consider the limit ε→ 0, we see that the term where ||xm − µj||2
is smallest will go to zero most slowly. Hence all responsibilities γ(zik) for xi
will go to zero, except for γ(zim) which goes to unity.

This implies that each point xi , i = 1, . . . , n is assigned to its closest
mean vector. Also, the estimate for µk in Eq. (2.37) will then be the sum
over all points assigned to cluster Ck and nk will be exactly the number of
points in this cluster.

Thus EM for Gaussian mixtures will give the k-means algorithm.

2.4 The Mean Shift Algorithm
The Mean Shift algorithm is a non-parametric, iterative mode seeking algo-
rithm. It was originally presented in 1975 by Fukunaga and Hostetler [12]. It
was significantly improved by Cheng in 1995 [6] which rekindled the interest
for it. In recent years it has become popular in computer vision applications
[7] and it will also be used for the first stage of the two-stage Mean Shift
Spectral Clustering approach presented in Chapter 5.

We assume that the data in the feature space is sampled from an un-
known probability density function (pdf) which we estimate. The procedure
seeks out the local modes of the distribution, which is calculated by Kernel
Density Estimation (KDE), also known as Parzen windowing. This is done
by initializing a number of "mode-finding" vectors in the feature space and
then moving them towards the local mean.

36 CHAPTER 2. SOME CLUSTERING PROCEDURES

In practice these "mode-finding" vectors are usually initialized to be the
data set in the feature space. Then the algorithm will associate each sample
in the feature space with a local mode. Thus it is well suited for cluster-
ing; simply assign the data vectors that converged to the same mode to
the same cluster. This means that the number of clusters is determined by
the algorithm itself. Also, the probability density function is estimated using
non-parametric methods. The fact that we do not have to make any assump-
tions about the distribution of the data or the number of clusters makes mean
shift particularly attractive in the field of unsupervised learning.

However, one needs to specify the bandwidth parameters for the KDE.
These parameters will significantly influence the output of the clustering, as
the bandwidth decreases, the basin of attraction for each point will shrink,
and when it goes to zero the algorithm will not move the mode-finding vectors
from the initial position of the data vectors. Hence the output of a clustering
procedure will be a one point cluster for each data vector. In the opposite
case, when the bandwidth goes to infinity, the output will be one cluster
located at the mean of the data vectors.

2.4.1 Kernel Density Estimation

Estimation of Probability Density Functions

Estimation of unknown probability density functions is a challenging task
that often appears in connection with clustering. There are several ap-
proaches to this depending on how much we know about the data. In some
cases we might now that the data comes from a certain type of parametric
distribution (e.g., Uniform, Gaussian), but some or all parameters are un-
known. Then the task is to estimate parameters from the data, for instance
by using Maximum Likelihood Estimation (MLE).

This is the case for the Expectation Maximization algorithm, where the
distribution is assumed to be a mixture of Gaussian distributions (Section
2.3.1). The parameters were then estimated by Expectation Maximization
in Section 2.3.2.

Other times we might know something about the moments of a distri-
bution, like the expectation (vector) and the (co-) variance (matrix). Then
one would have to find the parametric distribution that best fits the data.
However, in a clustering setting, such a priori information is rarely available.
Hence we either have to make some assumptions or simplifications, or we can
use non-parametric methods, where the only assumption is that the data is
generated by some probability distribution equipped with a probability den-
sity function.

2.4. THE MEAN SHIFT ALGORITHM 37

Histogram Methods

From basic statistics we know that the pdf can be approximated by a his-
togram. In the one-dimensional case, one can divide the x-axis into successive
bins and count the number of data points (observations) that belong to each
bin. By dividing by the total number of data points, thereby one gets an
estimation of the probability of a data point belonging in that bin.

However, if the goal is to provide the estimate of the density in a particular
point it is often better to place a bin so that the point was in its center. If
we let n be the number of data points, X = {x1, x2, . . . , xn}, and we define
the bins to have a width h, we want to find an expression for the pdf in
the point x. First we define the indicator function which, for a data point
xi , i = 1, . . . , n, indicates if the data point is in a bin of width h centered at
the test point x:

Ix,h(xi) =

{
1, if |xi − x| ≤ h

2

0, otherwise (2.43)

Then we can write the pdf estimate as

f̂(x) =
1

h

1

n

n∑
i=1

Ix,h(xi) (2.44)

where
∑n

i=1 Ix,h(xi) is the number of points in the bin. Because of the discon-
tinuous nature of the indicator function, the estimate will be discontinuous.

When the the data is multidimensional, the box of the histogram is re-
placed by a l-dimensional hypercube. The length of each side is h. Then the
indicator function of the hypercube centered at x evaluated at the point xi
can be written as:

Ix,h(xi) =

{
1, if ||xi − x||∞ ≤ h

2

0, otherwise (2.45)

where || · ||∞ is the infinity norm which means that

||xi − x||∞ = sup {|xi(1)− x(1)|, |xi(2)− x(2)|, . . . , |xi(l)− x(l)|} (2.46)

Then we can "rephrase" Eq. (2.44) for the l-dimensional case:

f̂(x) =
1

hl
1

n

n∑
i=1

Ix,h(xi) (2.47)

The sum is still equal to the number of points that fall inside the hyper-
cube. However, as with the one dimensional case, the pdf estimate will be
discontinuous.

38 CHAPTER 2. SOME CLUSTERING PROCEDURES

Parzen Windows

As presented in [39, Chapter 2.5.6], the idea is now to replace the discontin-
uous indicator function with a smooth function, K(x,xi). It can be shown
that if

K(x,xi) ≥ 0 (2.48)

and ∫
x

K(x,xi)dx = 1 (2.49)

replacing the indicator function with K(x,xi) will give a valid pdf estimate.
Such functions are called Parzen windows or kernels, which is why density
estimation based on these functions are known as Kernel Density Estimation
(KDE) or Parzen Windowing. The theory behind kernels is quite extensive
and will not be covered in detail here. The relationship between different
kernels is described in [6] and some further discussion on the choice of pa-
rameters of a kernel can be found in [7].

The estimate of the pdf at x given the data X = {x1,x2, ...,xn} and a
kernel function K satisfying Eq. (2.48) and Eq. (2.49) can then be written
as

f̂(x) =
1

n

n∑
i=1

K(x,xi) (2.50)

Note that the kernel function will have some associated parameters which is
not specified here. Generally, different kernels will require different parame-
ters.

It was noted in [28] that KDE may fail to provide accurate density esti-
mation in high dimensional spaces. However, clustering is a simpler problem,
and density estimates that are not acceptable for modeling the data can still
achieve successful clustering.

The Gaussian Kernel

The Gaussian kernels are a typical choice in Parzen Windowing [39, Chapter
2.5.6]. Inserting the Gaussian kernel into Eq. (2.50) gives

f̂(x) =
1

n

n∑
i=1

(2π)−l/2|H|−1/2 exp

(
−1

2
(x− xi)

TH−1(x− xi)

)
(2.51)

where l is the dimension of the data and H is called the bandwidth matrix.
It has the same role as the covariance matrix in a multivariate normal dis-
tribution, and hence it defines the orientation and size of the Gaussians used
to estimate the density.

2.4. THE MEAN SHIFT ALGORITHM 39

A fully parameterized bandwidth matrix will increase the complexity of
estimation and in practice H is chosen to be either diagonal or proportional
to the identity matrix h2I [7]. The advantages should be clear as in the first
case we would need to specify l(l+1)

2
parameters, whereas choosing a diagonal

matrix reduces the number of parameters to l and in the last case only one
parameter is needed, regardless of the dimension of the data.

Choosing something other than a single bandwidth parameter could be
justifiable if we have reason to doubt the validity of the Euclidean metric for
the feature space [7]. Unless otherwise noted we will assume that a single
bandwidth parameter is sufficient.

H = h2I (2.52)

This parameter is also known as the kernel size.
Inserting this into Eq. (2.51) gives

f̂(x) =
1

n

n∑
i=1

(2π)−l/2|(h2I)|−1/2 exp

(
−1

2
(x− xi)

T (h2I)−1(x− xi)

)
=

1

n

n∑
i=1

1

(2π)l/2hl
exp

(
−(x− xi)

T (x− xi)

2h2

)
Which can be simplified further by writing it as

f̂(x) =
1

n

n∑
i=1

1

(2π)l/2hl
exp

(
−1

2

∣∣∣∣∣∣∣∣x− xi
h

∣∣∣∣∣∣∣∣2
)

(2.53)

where || · || is the Euclidean norm. Equation (2.53) also serves to illustrate
why we might consider to specify further bandwidth parameters if we doubt
the Euclidean metric is valid.

2.4.2 Mean Shift Algorithm Variations

Mean Shift with Gaussian Kernels

The Gaussian kernel is a popular choice for the Kernel Density Estimation
performed in mean shift clustering [9]. In [31] it was shown that the choice
of Gaussian kernels is connected with minimization of Renyi’s entropy (see
Section 3.4).

The intuition that mean shift is a form of gradient ascent, which was
pointed out in [12], also makes Gaussian kernels attractive since it allows the
mean shift algorithm to be defined from a gradient perspective. However, the

40 CHAPTER 2. SOME CLUSTERING PROCEDURES

mean shift algorithm can be used even when the kernel is more complicated,
for instance if the bandwidth matrix is fully parameterized. In such cases
the mean shift algorithm might not be interpreted as gradient ascent.

None the less, for a Gaussian kernel with the bandwidth matrix defined
in Eq. (2.52), we can derive the mean shift algorithm. Given n data vectors,
X = {x1,x2, . . . ,xn} in the Rl feature space, the pdf is estimated by KDE
with the Gaussian kernel function K(x) defined in Eq. (2.53). We now take
the gradient with respect to x of the estimate:

∇f̂(x) =
1

n

n∑
i=1

1

(2π)l/2hl
exp

(
−||x− xi||2

2h2

)
−2(x− xi)

2h2
(2.54)

=
1

n(2π)l/2hl

n∑
i=1

exp

(
−||x− xi||2

2h2

)
(xi − x)

h2
(2.55)

=
1

n(2π)l/2hl+2

n∑
i=1

exp

(
−||x− xi||2

2h2

)
(xi − x) (2.56)

The local modes of the estimated density function are located among the ze-
ros of the density gradient ∇f̂(x) = 0. We can now rearrange this stationary
point equation to obtain an iterative fixed point scheme

1

n(2π)l/2hl+2

n∑
i=1

exp

(
−||x− xi||2

2h2

)
(xi − x) = 0

⇒
n∑
i=1

x exp

(
−||x− xi||2

2h2

)
=

n∑
i=1

xi exp

(
−||x− xi||2

2h2

)

⇒ x =

∑n
i=1 xi exp

(
− ||x−xi||

2

2h2

)
∑n

i=1 exp
(
− ||x−xi||2

2h2

)
If we now denote the solution for the next iteration step, x(τ+1), as being
given by a function of the current iteration step m(x(τ)), we can write the
algortihm as

x(τ+1) = m(x(τ)) =

∑n
i=1 xi exp

(
− ||x

(τ)−xi||2
2h2

)
∑n

i=1 exp
(
− ||x(τ)−xi||2

2h2

) (2.57)

where m(x) is the sample mean weighted by the kernel centered at x. This
is what was called a mode-finding vector. In other words, each data point
is weighted by its contribution to the density estimate at the point x. The
term m(x)− x was called "mean shift" in [12].

2.4. THE MEAN SHIFT ALGORITHM 41

Figure 2.8: KDE with h = 0.5 and mean shift.

Figure 2.8 shows the pdf estimate using a Gaussian kernel with bandwidth
h = 1

2
. The mean shift procedure has also been plotted in the same figure.

The data points used are marked with green squares, the iteration steps with
yellow diamonds and the final position of the mode-finding vectors after 20
iterations are marked with red squares. The height of all points are equal to
the pdf estimate for that x & y coordinate pair. Note that the mean shift
algorithm was set to run for 20 iterations regardless of convergence criterion
and that a small constant (δ = 0.01) was added to the height of the final
"mode-finding" vectors to improve visibility. The algorithm was non-blurring
as described in Section 2.4.2.

We notice that the algorithm has converged to a two cluster solution,
one for the tight group of five points and one for the more widespread group
of three points. In the first case the cluster is located near the data point
which coincides with the mode (the global maximum). The second cluster
lies in between three local modes, and appears to be located at a saddle
point in the pdf estimate. This is undesirable if we were looking to find
the position of local modes. However, it might be a good for clustering
applications, particularly for cases such as this where a region contains few
data points. This is because it might cause points that are located at local

42 CHAPTER 2. SOME CLUSTERING PROCEDURES

Figure 2.9: KDE with h = 1 and mean shift.

maxima (because the kernel size is to small relative to this region) to be
clustered together. Otherwise the final clustering result would have a higher
number of very small and one-point clusters. Note that if the kernel size is
too small, this will be the case regardless.

Figure 2.9 illustrates how the choice h affects the Parzen Window estimate
and the mean shift algorithm. The kernel size has doubled compared to the
one used in Fig. 2.8 and the orientation of the plot view is different, but
everything else remains the same. The pdf estimate looks much smoother, as
expected, the larger h, the more smoothing. In the 20 iterations, the mode-
finding vectors have converged to a single cluster, which is located closer to
the three isolated points compared to Fig. 2.8. We notice that the mode-
finding vectors move much further in the low density region between the two
groups than close to the peak.

2.4. THE MEAN SHIFT ALGORITHM 43

Generalized Mean Shift

We can generalize Eq. (2.57) to apply for a general kernel by replacing the
expression for the Gaussian kernel by K(x− xi). Hence

x(τ+1) = m(x(τ)) =

∑n
i=1 xiK(x− xi)∑n
i=1K(x− xi)

(2.58)

is the general mean shift algorithm. While the "gradient intuition" might
not be as straight forward to show for a general kernel, the interpretation
that each data point is weighted by its contribution to the density estimate
by the kernel function K at the point x still applies.

So far we have focused on the finding the mean shift for an arbitrary
point x. For clustering applications it is intuitive to initialize the mode-
finding vectors to be the data samples, X = {x1,x2, . . . ,xn}.

Blurred Mean Shift

In the original algorithm presented in [12], for every iteration, the pdf is
then estimated again using the new, mean-shifted dataset. This can be seen
as, for each iteration step, moving every data point towards a local mode of
the current density estimate. The procedure is repeated until convergence.
If we let the dataset be as defined in Section 2.4.2, the algorithm can be
summarized as

1. Given the dataset X = {x1,x2, ...,xn}, initialize the dataset of "mode-
finding" vectors for the iteration procedure as X(0) =

{
x
(0)
1 ,x

(0)
2 , ...,x

(0)
n

}
=

X

2. Find X(τ+1) by computing x
(τ+1)
j = m(x

(τ)
j) =

∑n
i=1K

(
x
(τ)
j −x

(τ)
i

)
x
(τ)
i∑n

i=1K
(
x
(τ)
j −x

(τ)
i

) for

j = 1, 2, ..., n

3. Repeat step 2 until some convergence criterion is met.

4. Assign points that converged to the same local mode to the same clus-
ter.

Note that since the mode-finding vectors are calculated based on the dataset
of the previous iteration, they move towards the local modes in the KDE
estimate based on the mode-finding vectors and not the original data. Hence,

44 CHAPTER 2. SOME CLUSTERING PROCEDURES

while the algorithm will converge towards a local mode, it will not necessarily
be a local mode in the original pdf estimate.

Figure 2.10: KDE with h = 0.5 after one "blurring".

This was first pointed out in [6] where it was referred to as "blurring".
This convention was continued in [31]; "As the new datasets are produced
we forget the previous one which gives rise to the blurring process.". Figure
2.10 shows the pdf estimate based on the "mode-finding" vectors (shown as
yellow diamonds above the surface) after the first iteration. The kernel is
the same as the one used in Fig. 2.8, h = 0.5, and when we compare the two
figures we see the blurring effect.

It was showed in [31] that the solution found by blurred mean shift with a
Gaussian kernel "... minimizes Renyi’s quadratic entropy of the dataset and
hence is unstable by definition.".

Non-Blurring Mean Shift

Cheng’s article [6] pointed out the blurring effect caused by moving the data
points and generalized the mean shift algorithm by proposing that the data
set could be kept constant. The algorithm will be quite similar to the blurring
one:

2.4. THE MEAN SHIFT ALGORITHM 45

1. Given the dataset X = {x1,x2, ...,xn}, initialize the dataset of "mode-
finding" vectors for the iteration procedure as X(0) =

{
x
(0)
1 ,x

(0)
2 , ...,x

(0)
n

}
=

X

2. Find X(τ+1) by computing x
(τ+1)
j = m(x

(τ)
j) =

∑n
i=1K

(
x
(τ)
j −xi

)
xi∑n

i=1K
(
x
(τ)
j −xi

) for

j = 1, 2, ..., n

3. Repeat step 2 until some convergence criterion is met.

4. Assign points that converged to the same local mode to the same clus-
ter.

As with blurring mean shift, the Gaussian kernel is optimal in that it "...
minimizes Renyi’s "cross" entropy where the local stationary solutions are
modes of the dataset." [31]. This is, contrary to the blurring case, a stable
solution.

Figure 2.11: h = 0.5 , blurring and non-blurring mean shift.

46 CHAPTER 2. SOME CLUSTERING PROCEDURES

In general blurring and non-blurring mean shift will provide different
results. Figure 2.11 is just Fig. 2.8 with the blurred mean shift iterations
plotted with cyan diamonds and the result after 20 iterations is marked with
a magenta circle. We see that the clustering will be the same, but the position
of the final mode-finding vectors are slightly different. This toy data set is
not well suited for illustrating the difference between the blurring and non-
blurring solution, which generally can provide different clustering results.
In some cases, such as this one, they will provide very similar results and
blurring can be used to speed up convergence.

2.5 Kernel PCA Spectral Clustering

As already stated, there is no universally best clustering method. Which
clustering method we choose should be decided by the problem at hand,
which again depends on how we represent our data in terms of features.
The algorithms discussed so far all have in common that they assign points
around the dense regions in the feature space to the same cluster.

This will lead to poor performance when the center of mass is insufficient
for describing the cluster. The clusters might not be separable in the feature
space. To get good results in such cases we either need to make a complicated
(ad hoc) clustering algorithm in the feature space, or we do a non-linear data
transformation to a space where well known clustering algorithms can do the
job.

Kernel Principal Component Analysis (KPCA) is a clustering method (as
opposed to an algorithm according to the terminology used in [16]) that
uses KPCA to do such a non-linear mapping. The strategy is to use the
"kernel trick" to implicitly map the feature vectors to a higher dimensional
space where hopefully the cluster structure of the data will be easily found
by simple non-spectral clustering algorithms. KPCA can also be applied to
both reconstruction and de-noising of data [25].

2.5.1 Principal Component Analysis

This section is based on [20, Chapter 8]. Regular Principal Component
Analysis (PCA) is a data transformation method that projects the data onto
a set of orthogonal directions. By choosing directions (axes) that captures
most of the variance of the data, the dimension can be reduced with minimal
quadratic error.

It seeks to explain the covariance structure of the variables of the dataset
through a few linear combinations of these variables.

2.5. KERNEL PCA SPECTRAL CLUSTERING 47

Assume that x is a stochastic vector with l random variables, x1, x2, . . . , xl.
We now wish to find a linear combination of these variables that maximizes
the variability. Geometrically this represents a rotation of the original sys-
tem. We define the linear combinations as:

y1 = aT1 x = a11x1 + a12x2 + . . .+ a1lxl

y2 = aT2 x = a21x1 + a22x2 + . . .+ a2lxl
...

...
yl = aTl x = al1x1 + al2x2 + . . .+ allxl

Where ai are the vectors of scalar coefficients that produce the linear com-
binations yi where i = 1, . . . , l. Let Σ be the covariance matrix of x. Then
we can find the following expressions for y:

Var {yi} = aTi Σai i = 1, 2, . . . , l (2.59)
Cov {yi, yj} = aTi Σaj i, j = 1, 2, . . . , l (2.60)

We wish to find the vectors of scalar coefficients ai that produce the linear
combinations, yi, with maximum variance (as defined in Eq. (2.59)) for
i = 1, . . . , l. From Eq. (2.59) we see that we need to impose some constraint
on a as

lim
||a||2→∞

aTΣa =∞ (2.61)

because the covariance matrix Σ is positive semi-definite (psd).
We also want the linear combinations yi to be uncorrelated, otherwise if

we had found that a single linear combination, yj = aTj x, that maximizes the
variance, we would have yj = y1 = y2 = . . . = yl. The principal components
are then defined as

The first principal component is the linear combination aT1 x that max-
imizes Var

{
aT1 x

}
subject to aT1 a1 = 1

The second principal component is the linear combination aT2 x that max-
imizes Var

{
aT2 x

}
subject to aT2 a2 = 1 and Cov

{
aT1 x, aT2 x

}
= 0

And so on with, the i’th component;

The i’th principal component is the linear combination aTi x that max-
imizes Var

{
aTi x

}
subject to aT2 a2 = 1 and Cov

{
aTi x, aTj x

}
= 0 for

j < i

48 CHAPTER 2. SOME CLUSTERING PROCEDURES

From this we can formulate the following optimization problem: Maxi-
mize

aTi Σai i = 1, 2, . . . , l (2.62)

with respect to a, subject to the constraints

||ai||2 = aTi ai = 1 i = 1, 2, . . . , l (2.63)
Cov {yi, yj} = aTi Σaj = 0 i, j = 1, 2, . . . , l (2.64)

Then it is possible to formulate a Lagrange optimization problem for a par-
ticular a

L(a, λ) = aTΣa− λ
(
aTa− 1

)
(2.65)

where λ is the Lagrange multiplier. The objective is now to maximize the
Lagrange function. Taking the gradient with respect to a and equating it to
0 gives

∇L(a, λ) = 0 (2.66)
2Σa− 2λa = 0 (2.67)

where Eq. (2.67) can be rephrased into the eigenvalue-eigenvector problem:

Σa = λa (2.68)

Thus we see that the vector of scalar coefficients are in fact the eigenvectors
of Σ! Let Σ have the eigenvalue-eigenvector pairs

(λ1, e1), (λ2, e2), . . . , (λl, el) where λ1 ≥ λ2 ≥ . . . ≥ λl ≥ 0 (2.69)

Since Σ is a covariance matrix (and thus is psd) it will have orthogonal
eigenvectors such that

eTi ej = 0 i 6= j (2.70)

The second constraint, specified in Eq. (2.64), will also hold:

Cov {yi, yj} = eTi Σej = eTi λjej = λje
T
i ej = 0 i 6= j (2.71)

Then the orthonormal eigenvectors of the covariance matrix are the vectors
of scalar coefficients that gives us the principal components. Now we check
which eigenvector corresponds to which principal component. Recall that
the first principal component is the one that maximizes the variance without
any constraint. From Eq. (2.59):

Var {yi} = eTi Σei = eTi λiei = λie
T
i ei = λi i = 1, . . . , l (2.72)

2.5. KERNEL PCA SPECTRAL CLUSTERING 49

Hence the first principal component corresponds to the one found from pro-
jecting x onto the eigenvector of Σ corresponding to the largest eigenvalue.
Because of the definition in Eq. (2.69) we see that this is e1. The second prin-
cipal component will correspond to e2 and so on, thus ai = ei , i = 1, . . . , l.

Usually one chooses to project the data onto the s first principal compo-
nents, where s ≤ l and λs > 0. One can then form a s× 1 vector, y, of these
components:

y = [y1, y2, . . . , ys]
T =

[
eT1 x, eT2 x, . . . , eTs x

]T (2.73)

So far we have assumed that the covariance matrix Σ is known. In prac-
tice this is seldom the case, and the covariance matrix must be estimated from
the data. Given the dataset X = {x1,x2, ...,xn}, one can use for instance the
unbiased estimator:

Σ̂ = Sn−1 =
1

n− 1

n∑
i=1

(xi − x̄)(xi − x̄)T (2.74)

where x̄ = 1
n

∑n
i=1 xi is the sample mean vector. Then PCA is done on Σ̂ in

exactly the same way. Once the covariance matrix has been estimated, the
eigenvectors and eigenvalues are calculated. Then the data vectors are pro-
jected onto s first eigenvectors, where s is the desired number of dimensions.
In addition to the dimensionality reduction, performing a PCA might lead
to new interpretation of the data [20].

If the data is centered, that the sample mean is the at the origin x̄ = 0,
Equation (2.74) can be simplified to

Σ̂ =
1

n− 1

n∑
i=1

xix
T
i (2.75)

Centering can be done by subtracting the sample mean from each data vector.

2.5.2 The Kernel Trick

Despite its good properties, PCA is a linear algorithm and hence is not
suited for nonlinear problems. Given a dataset, usually high-dimensional,
X = {x1,x2, ...,xn} ⊂ Rl , the goal is to compute n corresponding patterns,
Y = {y1,y2, ...,yn} ⊂ Rs that provide an informative representation of the
input data. The following two sections are based on [39, Section 6.7.1]. Given
the dataset we make an implicit mapping into a Reproducing Kernel Hilbert
Space (RKHS), H

x ∈ X 7→ φ(x) ∈ H (2.76)

50 CHAPTER 2. SOME CLUSTERING PROCEDURES

A Hilbert space is an abstract vector space equipped with an inner product.
It is complete, which means that the techniques of calculus can be used. In
theory, this Hilbert space can be infinite dimensional, but we select s ≤ l
principal components from each of the n data vectors, just like for regular
PCA.

While having to perform a mapping to a potentially infinite dimensional
space sounds like an impossible task, it turns out that we do not have to find
the mapping function.

Theorem 1. Mercer’s Theorem. Let x ∈ Rl and a mapping φ

x 7→ φ(x) ∈ H

where H is a Hilbert space. Let the inner product operation have an equivalent
representation

〈φ(x),φ(z)〉 = K(x, z) (2.77)

where 〈·, ·〉 denotes the inner product operation in H. Then K(x, z) is a
symmetric continuous function satisfying the following condition:∫

C

∫
C

K(x, z)g(x)g(z)dxdz ≥ 0 (2.78)

for any g(x) , x ∈ C such that∫
C

g(x)2dx < +∞ (2.79)

where C is a compact (finite) subset of Rl. The opposite is always true; that
is, for any any symmetric, continuous function K(x, z) satisfying Eq. (2.77)
and Eq. (2.78) there exists a space in which K(x, z) defines an inner product!
Such functions are also known as kernels and the space H as Reproducing
Kernel Hilbert Space (RKHS).

2.5.3 Kernel PCA

Just like for regular PCA, we want to find s principal components in H which
preserves most of the variance in this space. To do this we must look at the
covariance matrix in this space.

To simplify the calculations for the time being, we assume that the trans-
formed data is centered (

∑n
i=1φ(xi) = 0) in the kernel space. This limitation

makes the covariance matrix in the kernel space is easier to estimate, simi-
lar to Eq. (2.75) for regular PCA. With centered data in H, the covariance

2.5. KERNEL PCA SPECTRAL CLUSTERING 51

matrix in the kernel space can be written as

R =
1

n

n∑
i=1

φ(xi)φ(xi)
T (2.80)

Then the principal components can be found by solving the eigenvalue prob-
lem:

Rv = λv (2.81)

The eigenvectors, v, must be in the span of the mapped data. So v ∈
span {φ(x1), φ(x2), ..., φ(xn)}. This means that the eigenvectors can be ex-
pressed as a linear combination of the mapped data and for λ 6= 0:

v =
n∑
j=1

ajφ(xj) (2.82)

By inserting the expressions from Eq. (2.80) and Eq. (2.82) into Eq. (2.81)
we get

λ
n∑
j=1

ajφ(xj) =
1

n

n∑
i=1

φ(xi)φ(xi)
T

n∑
J=1

ajφ(xj) (2.83)

Now, we multiply with φ(xk)
T from the left and get

λφ(xk)
T

n∑
j=1

ajφ(xj) =
1

n
φ(xk)

T

n∑
i=1

φ(xi)φ(xi)
T

n∑
j=1

ajφ(xj) (2.84)

This should hold for every φ(xk) , k = 1, . . . , n and hence we can form a
system of equations based on Eq. (2.84). If we now define a n× n matrix K
with elements

K(i, j) ≡ φ(xi)
Tφ(xj) = K(xi,xj) , i, j = 1, 2 . . . , n (2.85)

where K(xi,xj) is a kernel function as defined in Mercer’s theorem. Then
we can formulate the system of equations based on Eq. (2.84) as

λKa =
1

n
K2a (2.86)

where a ≡ [a1, a2, . . . , al] is the vector of linear coefficients used to express v
in terms of the mappings. K is called the kernel matrix or the Gram matrix.
Since it is a covariance matrix (estimate), we know that it will be symmetric
and positive semi-definite, and therefore invertible. Hence Eq. (2.86) can be
simplified by multiplying with K−1 from the left [26]:

Ka = λna (2.87)

52 CHAPTER 2. SOME CLUSTERING PROCEDURES

Which is an eigenvector-eigenvalue problem. Let K have the eigenvalue-
eigenvector pairs

(nλ1, a1), (nλ2, a2), . . . , (nλl, al) where λ1 ≥ λ2 ≥ . . . ≥ λl ≥ 0 (2.88)

Then, as for regular PCA, we select the eigenvectors corresponding to the s
dominant eigenvalues where s ≤ n and λ1 ≥ λ2 ≥ . . . ≥ λs > 0.

As with regular PCA we need to impose a normalizing constraint on the
"original" eigenvectors, vk , k = 1, . . . , s.

1 = 〈vk,vk〉 =

〈
n∑
i=1

akiφ(xi) ,
n∑
i=j

akjφ(xj)

〉

=
n∑
i=1

n∑
j=1

akiakjKi,j

= aTkKak = nλka
T
k ak , k = 1, 2, . . . , s

Which gives that

aTk ak =
1

nλk
, k = 1, 2, . . . , s (2.89)

So far we have assumed that the data have been centered in the RKHS.
However, this is not generally the case and for the intuition of preserving the
covariance in H we need center. A method for centering was presented in
[34] and [26]. The centered kernel matrix K̂ can be expressed in terms of the
original kernel matrix as

K̂ = K− 1

n
1n×nK−

1

n
K 1n×n +

1

n2
1n×nK 1n×n (2.90)

where 1n×n is a n×n matrix with all elements equal to 1. While the centering
is necessary for the interpretation of preserving the covariance in H, KPCA
can be performed without centering with a different result. Most expositions
on KPCA uses centering [18], and unless otherwise noted, centering is done
when KPCA is mentioned in this thesis.

The method can then be summarized as

1. Compute the kernel matrix with elements defined in Eq. (2.85) ; Ki,j =
K(xi,xj) , i, j = 1, 2 . . . , n. Denote the resulting matrix as Korg.

2. Optional: Center the kernel matrix as defined in Eq. (2.90) ; K =
Korg − 1

n
1n×nKorg − 1

n
Korg 1n×n + 1

n2 1n×nKorg 1n×n.

2.5. KERNEL PCA SPECTRAL CLUSTERING 53

3. Find the s dominant eigenvalues/eigenvectors of the kernel matrix K ;
(λk, ak) , k = 1, 2 . . . , s.

4. Perform the normalization defined in Eq. (2.89) ; aTk ak = 1
nλk

, k =
1, 2, . . . , s.

5. For each point of interest, x, compute the projections onto the s domi-
nant eigenvectors to generate the new s×1 representation y = [y1, y2, . . . , ys]

T .
These are the s first principal components in the kernel space, where
yk ≡ 〈vk,φ(x)〉 =

∑n
i=1 akiK(xi,x) for k = 1, 2, . . . , n .

In clustering applications the final step is done for every data vector
x = xi to generate the new representations yi for i = 1, . . . , n. Because of
this it is possible to rewrite this in terms of matrices. From linear algebra, we
know that since K is symmetric, it may be eigendecomposed as K = EΛET ,
where Λ is a diagonal matrix containing all eigenvalues λ1, . . . , λn of K and
E is a matrix with the corresponding eigenvectors e1, . . . , en as columns [2,
Chap. 7.3].

If we organize the transformed dataset Y = {y1,y2, . . . ,yn} into a n× s
matrix

Y =


yT1
yT2
...

yTn


where yj , j = 1, . . . , n are s × 1 vectors. A projection onto s KPCA axes
given by the eigenvectors corresponding to the largest eigenvalues can be
expressed as

Y = Λ
1
2
s ET

s (2.91)

where Λs is a s× s diagonal matrix with the largest eigenvalues of K and Es

is a n× s matrix with the corresponding eigenvectors as columns.
Then a clustering algorithm is applied to the transformed dataset Y =

{y1,y2, . . . ,yn} given as the rows of Y.
Figure 2.12 shows the original data in the feature space to the left while

the right plot is of the first data projected on the two first principal axes found
by kernel PCA. We notice that the original dataset would have presented
a very challenging clustering problem. After the data transformation we
would expect that relatively simple clustering algorithms, like k-means, could
separate the two clusters.

The kernel used for all these examples is the Gaussian kernel with a
single bandwidth parameter (covariance matrix proportional to the identity

54 CHAPTER 2. SOME CLUSTERING PROCEDURES

Figure 2.12: Two concentric circles with noise.

matrix), used for density estimation in Eq. (2.53) in Section 2.4.1:

K(xi,xj) =
1

(2π)l/2hl
exp

(
−1

2

∣∣∣∣∣∣∣∣xi − xj
h

∣∣∣∣∣∣∣∣2
)

(2.92)

where || · || is the Euclidean norm, l is the number of variables in each feature
vector x, and h is the bandwidth. The expression outside the exponential
is constant for a dataset given a bandwidth and does not affect the result.
Hence the Gaussian kernel can be written as

K(xi,xj) = exp

(
−1

2

∣∣∣∣∣∣∣∣xi − xj
h

∣∣∣∣∣∣∣∣2
)

(2.93)

The result of kernel PCA on the right in Fig. 2.13 may seem like it still
might be too much of a challenge for k-means. However, we should recall
that this is only the projection onto the two first components.

Figure 2.14 shows the projection onto the first three components. From
this perspective the clusters seem easier to separate. Note that using only the
first two components might be sufficient for slightly more advanced clustering

2.5. KERNEL PCA SPECTRAL CLUSTERING 55

Figure 2.13: Circle and "reverse L" shape.

methods, for instance mean shift, to provide a good result. It should also
be mentioned that for structures like the ones seen in Fig. 2.13 is where
hierarchical clustering methods shine.

56 CHAPTER 2. SOME CLUSTERING PROCEDURES

Figure 2.14: Projection onto first 3 components.

2.6 Laplacian Eigenmaps

Laplacian eigenmaps is a graph based method for dimensionality reduction
which tries to preserve neighbourhood information. This will implicitly em-
phasize the natural clusters in the dataset [4]. The data points are thought
of as vertices in a graph, with edges between neighbouring points.

Given a proximity (similarity or dissimilarity) measure, the proximity
between each data point is calculated. Based on these proximity measures
one finds points that are close and label them as neighbours. An edge is
defined between every pair of neighbours. There are two main approaches to
defining which points are close. One defines all points within a certain (user
defined) distance of each other as close, while the other says that each point
has a fixed (user defined) number of neighbours. Each approach has its own
merits.

Then a weight is defined for every edge to create the weighted adjacency
matrix. Typically, the choice of weight function depends on how closeness
was defined earlier. Often a a Gaussian function is used for this, assigning
large weights to neighbours with a small Euclidean distance between them.

Based on the weighted adjacency matrix, a graph Laplacian matrix is

2.6. LAPLACIAN EIGENMAPS 57

defined. In [41] it was pointed out that there is some inconsistency in the
scientific community regarding which matrix is called the "graph Laplacian",
and the article discussed the three different conventions. While the three
definitions give different result, they are related.

Once a graph Laplacian as been chosen, the eigenvalues and eigenvectors
are calculated. Then the new representation of the data is found as com-
ponents of the eigenvectors corresponding to the smallest eigenvalues. The
number of eigenvectors used is equal to the desired dimension of the trans-
formed data. Since the clustering procedure is based on solving an eigenvalue
problem it is a spectral clustering algorithm.

This section is based on [41].

2.6.1 Defining The Graph

Vertices and Edges

Given a set of data vectors X = {x1,x2, ...,xn} of dimension l × 1, an adja-
cency graph is constructed. The graph consists of vertices (also called nodes),
V , and edges, E. The set of vertices is V = {vi , i = 1, 2, ..., n} where each vi
equals the corresponding data vector xi. E = {eij} is a set of edges connect-
ing vi and vj. The edges only connect points that are close in some sense.
The graph is then denoted G(V,E).

There are two main approaches to defining which nodes are close to each
other, and hence where to put edges in the adjacency graph. Both methods
have its advantages and disadvantages.

ε-neighbourhoods: Vertices vi and vj are connected if the distance between
them is less than a user defined parameter ε ∈ R. A often used cri-
terium is ||xi−xj||2 < ε where ||·||2 is the squared Euclidean norm in Rl.

k nearest neighbour: Vertex vi is connected to vertex vj if xj is one of the
k nearest neighbours (kNN) of xi where k ∈ N is a user defined pa-
rameter. However, this definition leads to neighbourhood relationships
that are not symmetric. This means that while vertex vj is one of the
k nearest neighbours of vertex vi, vi might not be one of the k nearest
neighbours of vertex vj. The graph is said to be directed. For Laplacian
eigenmaps the graph should be undirected, which will make the adja-
cency matrix symmetric. There are two ways of achieving this. The
first is that vi and vj are connected if vi is one of the kNN of vj OR vj
is one of the kNN of vi. This is usually just called the k-nearest neigh-
bour graph [41]. The second approach is called the mutual k-nearest

58 CHAPTER 2. SOME CLUSTERING PROCEDURES

neighbour graph where vi and vj are connected if vi is one of the kNN
of vj AND vj is one of the kNN of vi.

The first method is geometrically motivated and the adjacency graph
will be naturally symmetric. This approach may often, depending on the
parameter ε, lead to a graph consisting of one or more subgraphs with no
connection to each other. A graph (or subgraph) is said to be a connected
component if you by starting at any one of the vertices can reach any other
vertex by "moving along the edges between vertices". The ε parameter can
be difficult to chose, especially if nothing is known about the data in advance.

The number of nearest neighbours is easier to choose and it tends to
lead to connected graphs. This approach is less intuitive as actual distance
between vertices which are considered close can vary greatly depending on
how dense the local concentration of data points is. However, this can be an
advantage if the dataset contains regions of different densities. With the k-
nearest neighbour graph (rather than the mutual k-nearest neighbour graph),
each point will always be connected with at least k − 1 other points (not k
since a point is always considered to be its own neighbour).

To illustrate this, consider this toy data set. The data points are marked

Figure 2.15: Neighbouring points example.

2.6. LAPLACIAN EIGENMAPS 59

by black dots, except for our point of interest which is marked by a red
square. The dashed red line is the circle centered at the point of interest
with radius ε = 1.5. The two point inside the radius will then be considered
neighbours. The outlier in the top right corner is not connected with the rest
of the graph

The solid red lines shows neighbours if we construct the graph with the
kNN approach with k = 3. An edge is put between our point of interest and
an outlier, even though there are points that are much closer that do not get
an edge.

The Weight of an Edge and the Degree of a Vertex

Now we assign a weight wij > 0 to each edge eij to construct the n × n
weighted adjacency matrix W. The only non-zero elements of this matrix
are those corresponding to edges. So

wij =

{
W (xi,xj), if there is an edge, eij , between vi and vj
0, otherwise (2.94)

where wij , i, j = 1, . . . , n are the elements of W and W (xi,xj) is a weight
function. A weight function must be symmetric so W (xi,xj) = W (xj,xi).
Since the graph is undirected, the weight matrix will be symmetric, wij =
wji ⇒W = WT .

The choice of neighbourhood definition in Section 2.6.1 should influence
the choice of weight function. When using k nearest neighbours, the distance
between connected vertices can vary greatly. The weight function should then
assign a high weight to edges between points that are also close geometrically.
A typical choice is to use a Gaussian, called a heat kernel in [4], to weight

the edges. Then W (xi,xj) = e−
||xi−xj ||

2

2σ2 where σ2 ∈ R+ is a user defined
parameter.

When ε-neighbourhoods are used, the distance between neighbours is less
than ε for the chosen distance measure and a weight function is less im-
portant. Therefore it might not be necessary to use a complicated weight
function and edges might be weighted equally: W (xi,xj) = 1 , ∀xi,xj. No-
tice that this is equivalent to the heat kernel when σ2 →∞.

We now define the degree of a vertex vi ∈ V as the sum of all its associated
weights

di =
n∑
j=1

wij (2.95)

The only non-zero contributions to sum in Eq. (2.95) will be from neighbours

60 CHAPTER 2. SOME CLUSTERING PROCEDURES

of vertex vi. The degree matrix is then defined as a n×n diagonal matrix D
with elements d1, d2, . . . , dn on the diagonal.

2.6.2 Graph Laplacian

The motive for defining the graph is that we wish to perform a mapping
to a lower dimensional space, that preserves the structure of the graph
G(V,E) defined by the weighted adjacency matrix W. Given the dataset
X = {x1,x2, ...,xn}, an embedding in m-dimensional Euclidean space is then
given by

xi ∈ Rl 7→ yi ∈ Rm , i = 1, 2, ..., n (2.96)

There are several interpretations of the algorithm that follows. Lapla-
cian eigenmaps can be considered from graph partitioning, random walk and
perturbation perspectives [41].

In [4] the problem was formulated as trying to to construct "... a repre-
sentation for data lying on a low-dimensional manifold embedded in a high-
dimensional space.". The algorithm was then justified by considering the
weighted Laplacian of the adjacency graph as an approximation for the
Laplace Beltrami operator, which provides an optimal embedding for the
manifold.

A simpler interpretation is that we wish to preserve local neighbourhood
information in a way that is optimal in some sense. In other words, if nodes
are part of the same neighbourhood in the original space, they should be
mapped close to each other. We will now see how the algorithm can be
derived from optimizing a cost function.

Cost Function Optimization

Now, let X, defined above, be organized in a n×l matrix X where rows corre-
spond to data vectors (observations) and the columns to the data dimensions
(variables). With the mapping be defined in Eq. (2.96), the mapped data
can be organized in a n×m matrix Y with rows yTi = [yi1, yi2, . . . , yim].

We first consider the s’th of the m components of yi, yis where i =
1, . . . , n. We define a cost function as

E =
m∑
s=1

Es (2.97)

where

Es =
n∑
i=1

n∑
j=1

(yis − yjs)2wij (2.98)

2.6. LAPLACIAN EIGENMAPS 61

is the cost associated with component (column) s of Y.
To minimize Eq. (2.97) we have to minimize Eq. (2.98) for s = 1, . . . ,m.

We notice that when the data vectors xi and xj are close in the l-dimensional
space, the edge weight wij will be positive and to minimize the cost function
in Eq. (2.98) we have to minimize (yis − yjs)2 for all s = 1, . . . ,m , which
corresponds to mapping the nodes close to each other. Points that are not
neighbours will not affect the cost since the respective weights are zero. With
some algebra, Eq. (2.98) can be expressed it on another form:

Es =
n∑
i=1

n∑
j=1

(yis − yjs)2wij

=
n∑
i=1

[
y2is

n∑
j=1

wij

]
+

n∑
j=1

[
y2js

n∑
i=1

wij

]
− 2

n∑
i=1

n∑
j=1

yisyjswij

= 2
n∑
i=1

[
y2is

n∑
j=1

wij

]
− 2

n∑
i=1

n∑
j=1

yisyjswij

= 2
n∑
i=1

y2isdii − 2
n∑
i=1

n∑
j=1

yisyjswij

which can be formulated in vector form by denoting the s’th column vector
of Y as ỹs = [y1s, y2s, ..., yns]

T . The tilde is used to distinguish them from
the row vectors of Y which correspond to the mapping of each of the n data
points.

Es = 2
(
ỹTs Dỹs − ỹTs Wỹs

)
(2.99)

The unnormalized graph Laplacian matrix, L, is then defined as

L = D−W (2.100)

and Eq. (2.99) can be written as

Es = 2ỹTs Lỹs (2.101)

The obvious minimum of Es is the trivial solution yis = 0 , ∀i, s, which
corresponds to mapping all points to 0. To avoid this problem, we constrain
ỹs to a specific norm. We will see that the choice of this constraint will
determine the type of Laplacian matrix we are working on.

The Unnormalized Graph Laplacian

We now impose the constraint

ỹTs ỹs = 1 (2.102)

62 CHAPTER 2. SOME CLUSTERING PROCEDURES

This choice actually implies that we are working on what is called the un-
normalized graph Laplacian matrix. Lagrange optimization can be used to
minimize each Es subject to the constraint . The Lagrangian function, f ,
can then be written as

f(ỹs, λs) = ỹTs Lỹs − λs
(
ỹTs ỹs − 1

)
(2.103)

evaluating all the partial derivatives of ỹs and solving when equal to zero
gives us

Lỹs = λsỹs (2.104)

which we recognize as an eigenvalue-eigenvector problem. We can now insert
this expression into Equation (2.101):

Es = 2ỹTs Lỹs = 2ỹTs λsỹs = 2λs (2.105)

So Es is minimized by selecting ỹs as the eigenvector corresponding to the
smallest eigenvalue of L. However, we also want to impose an additional
constraint on the component vectors of the mapped dataset ỹs , s = 1, . . . ,m.

That is that they should not be linearly dependent. If all ỹs , s = 1, . . . ,m
were set equal to the eigenvector corresponding to the smallest eigenvalue,
the mapping would be to a one dimensional line in Rm. In general, if any of
the ỹs’s were linearly dependent, the mapping would span less than the m
dimensions we specified.

It is clear that we need another constraint. As the matrix L is symmetric
and positive semi-definite, it will have non-negative eigenvalues and orthogo-
nal eigenvectors. Hence we impose the restriction that the component vectors
should be orthogonal ỹs , s = 1, . . . ,m.

Then minimizing the overall cost function E as defined in Eq. (2.97) is
done by defining Y as having column vectors:

Y =
[

ỹ1
... ỹ2

... . . .
... ỹm

]
(2.106)

where the column vectors ỹs , s = 1, . . . ,m are selected as the solutions of
the eigenvector-eigenvalue problem

Lỹ = λỹ (2.107)

corresponding to the m smallest meaningful eigenvalues of the unnormalized
graph Laplacian matrix L. The definition of meaningful will be explained in
the following section.

Figure 2.16 shows a toy data example similar to the one in Fig. 2.12,
the circles are defined with the same radius and Gaussian noise, but fewer

2.6. LAPLACIAN EIGENMAPS 63

Figure 2.16: Ring data.

data points are used. This is to illustrate the difference between the way the
neighbours are defined.

The unnormalized graph Laplacian was then constructed based on the
squared Euclidean distance || · ||2 used as the proximity measure on the
data in Fig. 2.16. The result of Laplacian eigenmaps for m = 2 using
both ε-neighbourhood and k nearest neighbours are shown in Fig. 2.17. The
edges were weighted by a Gaussian weight function with σ = 1 which gives

W (xi,xj) = e−
||xi−xj ||

2

2σ2 = e−
||xi−xj ||

2

2 .
The two subplots in the top row was made based on the ε-neighbourhood

method with ε = 0.75 to the left and ε = 2 to the right. The smallest ε value
will produce a graph with several connected components and the mapping is
unable to separate the two rings. With ε = 2 the blue ring is mapped to a
single point, while the red ring seems to be mapped to three different points.

It would be possible to accurately cluster this mapping, depending on
the clustering method used. An ad hoc method for this case could be to
assign all points with a non-zero first component to one cluster and the rest
to the second cluster. Increasing ε will not give a better separation in this
particular case, and when it becomes large enough it will start connecting

64 CHAPTER 2. SOME CLUSTERING PROCEDURES

Figure 2.17: First two components of transformation.

the inner and outer circle.
The second row shows the result of using kNN, with k = 3 for the bottom

left corner. Clearly this mapping is not good, and this is caused by the low
number of neighbours for each point. In the bottom right corner k is increased
to 6, and the result is two connected components mapped to two different
points. This is ideal for clustering. Even though the outer circle is somewhat
sparsely populated, the structure is uncovered by using only the 6 nearest
neighbours. Increasing k to 10 gives the exact same result.

Figure 2.17 illustrates some of the advantages of kNN over ε-neighbourhoods;
it handles regions of different densities better, it tends to lead to fewer con-
nected components in the graph and the parameter k is easier to select.

Connected Components of a Graph

L will always have λ = 0 as its smallest eigenvalue, if the graph is fully
connected this corresponds to the constant n×1 one vector, 1 = [1, 1, . . . , 1]T .
Here the normalization constraint has been left out. This is can easily be
verified by looking at Eq. (2.98).

The eigenvector 1 (or any vector proportional to it) will not provide any

2.6. LAPLACIAN EIGENMAPS 65

distinction between the points if it was used for mapping as it would imply
that y11 = y21 = . . . = yn1 = α where α ∈ R is a normalization constant.
Hence the eigenvector ỹ = 1 corresponding to the eigenvalue λ = 0 is not
considered meaningful in this case. However, the situation is different if the
graph is not fully connected.

Theorem 2. Number of connected components and the spectrum of L. Let
G be an undirected graph with non-negative weights. Then the multiplicity of
the eigenvalue 0 of L equals the number of connected components A1, . . . , Ar
in the graph. The eigenspace of eigenvalue 0 is spanned by the indicator
vectors 1A1 , . . . ,1Ar of those components.

The indicator vectors 1Ai , i = 1, . . . , r are n× 1 vectors with elements

1Ai(j) =

{
1, if vj ∈ Ai
0, otherwise (2.108)

Thus if a graph consists of several subgraphs (more than one connected com-
ponent), as would be the case if we chose the ε-neighbourhood marked in
Fig. 2.15, the eigenvectors corresponding to λ = 0 will indicate which points
belong to different subgraphs. If the graph is well defined, this will provide
a good clustering solution! This was seen in Fig. 2.17 where the eigenvectors
for eigenvalue zero was used. However, if the we make a poor choice of neigh-
bourhood parameter (k or ε) we will end up with many sparsely populated
clusters.

A proof of Theorem 2 can be found in [41].

Normalized Graph Laplacian

As mentioned the constraint in Eq. (2.102) is associated with the unnormal-
ized graph Laplacian. Another common constraint is

ỹTs Dỹs = 1 (2.109)

which will lead to optimization of the following Lagrange function, with
the only difference from Eq. (2.103) being that the degree matrix D being
included in the constraint

f(ỹs, λs) = ỹTs Lỹs − λs
(
ỹTs Dỹs − 1

)
(2.110)

Minimizing the overall cost function, E, will be done by solving the general-
ized eigenvalue-eigenvector problem:

Lỹ = λDỹ (2.111)

66 CHAPTER 2. SOME CLUSTERING PROCEDURES

Again we solve for m eigenvectors corresponding to the smallest (meaning-
ful) eigenvalues. Since the degree matrix D is diagonal with non-zero diago-
nal elements, the generalized eigenvalue-eigenvector problem is equivalent to
solving:

D−1Lỹ = λỹ (2.112)

From this it is possible to define a normalized Laplacian matrix directly as
D−1L. The problem can also be reformulated to obtain a second defini-
tion of the normalized Laplacian [39]. So there are two matrices called the
normalized graph Laplacian:

Lrw = D−1L = I−D−1W (2.113)
Lsym = D−1/2 L D−1/2 = I−D−1/2 W D−1/2 (2.114)

The first matrix, which is the one that follows directly from the constraint
in Eq. (2.111), is denoted by Lrw as it is closely related to a random walk,
the second by Lsym as it is a symmetric matrix [41].

Figure 2.18: Three groups of data.

Figure 2.18 is another toy data example with three different groups. Clus-
tering this dataset into the clusters corresponding to the three colours would

2.6. LAPLACIAN EIGENMAPS 67

clearly be a very difficult task. However, this example is just meant to illus-
trate that there is a difference when using the normalized Lrw instead of the
unnormalized graph Laplacian L.

Figure 2.19: Four different eigenmaps.

The top row of Fig. 2.19 shows the first two components for the graph
constructed using an ε-neighbourhood with ε = 4.0. The bottom row is based
on the graph constructed with k nearest neighbours for k = 10.

Like the example for Fig. 2.17, proximity was given by the squared Eu-
clidean distance and the edges were weighted by a Gaussian weight function
with σ = 1. The first two components of the mapping is plotted. As this
graph consisted of a single connected component, the eigenvalue λ = 0 had
multiplicity one and was ignored.

The two plots on the left were based on L, while those on the right were
based on Lrw. We see that there is a difference for the ε-neighbourhood case,
where the result based on the normalized matrix seems similar to the result
from kNN. While the two plots based on kNN look quite different at first, it
seems like the normalized plot might be obtained by rotation the plot based
on the unnormalized graph Laplacian by 180◦.

Figure 2.20 is the same as the bottom row of Fig. 2.19, only here k = 25.
This figure illustrates that the normalization is dependent on the parameters.

68 CHAPTER 2. SOME CLUSTERING PROCEDURES

Figure 2.20: kNN with k = 25.

While normalization for this simple example seems to provide better results,
this might not always be the case.

Which one of the three matrices L, Lrw or Lsym to use will not be discussed
here. While Lrw and Lsym have the same eigenvalues, their eigenvectors are
different. It should be mentioned that [41] argues for using a normalized
graph Laplacian and using Lrw rather than Lsym.

2.6.3 Laplacian Clustering Methods

So far we have assumed that the dataset X = {x1,x2, ...,xn} is available,
but this is not strictly necessary. All that is needed to run the algorithm is
a matrix of proximity (similarity or dissimilarity) measures. As long as we
assume that the weights we choose can be calculated based on the proximity
measure we are given, the dataset is not actually needed.

Hence we assume that the input to the algorithm is a n × n matrix of
proximities, P. If no P is given it is calculated from the dataset X. Let
L̂ denote either the unnormalized L or the normalized Lrw graph Laplacian
matrix. The algorithm for a clustering method based on Laplacian eigenmaps
can then be summarized as

2.6. LAPLACIAN EIGENMAPS 69

1. Find the neighbours from P using either the ε-neighbourhood or k near-
est neighbours approach as described in Section 2.6.1.

2. Weight each edge found in Step 1 by a weight function to create the
weighted adjacency matrix W and sum the weights of each vertex to
find the degree matrix D as defined in Section 2.6.1.

3. Compute the unnormalized Laplacian matrix L by using Eq. (2.100). If
normalization is desired, use Eq. (2.113). Either way, denote the result
L̂.

4. Compute the first m eigenvectors, ỹi , i = 1, . . . ,m, of L̂ correspond-
ing to the smallest eigenvalues, ignoring the eigenvalue λ = 0 if it has
multiplicity one.

5. Construct the n×m matrix Y with columns ỹi , i = 1, . . . ,m. A map-
ping xj ∈ Rl 7→ yj ∈ Rm is given by the rows of Y: yj , j = 1, . . . , n.

6. Cluster the points given as the rows, yj , j = 1, . . . , n, of Y by some
simple clustering algorithm, for instance by using k-means. If λ = 0 has
multiplicity greater than one, a clustering solution with the number of
clusters equal to the multiplicty of the zero eigenvalue is given directly
by looking at the columns of Y as cluster indicator vectors.

An algorithm based on Lsym requires an additional normalization of the rows
of Y to norm 1. The other steps of the algorithm are the same. Another
important aspect of Laplacian eigenmaps is that while the matrix in the
eigenvalue-eigenvector problem can be quite big (n× n), it is usually sparse
as each point should have few neighbours relative to the number of overall
data points n.

70 CHAPTER 2. SOME CLUSTERING PROCEDURES

Chapter 3

Information Theoretical Learning

3.1 Introduction

Information Theoretical Learning (ITL) is a generic term used to describe the
use of information theory descriptors of entropy and divergence in machine
learning, signal processing and data analysis [30]. The ITL concept focuses
on a particular type of Renyi entropy which can be easily estimated by kernel
density estimation (KDE). This leads to several clustering methods and algo-
rithms with relatively simple entropy-based cost and dissimilarity functions
[30].

The theory of information was developed by Shannon in [35] and has
found applications in many areas. Information theory provides scalar de-
scriptors of probability density functions (pdfs) and the statistical similarity
between them. In the terminology used in [30] this is the mesoscopic model-
ing level. Statistical moments1 are the most used mesoscopic descriptors of
the pdf and often learning from the dataset is based on these.

Traditional methods in these fields often emphasizes second-order mo-
ments when selecting an optimality criterion for learning [8]. This is closely
related with the Gaussian distribution, which is completely characterized by
its first and second order moments. There are several reasons for this empha-
sis. One is that cost functions based on second-order statistics often leads to
simple and intuitive learning algorithms with relatively low computational
complexity. Another important reason is that the Gaussian distribution has
been a good model for many real world problems.

However, with the ever increasing number of problems and fields where
information can be quantized, it is clear that Gaussianity of the data should

1The most widely used moments are the expectation and the variance, which are the
first and second order moments. See [42, Chapter 7] for a brief description of moments.

71

72 CHAPTER 3. INFORMATION THEORETICAL LEARNING

be considered a special case and not the default assumption. In clustering, the
emphasis on second-order statistics is most apparent in non-spectral methods,
but also in Kernel Principal Component Analysis (KPCA) the method seeks
to preserve the variance in the Reproducing Kernel Hilbert Space (RKHS).

ITL provides an alternative approach for clustering. Clustering methods
based on ITL seek to learn the structure of the dataset from entropy and
dissimilarity measures based on divergences between densities. One such
method is presented in Chapter 4. For the benefit of the reader, this chapter
gives a brief summary of the concept of information and entropy, before
looking at standard measures of entropy and divergence. More entropy and
divergence measures can be found in [21].

3.2 Information

This section is based on [30, Chapter 1]. Information theory was developed
by Claude Shannon in his 1948 paper [35] "to deal with the problem of
optimally transmitting messages over noisy channels" [30]. The concept of
information was first introduced by Hartley twenty years earlier in 1928 as
a measure of the unexpectedness of a message [15]. Consider a message that
consists of symbols drawn from a finite set of S possible symbols. If it is
binary code the only possible symbols are "0" and "1", which gives S = 2. If
the message is n symbols long, Hartley defined the "amount of information"
to be

HH = log10 S
n = n log10 S (3.1)

where HH is an uncertainty measure with the subscript "H" stands for Hart-
ley. No probabilistic reasoning was used to formulate the definition in Eq.
(3.1). Hartley pointed out in [15] that a logarithmic function was the most
natural choice for an uncertainty measure. A more precise justification of
the use of logarithms was provided by Shannon [35]. We will return to un-
certainty measures in Sections 3.3 and 3.4.

While originally developed to characterize messages, the generalization to
describe random events broadened the range of applications for information
theory. Before providing a formal definition, let us consider an example of
information related to random events. Informally we can say that knowing
the outcome of the toss of a fair die provides more information than the flip
of a fair coin because the outcome is harder to guess (less predictable). Also,
knowing that the outcome of a toss of two dice is two and four provides the
same information as the two independent pieces of information; that the toss
of one die is two and the toss of another is four.

3.3. SHANNON ENTROPY 73

Consider a discrete random variable x with possible outcomes SX =
{s1, . . . , sn} with probabilities PSX = {P1, . . . , Pn} with Pj = P (x = sj).
As they are probabilities 0 ≤ Pj ≤ 1 and

∑n
j=1 Pj = 1. The information I

associated with outcome sj is then defined as

Ij = log2

1

Pj
= − log2 Pj (3.2)

Notice that− log2 Pj is a new random variable on S defined by the probability
mass function of the random variable x [30]. Also note that in Eq. (3.2) the
base of the logarithm is 2 and not 10 as in Eq. (3.1). Of course it is easy
to switch between different base numbers by multiplying with a constant
related to the bases. Change from base a to base b is done by multiplying by
logb a. Today the base 2 logarithm is preferred as it relates to digital binary
information. Then the information is measured in bit. If we use the base 10
logarithm in Eq. (3.2), the unit is called the hartley.

Another intuitive idea is that the information content of independent
messages should be additive. It is easy to show that this is achieved with the
formulation in Eq. (3.2). If we have observed the independent random events
A and B with joint probability P (A ∩ B) = P (A|B)P (B) = P (A)P (B), we
can denote the information provided by observing this joint event as I(A,B):

I(A,B) = log2

1

P (A)P (B)
= log2

1

P (A)
+ log2

1

P (B)
= I(A) + I(B) (3.3)

where I(A) is the information provided by observing event A and I(B) is the
information provided by observing event B. So the product rule of logarithms
ensures that the information of independent events is additive.

If we have perfect knowledge of a message in advance, we say that the
information content of the message is zero. This is easily seen as this would
correspond to Pj = 1 in Eq. (3.2), which would give Ij = log2 1 = 0. An
unexpected message however will have high information content.

We started by defining Hartley’s uncertainty measure, or "amount of
information", for a set of n possible symbols, S in Eq. (3.1) and will return
to uncertainty measures in the next section. Using the probabilistic reasoning
described here, Shannon defined the uncertainty of the random variable x.
He called his uncertainty measure entropy.

3.3 Shannon Entropy
Shannon wanted a measure to describe how uncertain we are of an out-
come. If we have n possible outcomes with the probability of each outcome

74 CHAPTER 3. INFORMATION THEORETICAL LEARNING

given by P1, P2, . . . , Pn, denote the uncertainty measure of the outcome as
H(P1, P2, . . . , Pn). Shannon required that H should satisfy the following
properties [35]:

1. H should be continuous in the Pj. This means that a small change
in the probability distribution only results in a small change in the
entropy.

2. If all the Pj are equal, Pi = 1
n
, then H should be a monotonic increas-

ing function of n. With equally likely events there is more choice, or
uncertainty, when there are more possible events.

3. If a choice can be broken down into two successive choices, the original
H should be the sum of the individual values of H weighted by the
probability of that choice.

From these assumptions it is possible to specify an uncertainty measure.

Theorem 3. Shannon entropy. The only H satisfying the three above as-
sumptions is of the form

HS = −C
n∑
j=1

Pj logPj (3.4)

where is C a positive constant and the subscript S is to emphasize that it is
the Shannon entropy.

This was proven in [35]. If the probabilities are associated with the out-
comes of the random variable x, we will use the more convenient notation
HS(x). The constant C merely specifies which unit of measure we use. The
common choice is bits, and the Shannon entropy for x can then be written
as

HS(x) = −
n∑
j=1

Pj log2 Pj

with the probabilities defined as before. We notice that in the sum, the
probabilities are multiplied by the logarithm of the probabilities. This is per
definition an expectation as it a function of the random variable multiplied
by the probability mass function for that variable. So

HS(x) = −
n∑
j=1

Pj log2 Pj = E {log2 f(x)} (3.5)

where f(x) is the probability mass function of the random variable x.

3.4. RENYI ENTROPY 75

Shannon also extended his work in [35] to consider cases where messages
are continuous (random) variables. Given a continuous distribution function,
f(x), we define the entropy in a similar manner to Eq. (3.5):

HS(x) = −
∫ ∞
−∞

f(x) log2 [f(x)] dx

We see that this also can be expressed as an expectation:

HS(x) = −
∫ ∞
−∞

f(x) log2 [f(x)] dx = −E {log2 f(x)} (3.6)

Let x be a l× 1 continuous random vector with probability density function
f(x), the expression for Shannon entropy becomes

HS(x) = −
∫ ∞
−∞

f(x) log2 [f(x)] dx = −E {log2 f(x)} (3.7)

The entropy defined for continuous distributions has most of the properties
it has the discrete case. One important exception is that in the continuous
case, the entropy measure is relative to the coordinate system. This means
that the entropy of a continuous distribution can be negative. In the discrete
case the entropy measures in an absolute way the randomness of a stochastic
variable and is always non negative [35].

3.4 Renyi Entropy
This section is based on [30, Chapter 2]. While the Shannon entropy occupies
a central role in information theory, it is not the only meaningful uncertainty
measure. Renyi entropy was developed by the Hungarian mathematician
Alfred Renyi as a generalization of Shannon entropy [32]. We notice that the
Shannon entropy in Eq. (3.5) can be written as

HS(x) =
n∑
j=1

PjIj (3.8)

with the information Ij defined in Eq. (3.2). This formulation uses a linear
averaging operation. In the theory of means, any monotonic function g(·)
with an inverse g−1(·) can be used to define a general mean. The general
mean associated with g(·) for the information can then be defined as

H(x) = g−1

(
n∑
j=1

Pjg(Ij)

)
(3.9)

76 CHAPTER 3. INFORMATION THEORETICAL LEARNING

where g(·) is a Kolmogorov-Nagumo invertible function [30], and is the so
called quasi-linear mean. Renyi proved that when one requires that the
postulate of additivity for independent events should hold, it restricts g(·) to
two possible classes. One is, expressed in terms of the variable r, g(r) = Cr
where C is a constant. This reduces the quasi-linear mean to the ordinary
mean and yields the Shannon entropy [30]. The other functional class, written
as a function of the variable r, is

g(r) = C 2(1−α)r (3.10)

which is used to define the Renyi entropy of order α for a discrete random
variable x with probabilities Pj as

Hα(x) =
1

1− α
log2

[
n∑
j=1

Pα
j

]
(3.11)

with α ≥ 0 and α 6= 1. Compared to the Shannon entropy in Eq. (3.5)
we notice that the logarithm is now placed outside the summation. So
the probability mass function (pmf) weights the α − 1 power of the pmf
as
∑
Pα
j =

∑
PjP

α−1
j , and the logarithm is taken of this expression. Us-

ing this it is easy to see that we also can express Eq. (3.11) in terms of an
expectation

Hα(x) =
1

1− α
log2

[
n∑
j=1

Pα
j

]
=

1

1− α
log2 E

{
fα−1(x)

}
(3.12)

where f(x) is the pmf of x, which is defined by the probabilities P1, . . . , Pn.
The α parameter provides more flexibility as it allows several measures

of uncertainty within a given distribution. Considering Hα(x) as a function
of α is called the spectrum of Renyi information and plotting it is useful in
statistical inference [37].

Various axiomatizations of Renyi and Shannon entropy exists, in [30] a
comparison between axioms for both types are presented. As mentioned,
Renyi entropy is a generalization of Shannon entropy and it can be shown
by using the l’Hôpital rule that limα→1Hα(x) = HS(x) and thus both can be
included in a single unifying axiomatic [30].

In [30] the argument of the logarithm is called the α information potential
and denoted as

Vα(x) =
n∑
j=1

Pα
j = E

{
fα−1(x)

}
(3.13)

3.5. ENTROPY IN PHYSICS 77

and Eq. (3.12) can be rewritten as

Hα(x) =
1

1− α
log2 [Vα(x)] (3.14)

As for Shannon entropy, Renyi entropy can be defined for continuous
random vectors in the same way as in Eq. (3.7). The Renyi entropy of order
α is then

Hα(x) =
1

1− α
log2

[∫ ∞
−∞

fα(x)dx

]
=

1

1− α
log2 E

{
fα−1(x)

}
(3.15)

and also
Hα(x) =

1

1− α
log2 [Vα(x)] (3.16)

where Vα(x) = log2 E {fα−1(x)} is the information potential.
From an engineering perspective, one must often estimate entropy from

data, and one should consider this when choosing an uncertainty measure for
entropy-based algorithms. In this respect, Renyi entropy represents a signifi-
cant improvement over Shannon entropy as it is no longer necessary to use a
parametric estimator for the pdf. This is a result of the logarithm appearing
outside the sum or integral which allows the use of kernel density estimation
(Parzen windowing) because the estimate for the information potential Vα
can be expressed in terms of pairwise interactions between the data points.

While this is possible for all α 6= 1, it is perhaps best illustrated when esti-
mating Renyi’s quadratic entropy,H2(x) = − log2

[∫
f 2(x)dx

]
= − log2 E {f(x)}.

Then the estimated entropy can be expressed in terms of a double sum of a
kernel function of pairs of data points. ITL is based on optimizing expres-
sions related to Renyi’s quadratic entropy. This is done in Section 4.2 is the
foundation2 of the clustering method presented in Chapter 4.

3.5 Entropy in Physics

In physics, the concept of entropy has several interpretations, one is as a
descriptor of the disorder of a physical system in thermodynamics [13]. The
form of Eq. (3.4) is the entropy as defined in certain formulations of statistical
mechanics [35]. To provide some intuition for what entropy is, we will briefly
look at how it is defined in physics.

2The spectral clustering method presented there only works when using the Renyi
entropy of order α = 2.

78 CHAPTER 3. INFORMATION THEORETICAL LEARNING

Figure 3.1: Speed of molecules in a gas.

The microstate of a system is for each particle to specify the position
and velocity. Generally there are far too many particles to specify the mi-
crostate, and one instead specifies the system by its macroscopic properties
such as temperature, number of particles, pressure and so on. These prop-
erties specifies a system’s macrostate. However, many different microstates
can correspond to the same macrostate [13]. In statistical thermodynamics,
entropy is used to say something about the uncertainty which remains about
the state of a system once all the macroscopic properties have been specified
[17].

Let us consider a simple example with two identical rooms filled with the
exact same number of gas molecules, where the positions of the molecules
relative to each other and to the room are known and identical. We also
know the direction of the movement for each particle, but not the speed.

Figure 3.1 is based on Figure 15-19 in [13] and is meant to illustrate the
distribution of molecule speeds in the gas of each room. The rightmost plot
shows an orderly distribution, in which all molecules have nearly the same
speed. The leftmost plot shows a gas with a more disorderly distribution of

3.6. DIVERGENCE 79

speeds, hence this system has higher entropy (of course assuming the systems
are equal in all other respects).

As mentioned, entropy is an uncertainty measure for the system. An
intuition for this is that if we did not know which speed belonged to which
molecule, we would get a better estimate of the position and velocity of the
molecules after they move from their original positions if the speeds were
distributed according to the rightmost plot.

Entropy in the information theoretic setting is similar in that it describes
the disorder, or uncertainty, of a random variable. If the plots in Fig. 3.1
were probability density functions for random variables, the conclusion would
be the same as for physical entropy, the random variable belonging to the
leftmost plot has higher entropy.

3.6 Divergence
Divergence is a measure of statistical similarity and can be thought of as
a generalization of algebraic distance measures to probability distribution
spaces [8]. While always non-negative, divergences generally do not satisfy
the conditions for a metric and hence can not be called distance functions
[30].

We start by defining the well known Kullback-Leibler divergence (KLD)
which also illustrates the difference between divergences and distances. The
Kullback-Leibler divergence DKL between the two multivariate probability
density functions f(x) and q(x) is defined as:

DKL(f ||q) =

∫ ∞
−∞

f(x) log

[
f(x)

q(x)

]
dx = Ef

{
log

[
f(x)

q(x)

]}
(3.17)

where Ef is the expectation with respect to the distribution f(x). We see
from Eq. (3.17) that it does not satisfy the symmetry property of metrics as
DKL(f ||q) differs from DKL(q||f) in general. Nor does KLD obey the triangle
inequality.

While these properties may be useful in some applications, one often
wants to work with symmetric dissimilarity measures [30]. It is possible to
define a symmetric divergence measure known as Jeffrey divergence in terms
of the Kullback-Leibler divergence:

DJ(f ||q) =

√
1

2
(DKL(f ||q))2 +

1

2
(DKL(q||f))2 (3.18)

with DKL defined in Eq. (3.17).

80 CHAPTER 3. INFORMATION THEORETICAL LEARNING

Another symmetric measure is the Cauchy-Schwarz (CS) divergence, DCS

where

DCS(f ||q) = − log

∫
f(x)q(x)dx√∫

f(x)2dx
∫
q(x)2dx

(3.19)

where f(x) and q(x) are pdfs as before and the limits of the integral are −∞
and∞. Note that it is possible to rewrite Eq. (3.19) and Eq. (3.17) by using
the quotient property of logarithms. For the CS divergence this gives us the
equivalent expression

DCS(f ||q) = −1

2
log

(∫
f(x)q(x)dx

)2∫
f(x)2dx

∫
q(x)2dx

(3.20)

It is easy to see from Eq. (3.19) that it is symmetric, DCS(f ||q) = DCS(q||f),
and hence one can use the notation DCS(f, q) to indicate the symmetry.

Whereas the form of the KL divergence resembles Shannon entropy, CS
divergence is associated with the Renyi entropy of order α = 2. This means
that the estimated CS divergence can be expressed in terms of a double sum
by using KDE in the same way as Renyi’s quadratic entropy.

More divergence measures and their properties can be found in [30].

Chapter 4

Kernel Entropy Component
Analysis

4.1 Introduction

A new method for data transformation and dimensionality reduction based
on preserving the estimated Renyi entropy of order α = 2 in the dataset was
presented in [18]. The reason for using this particular entropy estimate is
that when using kernel density estimation (KDE) it can be expressed in terms
of the kernel matrix. Then a transformation that preserves the estimated
entropy can be found by using the eigenvectors of this matrix. This makes
it a spectral clustering method. The method was named Kernel Entropy
Component Analysis (KECA).

While the starting point of the data transformation is different from the
one for Kernel Principal Component (KPCA) in Section 2.5.3, the resulting
optimization problem can be seen as projecting onto a subset of unentered
Kernel Principal Component (KPCA) axes if the kernel used satisfies The-
orem 1 (Mercer’s Theorem). The resulting data transformation may be the
same or strikingly different, depending on the data and the parameters cho-
sen. It will always be different from regular, centered, KPCA.

A clustering method based on KECA, similar to clustering for KPCA, was
also proposed. The clustering method seeks to exploit the distinct angular
structure produced by the KECA transformation [18].

4.2 Estimating Renyi’s Quadratic Entropy

As seen in Chapter 3, there is more than one way to define entropy. Kernel
Entropy Component Analysis (KECA) is based on preserving the estimated

81

82 CHAPTER 4. KERNEL ENTROPY COMPONENT ANALYSIS

Renyi quadratic entropy, H2. Given the l× 1 stochastic vector x with prob-
ability density function f(x), using equation Eq. (3.15) with α = 2 gives the
expression

H2(f) = − log

[∫ ∞
−∞

f 2(x)dx

]
= − log [V2(x)] (4.1)

where V2(x) is the information potential of the the probability density func-
tion f(x). The subscript denoting the base of the logarithm as 2 has been
skipped for notational convenience and to avoid confusion with the subscript
on the entropy. The information potential can also be formulated as

V2(x) = Ef {f(x)} (4.2)

where Ef {·} is the expectation with respect to the density f(x). Because it
can be written as an expectation, the information potential can be estimated
as the mean of the density. We need to estimate the density to obtain an
estimate of the information potential. Once we have this estimate, the esti-
mate of the entropy is found by simply taking the logarithm and multiplying
by −1 as we see from Eq. (4.1). Hence we will focus on the information
potential.

We may use Kernel Density Estimation, also called Parzen Windowing,
described in Section 2.4.1 where Eq. (2.50) gives the pdf estimate for x given
the data X = {x1,x2, ...,xn}

f̂(x) =
1

n

n∑
j=1

K(x,xj) (4.3)

where K(x,xj) is the kernel centered at xj, also called the Parzen window.
In order for f̂(x) to be a valid density estimate, the kernel K(x, ·) must be
a density function itself. We can now estimate the information potential as

V̂2(x) = Êf {f(x)} =
1

n

n∑
i=1

f̂(xi) =
1

n

n∑
i=1

1

n

n∑
j=1

K(xi,xj) (4.4)

It was pointed out in [14] that Eq. (4.4) can be formulated in terms of the
elements of n× n kernel matrix K:

V̂2(x) =
1

n2

n∑
i=1

n∑
j=1

K(xi,xj) =
1

n2
1TK1 (4.5)

where K(xi,xj) is element (i, j) of the kernel matrix (Ki,j), and 1 is the n×1
one-vector with all elements equal to one.

4.3. THE KECA TRANSFORMATION 83

We recall from Section 2.5.3 that because K is symmetric, it may be
eigendecomposed as K = EΛET , where Λ is a diagonal matrix containing
the eigenvalues λ1, . . . , λn of K and E is a matrix with the corresponding
eigenvectors e1, . . . , en as columns.

This means that we can rewrite Eq. (4.4) in terms of the eigenvalues and
eigenvectors

V̂2(x) =
1

n2

n∑
i=1

(√
λie

T
i 1
)2

(4.6)

Equation (4.6) shows that the Renyi entropy estimator is composed of pro-
jection onto all the uncentered kernel PCA axes, provided that the kernel
function used for Parzen Windowing is positive semi definite [18]. Notice
that only if λi 6= 0 and eTi 1 6= 0 does the projection onto the i’th principal
axis contribute to the overall entropy estimate.

We will now use the expression in Eq. (4.6) to define a transformation
onto a subset of these axes. As seen from Eq. (4.1), preserving the estimated
entropy is equivalent to preserving the estimated information potential.

If we assume that the kernel used for Parzen windowing is positive semi
definite (psd), we can interpret the Renyi entropy estimator in terms of pro-
jections x ∈ X 7→ φ(x) ∈ H in a Reproducing Kernel Hilbert Space H as
defined in Section 2.5.2.

4.3 The KECA Transformation
Assume that we are given the dataset X = {x1,x2, ...,xn} of l×1 data vectors.
Now we want to define a transformation, xj ∈ Rl 7→ yj ∈ Rs , j = 1, . . . , n,
obtained by projecting onto a subspace spanned by the s uncentered KPCA
axes that contributes the most to the estimated quadratic Renyi entropy of
the data [18].

If we organize the transformed dataset Y = {y1,y2, . . . ,yn} into a matrix

Y =

 yT1
...

yTn


where yj , j = 1, . . . , n are s × 1 vectors. A projection onto s kernel PCA
axes can be expressed as

Y = Λ
1
2
s ET

s (4.7)

where Λs is a s×s diagonal matrix with eigenvalues and Es is a n×s matrix
with the s corresponding eigenvectors as columns. In centered kernel PCA,

84 CHAPTER 4. KERNEL ENTROPY COMPONENT ANALYSIS

these are the s largest eigenvalues, as this will be the axes that contribute the
most to the covariance in the Reproducing Kernel Hilbert Space (RKHS).
However, here we wish to preserve the axes that contribute the most to the
estimated information potential in the input space, and hence the estimated
entropy.

Let us denote the estimated information potential based on s KPCA axes
as V̂ ∗2 (x). This information potential is then expressed by [18]:

V̂ ∗2 (x) =
1

n2
1TEsΛsE

T
s 1 =

1

n2
1TKeca1 (4.8)

with Keca = EsΛsE
T
s and 1 is a n× 1 column vector with all elements equal

to one. We now find which KPCA axes we want to project the data onto
as the axes that minimize the difference in estimated quadratic information
potential when s < n

Y = Λ
1
2
s ET

s : min
λ1,e1,...,λn,en

V̂2(x)− V̂ ∗2 (x) (4.9)

where V̂2(x) is defined in Eq. (4.5). By inserting this, and the expression in
Eq. (4.8) we get

Y = Λ
1
2
s ET

s : min
λ1,e1,...,λn,en

1TK1− 1TKeca1 (4.10)

We now use Eq. (4.6) to write the minimization problem in terms of a sum

Y = Λ
1
2
s ET

s : min
λ1,e1,...,λn,en

1

n2

n∑
i=1

(√
λie

T
i 1
)2
− 1

n2

s∑
i=1

(√
λie

T
i 1
)2

(4.11)

It is easy to see that the minimum of Eq. (4.11) is given by

min
λ1,e1,...,λn,en

1

n2
1T (K−Keca) 1 =

1

n2

n∑
i=s+1

(√
λie

T
i 1
)2

(4.12)

where(√
λje

T
j 1
)2
≥
(√

λie
T
i 1
)2
∀ j = 1, . . . , s , i = s+ 1, . . . , n (4.13)

Then we can define the KECA transform for the dataset X:

• Construct the kernel matrix K with elements Ki,j = K(xi,xj) , i, j =
1, 2 . . . , n where K(·, ·) is a kernel function satisfying the requirements
of kernel density estimation (K must itself be a density function).

4.4. KECA SPECTRAL CLUSTERING 85

• Perform the eigendecomposition K = EΛET .

• Order the eigenvalue-eigenvector pairs such that ψ1 ≥ ψ2 ≥ . . . ≥ ψn,
where ψj =

(√
λje

T
j 1
)2
, j = 1, . . . n.

• Define Λs as the s×smatrix with the s first eigenvalues on the diagonal
and Es as the n × s matrix with the corresponding eigenvectors as
columns.

• The transformed dataset Y = {y1,y2, . . . ,yn} is then given as the
columns of the matrix Y = Λ

1
2
s ET

s .

Note that the above procedure is valid even if the kernel used for density
estimation does not satisfy Theorem 1, but then the intuition on projecting
onto a subset of uncentered KPCA axes no longer applies.

4.4 KECA Spectral Clustering
Kernel ECA can be used for a spectral clustering method in the same way
as KPCA. The dataset is projected onto a user defined number of axes,
where the axes are the ones minimizing the expression in Eq. (4.11). These
are found as described above. Then a simple clustering algorithm, often k-
means, is used on the transformed dataset. It was pointed out in [18] that the
transformed dataset tends to have a distinct angular structure "where clusters
are distributed more or less in different angular directions with respect to the
origin of the kernel feature space". It was therefore suggested that one takes
advantage of this by clustering based on a cost function capable of capturing
this angular structure.

In [19] it was shown that the Cauchy-Schwarz (CS) divergence in Eq.
(3.19) corresponds to a measure of the cosine of the angle between the mean
vectors in the kernel feature space. The CS divergence between the pdf of
the ith cluster fi(x) and the overall data pdf f(x) is given by DCS(fi, f) =
− log [VCS(fi, f)] where

VCS(fi, f) =

∫
fi(x)f(x)dx√∫

fi(x)2dx
∫
f(x)2dx

(4.14)

Let us assume that the ni data points xl ∈ Xi are generated from fi(x)
corresponding to the cluster Ci. This is a subset of the n data points xt ∈ X
generated from the overall data pdf f(x). It was shown in [19] that estimating
VCS(fi, f) by Parzen windowing gives

V̂CS(fi, f) = cos∠(mi,m) (4.15)

86 CHAPTER 4. KERNEL ENTROPY COMPONENT ANALYSIS

Where mi = 1
ni

∑
xl∈Xi φ(xl) is mean vector of cluster Ci in the kernel feature

space, and m = 1
n

∑
xt∈X φ(xt) is overall kernel space mean of the data. The

Cauchy-Schwarz divergence is basically a measure of of the cosine of the angle
between these mean vectors [18].

A reasonable choice for an angle based clustering cost function can then
be defined in terms of the kernel feature space dataset as

J(C1, C2, . . . , Ck) =
k∑
i=1

cos∠(mi,m) (4.16)

It was shown theoretically in [19] that this corresponds to the kernel k-means
clustering objective using an angular distance measure. The kernel k-means
algorithm uses kernel functions are used to calculate distances in the RKHS,
rather than calculating distances in the input space.

We do the optimization of this angle-based cost function with respect to
cluster allocation using the KECA transformed data yj to represent the fea-
ture space dataset φ(xj) , j = 1, . . . , n because of its angular structure. Then
the optimization procedure is then simply the "regular" k-means algorithm
using angular distances in the KECA space [18]. K-means is guaranteed to
converge to a local optimum.

In [27] it was suggested that one projects the data onto as many axes as
the number of clusters one wants in the result when using spectral clustering.
This implies that when performing the transformation to the KECA space,
xj ∈ Rl 7→ yj ∈ Rs , j = 1, . . . , n, s is selected to be equal to the number
of clusters. This is motivated by the ideal case when the clusters are easily
separable, much like the connected components of a graph discussed in Section
2.6.2. While the kernel matrix defined here would be characterized as fully
connected according to the graph theory presented in Section 2.6.2, the kernel
size can be so small that the matrix is essentially block diagonal. Then some
of the eigenvectors of K will be similar to the indicator vectors for a particular
cluster, as defined for connected components in Theorem 2.

The clustering method can then be summarized in the following steps:

1. Obtain Y = {y1, . . . ,yn} from the KECA transform as the columns of
Y = Λ

1
2
s ET

s .

2. Initialize means mi , i = 1, . . . , k for the k-means algorithm.

3. For all t: xt → Ci : maxi cos∠(yt,mt).

4. Update mean vectors.

4.4. KECA SPECTRAL CLUSTERING 87

5. Repeat steps 3 and 4 until convergence.

As mentioned in Section 2.2, the k-means clustering result depends on
how the cluster representatives are initialized. A method for initializing the
centers that exploited the angular structure and produced good results was
presented in [18]. The means in step 2 are initialized as m1 = yt and m2 = yt′
where the transformed data points yt,yt′ have the property

cos∠(yt,yt′) = min
j,j′

cos∠(yj,yj′) , j = 1, . . . , n (4.17)

Furthermore, mi , i > 2 is initialized as yt′′ such that it minimizes
∑i−1

j=1 cos∠(mj,yt′′).
We now use the KECA clustering method on a dataset containing two

concentric rings and a points from multinormal density linearly separable
from the two rings.

(a) Dataset. (b) Image plot of kernel matrix.

Figure 4.1: Two rings and a dense cluster.

The dataset without labels is shown in Fig. 4.1a. The dataset consists of
110 points in the inner ring, 330 in the outer and the dense cluster outside
consists of 60 data points. The kernel matrix is calculated using a Gaussian
kernel with as defined in Eq. (2.93) with bandwidth parameter h = 3.7. It
is plotted as an image in Fig. 4.1b. Each element is between 0 and 1 and
the colour red indicates a high value. As seen from Eq. (2.93), a high value
means that the points are close in Euclidean distance.

Because each of the rings and the dense cluster are generated separately
before being combined into the overall dataset seen in Fig. 4.1a, we know
which data points belong to which cluster. The first 110 points belongs to
the inner ring, the next 330 points the outer ring and the last 60 points
stems from the dense cluster. Then we also know that the top 110 × 110
submatrix in the upper left corner of Fig. 4.1b contains the kernel affinity

88 CHAPTER 4. KERNEL ENTROPY COMPONENT ANALYSIS

measures between all pairs of points in the inner circle. Likewise, the 330×330
submatrix in middle corresponds to the outer circle and the 60 × 60 square
in the bottom right corner corresponds to the dense cluster.

The structure seen in the submatrices corresponding to the two rings are
caused by the way the rings are generated. Each ring is generated as a circle
with different multivariate normal noise. This means that without the noise,
data point i in one of the circles would have data point i − 1 and i + 1 as
its two closest neighbours. This might not be true after adding the noise.
However, since the noise is independent and identically multivariate normal
distributed with the zero vector as mean, we would expect this to be true
for many points. This explains why the elements along the diagonal are
dominant. The large elements off the diagonal is from the circle overlapping,
that is, element 1 is neighbours with element 2 and element 110.

We notice that the elements in the bottom right corner of Fig. 4.1b corre-
sponding to the dense cluster has no apparent structure, as would be expected
from independent noise samples.

Figure 4.2: Eigenvectors.

Figure 4.2 plots the eigenvectors corresponding to the 12 largest eigenval-
ues of the kernel matrix in Fig. 4.1b. The eigenvectors plotted in red are the
ones used by the KECA data transform according to Eq. (4.13). We notice

4.4. KECA SPECTRAL CLUSTERING 89

that the transformation has selected the eigenvectors corresponding to the
largest, second and fifth largest eigenvalues.

Each element in the eigenvectors correspond to a data point in the in-
put space. The order is the same as for the original data points, so ei(j)
corresponds to data point j. The elements of the eigenvector in the top left
corner are approximately zero for the the two rings, and have a fairly con-
stant positive value for the dense cluster. Hence it can be seen as a sort of
indicator vector, where a large absolute1 value in the vector indicates that
the corresponding data point belongs to a particular cluster, in this case the
dense cluster.

The first 110 elements of eigenvector corresponding to the second largest
eigenvalue λ = 22.405 are negative, while the rest are close to zero. Hence
this is an indicator vector for the inner ring. Likewise, the third and fourth
eigenvectors are non-zero only for the inner ring, but these elements oscillates
around zero. Then

(√
λ3e

T
3 1
)2 ≈ (√λ4eT4 1

)2 ≈ 0 and hence their contribu-
tion to the entropy estimate will be negligible, despite the large eigenvalues.
Thus the last of the three eigenvector selected by kernel ECA is the one cor-
responding to the fifth larges eigenvalue. While the structure is not as clear
as for the first two eigenvectors, we see that the eigenvector is positive only
for the elements corresponding to the outer ring.

Figure 4.3 shows the result of KECA clustering method using the cosine
distance for the k-means algorithm. The data KECA transform was based
on the eigenvectors plotted in red in Fig. 4.2. The clustering method has
managed to separate the two circles and the dense cluster in the upper right
corner. There are no errors in the clustering compared to the true labels.

The data transformation based on the KECA is shown in result in Fig.
4.4a. We notice the distinct angular structure in the transformed data, and
that the cosine distance appears to be a valid distance measure for the trans-
formed data. This is as expected when we look at Fig. 4.2 since each of the
eigenvectors used indicate a different cluster.

Figure 4.4b is the transformation based on using the eigenvectors corre-
sponding to the three larges eigenvalues, plotted in the top row of Fig. 4.2.
This is the result of using KPCA if one omits the centering. The outer ring is
mapped to the origin since non of the first three eigenvectors have non-zero
elements corresponding to this cluster. Using the third eigenvector instead
of the fifth causes the blue cluster to be spread out, since both e2 and e3

1The sign on the indicator vector is arbitrary; if ei is a solution to eigenvalue-eigenvector
problem Kei = λiei then so is −ei. The elements corresponding to the other clusters may
be non-zero, but as seen in Fig. 4.2, they will be small in magnitude compared to the
elements that indicate membership. One should keep this in mind if clustering based on
thresholding eigenvectors.

90 CHAPTER 4. KERNEL ENTROPY COMPONENT ANALYSIS

Figure 4.3: Clustering result.

have non-zero elements corresponding to the inner ring.
One can say that this transformation gives a two dimensional representa-

tion of the inner circle, a one dimensional representation of the dense cluster
and the outer circle has collapsed onto a single point. This is why there is no
distinct angular structure in this transformation, contrary to Fig. 4.4a where
each cluster is represented by a line (one dimension) that is orthogonal to
the other two. Thus the cosine distance measure is not a good choice for the
transformed dataset in (b), and the k-means algorithm is not able to sepa-
rate between the clusters using this distance measure. Using the standard
squared Euclidean distance however will give an error free clustering result2.

The transformation using standard, centered, kernel PCA is shown in
Fig. 4.4c. It has similar structure to (b), but the red class corresponding to
the outer circle is more spread out. Note that the scale of the axes for the
centered KPCA transform is much smaller than for the other two because of
the normalization of the eigenvectors as defined in Eq. (2.89). This has been

2For both distance measures the k-means algorithm was run 500 times with random
initialization and the result with fewest errors compared to the original labels was used.

4.4. KECA SPECTRAL CLUSTERING 91

(a) KECA.

(b) Uncentered KPCA.

(c) Centered KPCA.

Figure 4.4: Transformed data.

92 CHAPTER 4. KERNEL ENTROPY COMPONENT ANALYSIS

omitted for the uncentered KPCA transformation for easier comparison with
KECA, but the structure seen in (b) would be the same. The centered kernel
matrix has different eigenvectors than the uncentered ones shown in Fig. 4.2.
Note that the perspective of the plots in Fig. 4.4 are different to best show
the structure of each transformation.

(a) Kernel matrix.

(b) Eigenvectors.

Figure 4.5: Increasing bandwidth to h = 4.5.

Figure 4.5a shows the kernel matrix for the dataset in Fig. 4.1a using a
Gaussian kernel with larger bandwidth, h = 4.5. It does not appear signif-
icantly different from Fig. 4.1b where the bandwidth h = 3.7. The three
eigenvectors used by KECA are plotted in red Fig. 4.5b. While they look
very similar to the ones used by KECA in Fig. 4.2, they now correspond to
the three largest eigenvalues, which means that uncentered kernel PCA will
give the same clustering result as KECA.

Chapter 5

Novel Mean Shift Spectral
Clustering

5.1 Introduction

Spectral methods is considered to be the state of the art when it comes
to clustering, and they have been shown to produce good results in a wide
variety of situations [28]. A drawback is that such methods require the
eigendecomposition of the data affinity matrix, such as the kernel matrix for
Kernel Entropy Component Analysis (KECA) and Kernel Principal Compo-
nent Analysis (KPCA), and the Laplacian matrix for Laplacian eigenmaps.
This means that spectral methods are not viable for large datasets.

In [28], Ozertem et al. presented a clustering method that enables the
use of spectral methods for large datasets. The idea is to use a two-stage
clustering approach. First the mean shift algorithm was used to provide an
initial clustering. These clusters were referred to as partitions of the dataset.
Then an affinity matrix is constructed based on these partitions rather than
the full dataset. Spectral clustering is then performed based on this matrix.
This enables the use of spectral methods for large datasets, provided of course
that the number of partitions is sufficiently small. Ozertem suggested basing
the spectral clustering on the symmetric normalized Laplacian matrix in Eq.
(2.114). The method was called Mean Shift Spectral Clustering (MSSC).

This thesis is based on the idea of MSSC introduced in [28]. However,
the focus and method described here differs from the original article in some
aspects. In particular, KECA presented in Chapter 4 is introduced for the
first time into the framework of Mean Shift Spectral Clustering. This chapter
provides a brief summary of the work presented in [28] and how MSSC is
implemented for this thesis.

93

94 CHAPTER 5. NOVEL MEAN SHIFT SPECTRAL CLUSTERING

5.2 A Two-Stage Clustering Approach

The clustering methods presented in Chapter 2 each have advantages and
disadvantages. The k-means algorithm is fast and intuitive, but it might
converge to a local optimum as seen in Fig. 2.3. Expectation Maximization
(EM) presented in Section 2.3 should capture the linear structure of the data
better as it uses Gaussian mixture models, but is slower and might yield poor
results if the data deviates much from Gaussian distribution. Mean shift has
the distinct advantage that it does not require the number of clusters as
an input and is based on a non-parametric estimation of the data density
function, thus it is a nonlinear local clustering method. This makes the
mean shift relatively slow with a computationally complexity of O(n) per
sample for each iteration, where n is the number of data points. The number
of output clusters depends on the number of iterations, the kernel used for
density estimation and the bandwidth, also called the kernel size, parameter.

The spectral clustering methods have the distinct advantage over these
algorithms in that they are easily able to handle non-linear cluster structures.
As mentioned a major drawback is that they require the eigendecomposition
of a n × n affinity matrix, which makes them unsuitable when the number
of data points n is large. Finding the eigenvectors have computational com-
plexity of O(n2) per vector. The upper limit of n is determined by the system
used for the computations. In general it might help if the affinity matrix has
some particular structure, particularly if it is sparse. Nevertheless, spectral
clustering is best suited for smaller datasets.

In [28], a clustering method based on merging the clusters found by the
mean shift algorithm was suggested. These m clusters, or partitions, are
formed by the feature vectors that converge to the same mode. If one finds
a representative partitioning of the dataset where m < n, these partitions
can be used to form an m ×m affinity matrix for spectral clustering. This
gives a significant reduction in computational cost as the cost of calculating
an eigenvector for the partition affinity matrix would be O(m2) rather than
O(n2) for an affinity matrix based on the complete dataset. The spectral
clustering stage merges statistically insignificant partitions into significant
larger and more balanced clusters, which gives the clustering solution for the
complete dataset.

5.3 The First Stage

It was noted in the article that it does not matter how the initial cluster-
ing assignment is obtained. Other clustering procedures can be selected for

5.3. THE FIRST STAGE 95

partitioning the dataset, for instance due to computational complexity lim-
itations or special heuristic rules for the task at hand. Hence the first stage
could be performed by the k-means or EM algorithm presented in Chapter 2.
K-means would do well if the datasets can be accurately described by a set
of linearly separable spherical partitions, while the EM algorithm described
in Section 2.3 would give partitions in terms of a mixture of Gaussians which
would allow it to describe more advanced data structures.

The mean shift algorithm has some attractive properties that makes it
particularly well suited for partitioning. As seen in Section 2.4, the algorithm
is based on finding the modes in the probability distribution of the data. The
overall data distribution is estimated by kernel density estimation, which
is a non-parametric approach. Hence, no assumptions are made about the
dataset. This is a big advantage compared to k-means and the EM algorithm
as it can find partitions which are very different in shape and size. In addition
one does not need to specify the number of partitions m in advance.

The number of partitionsm should be so large that it accurately describes
the structure of the dataset, yet small enough that it is possible to find
the eigenvectors of the m × m affinity matrix. When using the mean shift
algorithm, the number of partitions will depend on the kernel selected and the
bandwidth used. Thus its performance depends heavily these choices. This
is also the case for spectral methods, in both cases which kernel function
to use is the most important parameter choice. There is no single unifying
theoretical criterion for choosing the kernel in the present literature. Often
Mercer kernels satisfying the conditions in Theorem 1, such as the widely
used Gaussian kernel, are chosen [28].

When the kernel function is selected, one must choose the kernel size.
There is a wide literature on how to select the kernel size and several al-
ternatives were presented in [28], including variable sized kernels based on
estimating the local covariance for the mode-finding vectors. This implies
using a full bandwidth matrix as seen in Eq. (2.51). However, there is a
clear trade-off between clustering performance and computational cost be-
tween variable and fixed kernel size. When variable sized kernels are used
in the article, the local mean or covariance for each mode-finding vector is
estimated based on some number of its nearest neighbours. For fixes size
kernels, Silverman’s rule of thumb was used:

h2 =
1

n
tr (ΣX) (4/((2n+ 1)n))2/(n+4) (5.1)

where tr (ΣX) is the trace of the covariance matrix for the dataset. Silver-
man’s rule is a suitable choice for unimodal data distribution, but might have
problems with accurately describing densities with a more complex form [28].

96 CHAPTER 5. NOVEL MEAN SHIFT SPECTRAL CLUSTERING

In all experiments the Gaussian kernel was used.

5.4 The Second Stage
In standard spectral clustering algorithms the affinity matrix is constructed
by evaluating pairwise similarities between samples [28]. For the kernel ma-
trix all pairwise similarities are used, while the affinity matrix used for Lapla-
cian eigenmaps depends on how the neighbourhoods are defined when con-
structing the adjacency matrix. For MSSC the affinity matrix is formed
based on partitions which usually consisting of more than one data point.
The affinity matrix could easily be constructed by using the modes found
by the mean shift algorithm as cluster representatives. However, the arti-
cle suggested using a metric based on the angle between the means of two
partitions.

This metric is in fact the Cauchy-Schwarz divergence between densities,
or rather its information potential VCS, as defined in Section 4.4. If the
partitions Ci and Cj have probability density functions (pdfs) fi(x) and fj(x),
Eq. (4.14) can be written as

VCS(fi, fj) =

∫
fi(x)fj(x)dx√∫

fi(x)2dx
∫
fj(x)2dx

(5.2)

Since we do not know the pdfs, they must be estimated from the dataset
X = {x1,x2, ...,xn}. The natural choice is kernel density estimation. Then
element i, j of the affinity matrix A is given by Aij = V̂CS(fi, fj) = VCS(f̂i, f̂j)
so

Aij =

∑
xk∈Ci

∑
xl∈Cj K(xk,xl)(∑

xk∈Ci

∑
xk∗∈Ci K(xk,xk∗)

)1/2 (∑
xl∈Cj

∑
xl∗∈Cj K(xl,xl∗)

)1/2
(5.3)

where K(·, ·) is a kernel function suitable for kernel density estimation as
defined in Section 2.4.1. It is possible to express Eq. (5.3) in terms of the
elements of kernel matrix K of the dataset associated with the kernel function
K(·, ·) :

Aij =

∑
xk∈Ci

∑
xl∈Cj Kk,l(∑

xk∈Ci

∑
xk∗∈Ci Kk,k∗

)1/2 (∑
xl∈Cj

∑
xl∗∈Cj Kl,l∗)

)1/2 (5.4)

The article noted that the kernel matrix K corresponding to the kernel used
in the mean shift algorithm was calculated in the first iteration, as can be

5.5. PROPOSED CHANGES IN MSSC 97

seen from for example Eq. (2.58). Hence it is possible to express Eq. (5.4) in
terms of K found by mean shift.

In [28] the final affinity matrix used was the normalized symmetric Lapla-
cian matrix Lsym defined in Eq. (2.114). Written in terms of A found by Eq.
(5.4) gives

Lsym = D−1/2 L D−1/2 = I−D−1/2 A D−1/2 (5.5)

where L is the unnormalized graph Laplacian, D is the degree matrix and
A is used as the weight matrix W corresponding to a fully connected graph
between partitions according to the definitions in Section 2.6.2. All matrices
are m×m.

The article notes that any standard spectral clustering method can be
used on the partition affinity matrix. However, while the MSSC method
described in [28] is based on the normalized Laplacian matrix, the final result
is not obtained using Laplacian eigenmaps as described in Section 2.6 or any
other spectral methods. Rather, an algorithm based on finding the connected
components of Lsym with complexity O(m4) was proposed. While it would
make the algorithm impractical for large affinity matrices, it was reported
to give good results when the matrices were small. Their experiments were
based on this mode merging.

5.5 Proposed Changes in MSSC
The mode merging algorithm presented in the article will not be used in this
thesis. This thesis will for the first time investigate truly two-stage spec-
tral clustering, in the sense that the second clustering step will be conducted
based on the eigenvectors of an affinity matrix. We propose to base the spec-
tral clustering on KECA and KPCA with the partition kernel matrix based
on the Cauchy-Schwarz divergence as defined in Eq. (5.4). From this matrix,
a transformation of the partitions is found and then clustered together by
using the k-means algorithm as suggested in [27] and [18].

Another important difference is how the challenge of finding a bandwidth
that accurately describes the dataset is handled. In [28] three different sug-
gestions are presented, one is using a fixed size kernel with a scalar bandwidth
parameter h found by using Silverman’s rule of thumb in Eq. (5.1). The two
other suggestions were variable sized kernels where the kernel size for each
mode finding vector based on estimating the mean or covariance of its k
nearest neighbours. This was multiplied by a global scaling factor optimized
using maximum likelihood. Their experiments compared fixed and variable
sized kernels. For both cases the same kernel size was used for the mean shift
algorithm and for constructing the affinity matrix.

98 CHAPTER 5. NOVEL MEAN SHIFT SPECTRAL CLUSTERING

In this thesis a fixed size kernel is used. The bandwidth matrix is chosen
to be proportional to the identity matrix as defined in Eq. (2.52) so the
bandwidth parameter is a scalar, h. However, here different bandwidths are
used for each stage of MSSC. The motivation for this is that the mean shift
algorithm should find a partition of the dataset and hence the kernel size
should be small to accurately capture the local structure of the data. In the
spectral stage these partitions should be merged, and to do this the kernel
sized used should then describe the dataset on a global scale.

Several of the results presented in this thesis seeks to characterize how
the performance of MSSC depends on these bandwidth parameters.

5.6 Parameters in Two-Stage Clustering

Using a combination of two clustering procedures will obviously increase the
number of parameters one has to select. This makes the process of trying
different parameters much harder as the number of possible combinations is
quite large. In Chapter 2, the parameters for each of the clustering procedures
are somewhat idealized. The focus is usually on one or two key parameters
or options. For instance, for the k-means algorithm the key parameter is the
number of clusters k, for mean shift the focus is on the kernel function, the
bandwidth parameter and the option to use blurring. In Laplacian Eigen-
maps, the neighbourhood definition and the edge weights are key properties
(Section 2.6.2).

All of these clustering procedures have other parameters and options that
could be or even needs to be specified. In Section 2.2, it was shown that the
k-means algorithm can be derived from cost function optimization when the
cost function is the sum of the squared Euclidean distance. However, the
algorithm works for other distance measures and the intuition of assigning
a point to the cluster that is closest (in that distance) is preserved. As
discussed in Section 4.4, the cosine distance measure seems a better choice
for the the Kernel Entropy Component Analysis (KECA) clustering method.

Also, as mentioned the k-means algorithm might converge to local minima
of the cost function in Eq. (2.8) depending on how the cluster centers were
initialized. One way of making the algorithm more robust is running the
algorithm multiple times and selecting the best result. This might give an
unrealistic picture of what we can expect of k-means when characterizing the
algorithm and therefore examples of local minima convergence was shown
and discussed, for instance in Fig. 2.3. However, when characterizing the
two-stage clustering approach one should try to eliminate this weakness as
it might randomly cause a worse result. This will make it harder to compare

5.6. PARAMETERS IN TWO-STAGE CLUSTERING 99

parameter choices as well as comparing the overall clustering procedure to
other methods.

For illustrative purposes, if we know the real labels of the dataset, one
can run the algorithm several times and choose the best result. For example,
if 25% of the possible combinations for selecting intial points leads to subop-
timal results, independently selecting a new set of intial points and rerunning
the algorithm five times and using the best result will make the probability
of a suboptimal result less than 0.1%. In this thesis, when k-means is used
as part of spectral clustering in the second step and the real data labels are
known, the algorithm is run several times with different initializations and
the best result is used. When the labels are not known, it is possible to use
the cost expressed in Eq. (2.3) to choose the best result.

While the mode-finding vectors in the mean shift algorithm will converge
to the same point for vectors in the same cluster for infinitely many iterations,
one obviously needs to limit the number of iterations in some way. This
leads to more parameters and options. The mean-shift code developed in
this thesis for characterizing the Mean Shift Spectral Clustering approach
has a user selected number of iterations and combines this with "adaptive
thresholding" which seeks to group points together even when the mode-
finding vectors have not fully converged.

For Laplacian eigenmaps, it was mentioned in Section 2.6 that there are
three different versions of the Laplacian matrix one can use. When also con-
sidering the different ways of defining neighbours and edge weights seen in
Section 2.6.1, there are a lot of parameter combinations to be tried, each
of which can significantly influence the result. Therefore the spectral meth-
ods focused on in this thesis will be Kernel Principal Component Analysis
(KPCA) and KECA. Here primary parameter choice is which kernel to use.
For the two-stage approach, KPCA always uses the centered kernel matrix.

These examples are meant to illustrate the multitude of options a two-
stage clustering presents. While much work has been done in this thesis
to make these easily changeable in the code developed, the results will be
based on varying only a few of these. We assume that the number of output
clusters is known as this helps better characterize the method. Another
common convention is to also set the number eigenvectors to use in KPCA
or KECA, which gives the number of dimensions of the transformed dataset,
equal to the number of input classes which must then be assumed to be
known in advance. The reason for this is discussed in Section 4.4.

100 CHAPTER 5. NOVEL MEAN SHIFT SPECTRAL CLUSTERING

Chapter 6

Results

6.1 Examples to Illustrate MSSC

This section shows the clustering results using Novel Mean Shift Spectral
Clustering (MSSC) used on three datasets, one well known pattern recogni-
tion benchmark in Section 6.1.1, one black and white image in Section 6.1.2
and a toy data example in Section 6.1.3. These datasets will be used to
illustrate and discuss some important aspects of MSSC.

6.1.1 The Iris Dataset

The Iris dataset was first used by Fisher in [10]. The dataset has become a
well known benchmark for machine learning and it can be found in the UCI
repository [11]. The dataset consists of 150 measurements of sepal and petal
width and length of three different types of the Iris plant (Iris setosa, Iris
virginica and Iris versicolor). One of the classes is linearly separable from
the other two [11]. This dataset will be used to illustrate some of the aspects
of two-stage clustering.

Figure 6.1 shows the resulting number of clusters found by the mean shift
algorithm in the Iris dataset, plotted as a function of the bandwidth (kernel
size) parameter h. The kernel used was the Gaussian, which we know from
Eq. (2.93) can be written as K(xi,xj) = exp

(
−1

2

∣∣∣∣xi−xj
h

∣∣∣∣2). The number
of mean shift iterations was kept constant at 100.

The blue line in Fig. 6.1 shows the total number of clusters while the
dashed red line shows how many of these are single point clusters (outliers).
For the smallest bandwidth h = 0.01 only a few points have been clustered
together by the mean shift algorithm. Then as the bandwidth increases the
number of clusters decreases and for h = 0.35 the dataset is reduced to two

101

102 CHAPTER 6. RESULTS

Figure 6.1: Number of clusters for different mean shift bandwidths.

clusters (not shown in the plot). We see that when the bandwidth is between
h = 0.10 and h = 0.20 the curves showing the number of single point clusters
and the total number of clusters seem to have the same shape. This indicates
that the reduction of the total number of clusters is caused by outliers being
merged with existing clusters.

The sudden variation in the number of clusters between h = 0.20 and
h = 0.30 has to do with the number of mean shift iterations. When the
kernel size increases modes are merged together, but the convergence is slow
due to the mode finding vectors having to pass through regions with high
density. This will be discussed in more detail later.

To try to predict such effects one would have to study the geometry of the
dataset. A sudden increase in the number of clusters can be an indication
that the kernel size is so large that the mode finding vectors are significantly
influenced by the global structure of the data. When using mean shift in a
two-stage clustering approach one wants the mean shift to characterize the
local structure of the data, before using a spectral method to find the final
clusters. In this setting, the number of clusters found by mean shift should

6.1. EXAMPLES TO ILLUSTRATE MSSC 103

be small enough to efficiently use spectral methods, but not so small that
it approaches the final number of clusters. The clusters found in the first
step should capture the local structure of the data. A sudden increase in
the cluster number as seen in figure Fig. 6.1 might be an indication that
the bandwidth is becoming so large that the mode-finding vectors are signif-
icantly influenced by data points outside the local cluster.

Figure 6.2: Number of clusters found by mean shift, different number of
iterations.

In Fig. 6.2 the total number of clusters is plotted as a function of band-
width for different number of mean shift iterations. We see that for 50 iter-
ations, the number of clusters vary more than for 100 iterations. When the
number of mean shift iterations is set to 150, the variations are less apparent.
The cluster number is also influenced by how we define which mode-fining
vectors have converged to the same mode. Looking for an increase in the
cluster number to say something about what bandwidth to use is therefore
a somewhat unreliable heuristic.

Figure 6.3 shows the accuracy in percent of correctly clustered points for
two-stage clustering as a function of the bandwidth which is equal for mean
shift and the spectral clustering. In the leftmost plot, the solid blue line is

104 CHAPTER 6. RESULTS

Figure 6.3: Classification accuracy as a function of mean shift bandwidth.

the accuracy using KPCA spectral clustering with the standard Euclidean
distance for the k-means algorithm used for finding the final clusters, the
solid red line is the accuracy of using KECA for the spectral step with the
same distance measure. For the rightmost plot, the distance used in the
spectral clustering is the cosine distance as defined in Eq. (4.16), the dashed
blue line is the accuracy for KPCA and the dashed red line is for KECA.
While Section 4.4 suggests using the cosine distance for KECA, we will look
at which distance measure gives the best result for this dataset, both for
KECA and KPCA.

As we can see in Fig. 6.3, the cosine distance measure overall gives slightly
better results than the Euclidean distance for KECA. However, the classifi-
cation accuracy varies too much to draw conclusions regarding which of the
spectral clustering methods perform best for this dataset.

The kernel matrix used in the second step is based on calculating the
Cauchy-Schwartz (CS) divergence between the clusters found in the mean
shift step according to Eq. (5.3). For the result in Fig. 6.3, the kernel used
for defining the kernel matrix is the same as for mean shift. As noted in

6.1. EXAMPLES TO ILLUSTRATE MSSC 105

[28], the full kernel matrix is calculated in the first step of the mean shift
algorithm using the Parzen windowing kernel. It is therefore possible to reuse
these calculations as seen in Eq. (5.4), which may reduce the running time
of the algorithm. This of course means that the same kernel size will be used
for both steps.

While this often is more computationally efficient, it might be problematic
as one wants the kernel size used for the mean shift step to find the local
modes in the dataset, while the kernel matrix should characterize the "global"
structure of the data. Hence it would be reasonable that the bandwidth used
for the second step is bigger than for the first step since we want the spectral
step to merge the mode partitions (clusters) found by mean shift in the first
step.

The code developed for the thesis seeks to utilize the calculations done
in the mean shift step by noticing that the Gaussian kernel function can be
expressed as a function of the Euclidean distance between the points and
the bandwidth parameter when using a diagonal bandwidth matrix as seen
in Eq. (2.93). In the code, the first mean shift iteration builds and saves
the the distance matrix. Then one can easily reduce these distances with a
different kernel size when calculating the CS divergence.

Regardless if one chooses to store the kernel matrix and use the same
bandwidth for both steps, this requires storing a n × n distance or kernel
matrix. This means the dataset should not be too large. For instance,
for storing the full kernel matrix for a dataset of n = 50000 data points
with double precision (each element is 8 bytes), requires 500002 data points∗
8 bytes/data point = 20GB1. While it is possible to use a smaller precision
(in single precision each number is 4 bytes), one might ask if it is worth
storing a large distance matrix to save computational time.

In Fig. 6.4 the percentage of correctly classified points is plotted as a
function of increasing the bandwidth for the spectral step when the mean
shift bandwidth is kept constant at hms = 0.12. The spectral bandwidth
varies between 0.1 and 10 in steps of 0.1. Like Fig. 6.3, the left subplot
corresponds to using the Euclidean distance while the right subplot is for the
cosine distance.

We see that in both cases the clustering accuracy drastically improves
once the spectral bandwidth becomes large enough. For KECA this is around
hKECA = 1.2 for both distance measures. The accuracy of KPCA improves
much sooner, at around hKPCA = 0.4. KPCA has a slightly higher, and more
stable, overall accuracy when using the Euclidean distance than the cosine

1This could be reduced by using the fact that the distance matrix is symmetric and
hence only requires storing n(n+1)

2 unique elements, but the point remains the same.

106 CHAPTER 6. RESULTS

Figure 6.4: Classification accuracy as a function of spectral bandwidth.

distance in k-means. The opposite is true for KECA. In this case, when the
kernel size is larger than 2.0, the KECA method with angular distance gives
the best result. The k-means algorithm has an accuracy of 89.33% for this
dataset.

Figure 6.5 shows an image plot where the colour indicates the percentage
of correctly clustered points. The mean shift bandwidth varies between 0.01
and 0.30 in steps of 0.01, increasing from top to bottom along the vertical
axis of the plots in Fig. 6.5. The horizontal axis represent spectral bandwidth
between 1.0 and 5.0, increasing from left to right in steps of 0.2. Both spectral
methods used the same partition found by the mean shift algorithm in 100
iterations and the Euclidean distance is used in k-means to obtain the final
clustering result.

The result obtained using KPCA seems quite stable at around 90% accu-
racy, except when the mean shift bandwidth hms ≥ 0.20. We find the reason
for these variations in Fig. 6.1; the number of clusters found by the mean
shift algorithm suddenly starts to oscillate at this bandwidth. The best ac-
curacy is obtained in this region with a maximum of 98.0% accuracy. As

6.1. EXAMPLES TO ILLUSTRATE MSSC 107

Figure 6.5: KECA and KPCA classification, Euclidean distance used for
spectral step.

seen in Fig. 6.2 it is possible to negate this effect by increasing the number of
iterations. The effect of the varying number of clusters for 0.20 ≤ hms ≤ 0.30
is also apparent in the KECA accuracy.

Figure 6.6 is the same as Fig. 6.5, except that an angular distance is used
to obtain the final clustering result. We notice the apparent lack of structure
in the KPCA clustering accuracy. Clearly the cosine distance measure is not
a good choice for KPCA in this case. For KECA however, the result is better
and more consistent and the highest accuracy achieved is 97.77%.

The best result for KECA is actually obtained when the mean shift band-
width hms = 0.22 as seen from the deep red line in the lower half of the left
subplot. When we look at Fig. 6.2, we see that this corresponds to approxi-
mately 70 partitions and that when the bandwidth increases to hms = 0.24 the
number of clusters drops to just over 10 and the result becomes worse. The
best region for KECA is for small mean shift and large spectral bandwidth as
seen in the upper right region of the KECA subplot. This corresponds well
with the intuition to use a small bandwidth to capture the local structure in

108 CHAPTER 6. RESULTS

Figure 6.6: KECA and KPCA classification, cosine distance used for spectral
step.

mean shift and then a large bandwidth to merge partitions in KECA.
For this dataset, it is clear that the cosine distance measure is best for

KECA whereas the Euclidean distance is best for KPCA. KECA is able
to obtain the highest accuracy, but is more sensitive to both kernel size
parameters.

6.1.2 The Cows Image

One of the advantages of a two-stage clustering approach is the ability to use
spectral methods on large datasets, such as images. This is demonstrated on
a black and white image of two cows. The image should not be particularly
difficult to cluster or segment with traditional methods. A simple thresh-
olding would give good results. It is therefore well suited to illustrate some
of the aspects of Mean Shift Spectral Clustering (MSSC) when it comes to
clustering images.

Figure 6.7a shows the original image obtained from [1]. The image is 200×

6.1. EXAMPLES TO ILLUSTRATE MSSC 109

(a) Original. (b) Four clusters.

Figure 6.7: The black and white cows picture.

300 pixels with 8-bit pixel intensities (256 different levels). In addition to the
intensities, the coordinates of each pixel are included in the feature vectors.
Thus the resulting dataset has n = 60000 feature vectors of dimension l = 3.

The different nature of the intensity and spatial features has to be com-
pensated for by proper normalization [7]. A simple heuristic was used; each
coordinate component was scaled to range from zero to some upper limit. An
upper limit of 0.25 was used for the result seen in Fig. 6.7b. Hence feature
vectors which have similar intensities, but corresponds to pixels located on
opposite ends of the image, will be much closer than feature vectors corre-
sponding to neighbouring pixels with a big difference in pixel intensities2.

The mean shift bandwidth used for the result in (b) was hms = 0.06.
Using 100 iterations, the mean shift algorithm outputs four partitions, which
are represented by the average pixel intensity assigned to that cluster shown
in (b). When the desired number of output clusters is set equal to four, the
spectral clustering step will in this case do nothing and the final result will
be completely determined by the mean shift algorithm. The partitions found
by the mean shift algorithm sets an upper limit for the number of output
clusters.

For a two-stage approach, it is therefore desirable to have the mean shift

2Pixel intensities are scaled to range from 0 to 1.

110 CHAPTER 6. RESULTS

algorithm find a number of partitions greater than the desired number of
output clusters. The number of partitions m should satisfy two criteria.
First, it should be small enough to efficiently be able to find the eigenvectors
for the m×m kernel matrix. Second, it should be so large that the partitions
accurately describes the structure of the data. At first glance this may seem
like conflicting demands, but together they actually specify an interval of
acceptable partition numbers.

While the first criterion is determined by the processing system (computer
and programs) used, and can therefore easily be found, the second criterion
is harder to determine as it depends on the dataset. The only certainty is
that it should be larger than the desired number of output clusters. Even
if we do explore the data, it is not easy to establish the exact number of
partitions needed to get an accurate representation.

The number of clusters found by mean shift will depend on the parameters
used. While some parameters are easy to specify, kernel optimization is a
tedious task and the lack of general and practical way of choosing kernels
and the bandwidth parameter is a weakness of the mean shift algorithm
[28]. For MSSC the spectral clustering step will merge partitions, and it is
not problematic if the mean shift algorithm splits clusters into two or more
partitions. Therefore we have more freedom in the choice of kernel size, as
long as it provides a sufficient number of partitions. Hence the kernel size for
the first stage should be smaller than one would use to cluster the dataset
directly. In this thesis m = 2500 was used as an upper limit of mean shift
clusters.

Figure 6.8 shows the number of partitions m as a function of the mean
shift bandwidth hms varying between 0.01 and 0.10 in steps of 0.01. The
green lines represent the number of clusters found by the regular mean shift
algorithm, while the red are the results when using blur (described in Section
2.4.2). The stapled lines are the results with 50 mean shift iterations and the
solid lines correspond to 100 iterations. Note that Fig. 6.8 has a logarithmic
y-axis.

The regular mean shift algorithm with 100 iterations finds over 50000
partitions for hms = 0.01 and hms = 0.02. As the kernel size increases, the
number of clusters decreases to just over 28000 for hms = 0.03 and hms = 0.04.
When the kernel size becomes hms = 0.05, the mean shift algorithm returns
m = 4 partitions. The result when using 50 iterations is similar. Figure 6.7b
shows the four clusters found with 100 iterations for hms = 0.06.

While this extreme sensitivity to the bandwidth might be useful in eval-
uating whether the mean shift algorithm has converged to a stable number
of clusters, it is problematic in our setting of a two-stage approach. Here the
mean shift algorithm has limited the final clustering result to a maximum

6.1. EXAMPLES TO ILLUSTRATE MSSC 111

Figure 6.8: Number of clusters found by mean shift.

of four clusters. Even if the final result should consist of four clusters, one
might be able to obtain a better result if the spectral step merged a larger
number of partitions.

When the kernel size increases to hms = 0.09, the regular mean shift
suddenly finds m = 54988 partitions with 50 iterations and m = 24470 for
100 iterations. This is the same phenomenon seen for Iris dataset described
in Fig. 6.1. Here however, when the number of iterations is increased to
150, mean shift still finds over 24000 partitions. This is caused by the large
kernel size merging what, for a density estimate using a smaller kernel size,
were two different modes. Recall that the mode-finding vectors move very
short distances close to a mode and far in low density regions. This can be
seen from the denominator of Eq. (2.58). Thus the mode-finding vectors of
the partitions merged need to move through the high density region that for
smaller kernel sizes was a mode.

In this case, for hms = 0.08, 3 partitions were found with both 50 and
100 iterations. These consisted of 25757, 29210 and 5033 feature vectors.
Increasing the kernel size causes two of these modes in the pdf estimate

112 CHAPTER 6. RESULTS

obtained with hms = 0.08 to merge to a mode somewhere between them in
the density estimate using hms = 0.09. Then points in the outskirts of these
modes need to move through a high density region to "escape". This requires
many iterations as the mode-finding vectors move very slow in such regions.
Thus when the iterations stop, some of the mode-finding vectors will have
converged to the joint mode, while others will be somewhere along the way.

While the distances between mode-finding vectors which have stopped in
their tracks may be small, it will be several orders of magnitude larger than
for those that have converged to a mode. The mean shift developed for this
thesis uses the relative distance between vectors to cluster to avoid setting
an arbitrary definition what is close for each dataset3. An example of the
mode-finding vectors moving at different speeds in different density regions
can be seen in Fig. 2.9.

Of the m = 24470 partitions found with 100 iterations, the largest con-
tains 30519 of the pixel feature vectors, the second largest partition has 4985.
The remaining partitions contain on average 1.0011 feature vectors. To avoid
phenomenon, one has to change the kernel size or the number of iterations
has to be increased significantly.

Another example of how important the number iterations is can be seen
for hms = 0.05 where an additional 50 reduces the number of partitions by
over 28000. However, as one mean shift iteration for this dataset takes just
under 2.5 minutes on the system used4, increasing the number of iterations
by 50 means that the processing takes 2 hours longer to complete. Due the
large number of iterations required and the extreme sensitivity to kernel size
if this is not met, it is better to use blurred mean shift for this dataset.

The blurred mean shift plotted in red in Fig. 6.8 gives a much more
stable number of output clusters, for hms = 0.01, 50 iterations with blur finds
m = 180 partitions. This results in a 180×180 kernel matrix which poses no
problems for the spectral clustering step. When the bandwidth increases to
0.02, the number of partitions is reduced to 23 before it continues to decrease
to 9 and 5 for the next two bandwidths. Except for the smallest bandwidth
where 50 iterations gives 17 more partitions than the result for 100 iterations,
the biggest difference in number of partitions is 2.

3For example, while an Euclidean distance of 0.5 between two vectors can be considered
close when the vector elements have values in the range of ±106, it should be considered
a large distance in datasets where the each vector coordinate is between 0 and 1. Nor-
malization helps, but does not fix the real challenge. There is no universal distance large
enough to contain all clusters yet small enough to sperate between them common for all
datasets, even normalized ones.

4IntelCore i7CPU 860 @ 2.80 GHz, 4.00 GB RAM, 64-bit Windows 7 SP1, MATLAB
2011a.

6.1. EXAMPLES TO ILLUSTRATE MSSC 113

If the tendency seen in Fig. 6.8 applies for image datasets, one might
consider using blurred mean shift with a relatively small number of iterations
as a general strategy for the first stage.

Figure 6.9 shows the result of Mean Shift Spectral Clustering (MSSC) on
the original image seen in Fig. 6.7a. A four cluster solution was selected
manually in advance. For each pixel, the intensity is set equal to its cluster
mean. In Fig. 6.9, (a) is the result of using mean shift with blur and 50
iterations. The Gaussian kernel is used with bandwidth hms = 0.02 which
gives m = 23 partitions. These are shown in different colours in (b). Eight
of the partitions contains less than 40 pixels, and of these five have less than
10 pixels. We notice that the mean shift algorithm has grouped most of
the pixels in the black cow together, except for the ear tag, part of the foot
and around the nose. Some pixels in the background are also included in
this partition. The white cow is split into several partitions. Most of the
background is divided into large coherent sections.

In (c) and (d) KECA is used in the spectral step, while (e) and (f) shows
the result using KPCA. The spectral bandwidth is 0.2 for (c) and (e), and 1.0
for (d) and (f). For both spectral clustering methods, the k-means algorithm
is run 500 times and the result with the lowest cost in terms of the distance
function used (cosine for KECA and Euclidean for KPCA) is chosen for the
final result.

The results in (d), (e) and (f) look quite similar. The partition of the black
cows leg has been merged with the rest of the cow. The large background
sections have been combined into the dark gray cluster, which also contains
part of the shadowed region around the neck of the white cow, which we see
from (b) is caused by this region being in the same partition as the grass
between the cows. Other parts of the shadowed region of the cow is grouped
in the light gray class along with a small speckled region of the grass. The
rest of the white cow is clustered in the off-white cluster. This cluster also
contains the black cows ear-tag.

The result when using a smaller kernel size for KECA shown in (c), merges
the dark purple partition in (b) with the black cow partition. That the final
results with KECA in (c) and (d) are different, while MSSC with KPCA in
(e) and (f) are the same, is reminiscent to what we saw for the iris dataset
i Fig. 6.5 and 6.6; KPCA appears more stable to variations in bandwidth
than KECA.

114 CHAPTER 6. RESULTS

(a) Mean shift result. (b) The 23 partitions.

(c) hms = 0.02, hKECA = 0.2 (d) hms = 0.02, hKECA = 1.0

(e) hms = 0.02, hKPCA = 0.2 (f) hms = 0.02, hKPCA = 1.0

Figure 6.9: Four cluster results for KECA and KPCA.

6.1. EXAMPLES TO ILLUSTRATE MSSC 115

(a) hms = 0.02, hKECA = 0.2 (b) hms = 0.02, hKECA = 1.0

(c) hms = 0.02, hKPCA = 0.2 (d) hms = 0.02, hKPCA = 1.0

Figure 6.10: Larger pixel coordinate range.

Figure 6.10 shows the clustering result when the pixel coordinates are
scaled to be between 0 and 0.50, double the range used for the results in Fig.
6.7 and 6.9. The mean shift step divides the image into 78 partitions, three
times more than with a coordinate range heuristic of 0.25. KECA is used in
the spectral step for (a) and (b), and KPCA in (c) and (d).

The parameters used are the same as for Fig. 6.9, with Fig. 6.9c corre-
sponding to Fig. 6.10a, Fig. 6.9d to Fig. 6.10b and so on. The four clusters are
shown in different colours as partitions with different intensities are merged,
which would give the images poor contrast as the cluster means would be
similar, at least compared to the results in Fig. 6.9. In all cases, the result is
worse than seen in Fig. 6.9. We also notice that again KPCA gives the same
result, while KECA has different clustering result depending on the kernel
size.

116 CHAPTER 6. RESULTS

(a) Original. (b) K-means result. (c) MSSC result.

Figure 6.11: Comparison with k-means.

The original image, shown again in Fig. 6.11a, appears to have four dis-
tinct, coherent regions; the grass, the background and each of the two cows.
Thus it should be possible to obtain a good result with a simpler clustering
algorithm like k-means. Fig. 6.11b shows a k = 4 cluster solution when us-
ing the k-means algorithm directly on the dataset. It was run several times
with different initializations and the result with the lowest k-means cost was
chosen. For comparison, the result from Fig. 6.9f is shown in (c).

Which of the two results (b) and (c) is better would depend on what
criterion is used. It is clear that visually the k-means clustering represents
the original image better. The point that is important to note is that, even
for this simple black and white image, MSSC gives a different clustering than
k-means.

It should be noted that when increasing the coordinate scale range heuris-
tic to 0.5, as done in Fig. 6.10, the k-means algorithm also gives a different
clustering result than the results shown there. However, it is not the same
as in Fig. 6.11b and the black cow is merged with parts of the background.

6.1.3 Toy Data Example

Figure 6.12 shows the toy data discussed as an example of clusters that are
not linearly separable in Chapter 1. The dataset, also seen in Fig. 1.1b,
is generated as two half circles each with 250 points and different added
Gaussian noise, while the points in the upper right corner of (a) is 100 points
form a third Gaussian distribution.

The result of running the k-means algorithm 1000 times and using the
clustering with the lowest cost according to Eq. (2.8) is shown in (b). The
different colours represent the k = 3 different clusters. This is not a good

6.1. EXAMPLES TO ILLUSTRATE MSSC 117

(a) Toy data.

(b) K-means.

Figure 6.12: Plane.

clustering when we consider how the data was generated. When the plot was
presented in Fig. 1.2, it was used as a motivation for using spectral clustering
methods as they are able to handle non-linear cluster structures.

However, the spectral clustering results in Fig. 6.13 reveals that neither
KPCA nor KECA were able to separate the two half circles and the noise
perfectly. The kernel size was equal for both methods with h = 2.0. The
KPCA result in (a) did cluster the two half circles in different clusters, but
the right half was divided in three parts with the ends in one cluster and the
middle section in another. The noise was clustered together with the right
half circle. KECA is able to cluster the to half circles in separate groups,
except for the tip of one which is in a third cluster. The noise however is

118 CHAPTER 6. RESULTS

(a) KPCA.

(b) KECA.

Figure 6.13: Spectral clustering with h = 2.0 .

split between the three clusters.
Figure 6.14 shows the result of MSSC. Using 50 blurring iterations with

kernel size hms = 1.0, the mean shift algorithm finds 22 partitions. These are
plotted with different markers (note that some are very similar) in (a). Each
of the two halves are represented by six partitions while the multivariate
normal cluster has ten partitions. This is because the noise added to the half
circles has lower variance, and combined with the higher number of points in
these groups, the density estimate is relatively smooth in these regions.

The clustering result by using KECA on the kernel matrix found from
Eq. (5.3) using these partitions is shown in (b). The kernel size used was the
same as when using spectral clustering directly in Fig. 6.13b, hKECA = 2.0.

6.2. IMAGE SEGMENTATION 119

(a) Partitions.

(b) MSSC.

Figure 6.14: Clustering results.

In this case, MSSC gives the same result when KPCA (with the same kernel
size) is used. For these parameters, MSSC performs better than using any
of the two spectral clustering methods directly.

6.2 Image Segmentation

Section 6.2 contains image segmentation results on two colour images ob-
tained from the Berkeley Segmentation Dataset and Benchmark [23]. Each
image is used to discuss a particular aspect of MSSC. In all results, the
clusters are represented by the average pixel intensity for that cluster.

120 CHAPTER 6. RESULTS

6.2.1 Plane Picture

(a) Original image. (b) 8 partitions, hms = 0.04.

(c) hKECA = 0.1. (d) hKECA = 0.5.

(e) hKPCA = 0.1. (f) hKPCA = 0.5.

Figure 6.15: Plane.

Figure 6.15 shows the MSSC segmentation result of the picture in (a) ob-
tained from the Berkeley Segmentation Dataset and Benchmark [23]. Mean
shift with bandwidth hms = 0.04 blur and 50 iterations is used to obtain
eight partitions shown with different colours in (b). The image is 481× 321
pixels, which means that the there are n = 154401 feature vectors in the
dataset. In addition to the red, green and blue (rgb) intensity levels, which
are between 0 and 1, each feature vector contains the x and y coordinate.
The coordinates are scaled to be between 0 and 0.33, slightly larger than in
Section 6.1.2 where this heuristic was set to 0.25.

KECA is used in the spectral step with hKECA = 0.1 in (c) and hKECA =
0.5 in (d). The segmentation is clearly better for the smaller kernel size

6.2. IMAGE SEGMENTATION 121

where the black, orange and purple partitions of (b) are merged together
and the plane is clearly seperated from the other cluster corresponding to
the background. In (d) however, the purple class is merged with the two
background partitions blue and pink. Since both clusters now contain part
of the background and part of the plane, the average pixel intensities are
gray. We notice that it is possible to see the contours of the plane because
the pixels along the edge of the wing belong to different partitions.

The MSSC result with KPCA and the same spectral bandwidths are
shown in (e) and (f). With a spectral bandwidth of 0.1, KPCA merges the
same partitions as KECA. The KPCA result is also worse when hKPCA = 0.5,
but the segmentation in (f) is better than in (d). Here the black and orange
fuselage partitions are merged together, while the black is included with the
background partitions. For all results the k-means algorithm in the spectral
stage was run 500 times and the result with lowest cost function was chosen.

6.2.2 Water Buffalo Picture

In Fig. 6.16 we study the how the two spectral clustering methods merges
different partitions (b) of the original image (a). As in Section 6.2.1, the
mean shift algorithm used blur and ran for 50 iterations and the coordinate
scale heuristic was set to 0.33. With a kernel size of hms = 0.02, 77 partitions
were found. These are represented by their average pixel intensity in (b). All
results used a kernel size of h = 0.1 and 500 k-means initializations (5000 for
the ten segments result) in the spectral stage.

The left column, (c), (e) and (g) are the results for two, four and ten seg-
ments found by using KPCA on the partitions in (b). The KECA segments
in (f) and (h) appear to to give a better representation of the image than the
corresponding KPCA results. The difference is best seen for four segments,
where KECA has one of the buffalo partitions as its own segment, in addition
to the general background and two gray segments which are used both for
the water and the animal. The KPCA result in (e) has one large segment for
the water and three segments with gray average pixel intensities.

Neither of the two cluster results in (c) and (d) are good representations,
even though both have the top of the animal in a smaller cluster along with
other bright parts of the image. The KPCA result gets better when the
number of segments is increased to ten, but large parts of the animal is still
merged with the water. In (g) the increase in output clusters have given the
buffalo better contrast.

122 CHAPTER 6. RESULTS

(a) Original image. (b) 77 partitions.

(c) KPCA 2 clusters. (d) KECA 2 clusters.

(e) KPCA 4 clusters. (f) KECA 4 clusters.

(g) KPCA 10 clusters. (h) KECA 10 clusters.

Figure 6.16: Swiming water buffalo.

6.3. ADDITIONAL DATASETS 123

6.3 Additional Datasets

6.3.1 Wisconsin Breast Cancer Dataset

The Wisconsin breast cancer dataset contains 683 samples of clinical cases
of breast cancer diagnosis with each sample consisting of nine different at-
tributes. It can be found in [11] where it was obtained from the University
of Wisconsin Hospitals, Madison from Dr. William H. Wolberg. The dataset
and a multi surface method of pattern separation was presented in [43].

(a) Number of partitions.

(b) Largest partition.

Figure 6.17: Mean shift result.

Figure 6.17a shows the number of clusters found by using 100 mean shift
iterations without blur. We notice an increase in the number of partitions

124 CHAPTER 6. RESULTS

found when the bandwidth reaches a certain size, here for hms = 0.75, before
it drops again. This was also seen for the Iris dataset in Fig. 6.1 and for the
cows picture in Fig. 6.8 and is caused by the increasing kernel size causing
modes to merge.

In Fig. 6.17b the number of samples in the largest partition. The horizon-
tal black line shows the number of samples in the larges class (benign). For
every sample the size of the largest partition is over this line, the minimum
error clustering error increases by one. This means that for hms = 1.0, over
the final clustering will contain a minimum of 150 clustering errors.

Figure 6.18: Clustering accuracy.

Figure 6.18 shows the accuracy for MSSC as a function of mean shift
bandwidth along the vertical axis and spectral bandwidth along the hori-
zontal axis. KECA with a cosine distance for k-means is used to obtain the
result in the left subplot while the right is based on centered KPCA with an
Euclidean distance in k-means.

We see that the best results when using KECA is when the mean shift
bandwidth is small and the spectral bandwidth is around hKECA ≈ 1.0. The
highest accuracy is obtained with hms = 0.05 and hKECA = 0.9 when 664 of

6.3. ADDITIONAL DATASETS 125

the 683 samples are correctly classified, which corresponds to an accuracy
of 97.2%. For KPCA the highest accuracy is 96.9% (662 samples) obtained
with hms ∈ {0.05, 0.10} for hKPCA ∈ {2.7, 2.8, 2.9}.

Figure 6.19: Difference in clustering accuracy.

Figure 6.19 shows the difference in the clustering accuracy in Fig. 6.18.
The gray area are represents where neither method is better than the other
by more than 2.5%. The blue area is where KPCA has a significaly higher
classification accuracy than KECA, while the oposite is true for the red areas.

Combined with Fig. 6.18 we can say that both methods have highest
accuracy when the mean shift kernel size is small. KPCA has a more stable
accuracy than KECA for this dataset, but when overall best accuracy is
obtained with KECA.

6.3.2 Wine Dataset

The wine dataset consists of l = 13 chemical features from n = 178 different
Italian wines. Each wine comes from one of three different cultivars, which

126 CHAPTER 6. RESULTS

we seek to cluster correctly. The dataset was obtained from UCI repository
[11].

(a) KECA.

(b) KPCA.

Figure 6.20: Accuracy.

In Fig. 6.20 the clustering accuracy is plotted as a function of the mean
shift and spectral bandwidths. The spectral bandwidths are chosen to be
some factor times the mean shift bandwidth, the different factors are 1, 5,
10 and 20. These are represented by different coloured lines in (a) and (b)
where KECA and KPCA are used in the second stage of MSSC.

The blue curve in both plots resembles the result when the spectral band-
width was set equal to the mean shift bandwidth for the Iris data in Fig. 6.3.
We also notice that the result using KPCA appears to be more stable as a
function of kernel size, as was seen in Fig. 6.18. The maximum clustering
accuracy for KECA was 94.9% and 96.6% for KPCA.

Chapter 7

Conclusion

In this thesis we have presented novel Mean Shift Spectral Clustering (MSSC),
a clustering procedure which allows the use of spectral clustering methods on
large datasets. This two-stage approach enabled us to segment images with
as many feature vectors as pixels. MSSC also proved to give a better clus-
tering result than using spectral methods with the same kernel size directly
for a non-linear toy data example.

The mean shift algorithm provides an initial clustering of the dataset by
grouping points closest to the same local mode in the probability density
estimate together. Since this estimate is obtained by Parzen windowing,
a non-parametric density estimator, these clusters represent a natural parti-
tioning of the dataset. Mean shift can find partitions separated by non-linear
boundaries, which makes it well suited for preprocessing the data for spectral
clustering. Thus MSSC can be used to find non-linear cluster structures in
large datasets.

We showed how the number of partitions found by the mean shift algo-
rithm varied as a function of the kernel size used. While this number generally
decreases with increasing kernel size, we showed that with a fixed number
of iterations, the number of partitions can increase again. This is caused by
the mean shift algorithm moving the mode-finding vectors in small steps in
dense regions. The merging of dense regions with increased kernel size might
therefore require a large number of iterations to converge. To speed up con-
vergence and hence provide a more predictable number of output partitions
we used blurring mean shift.

In order to perform the second stage of the clustering procedure, re-
garding the spectral clustering based on the output of the stage one mean
shift procedure, we introduced the recent Kernel Entropy Component Anal-
ysis (KECA) method. Comparisons were made against the more well known
Kernel Principal Component Analysis method (KPCA). Results indicate that

127

128 CHAPTER 7. CONCLUSION

KECA achieved the highest clustering accuracy and selected more relevant
features in an image segmentation example. KPCA generally had a more
stable performance when varying the kernel sizes. For both cases, the MSSC
procedure gave good clustering results.

7.1 Suggestions for Further Work

7.1.1 General Suggestions

This section contains some general observations on how to further the devel-
opment of novel MSSC.

Further testing. Apply the novel MSSC procedure to challenging data sets
exhibiting complex structure within fields such as bioinformatics, neu-
roinformatics, remote sensing, etc.

Kernel size selection. Develop general procedures for automated kernel
size selection in both stage one and stage two.

Using other kernels. In this thesis the Gaussian kernel was used for all
experiments, both in mean shift and the spectral clustering. There are
a variety of different kernels that could be used. Some other alternatives
can be found in [26].

Three-stage approach. The mean shift algorithm represents an computa-
tional bottleneck for MSSC [28]. It is possible to use a simpler cluster-
ing algorithm, for instance k-means, to reduce the number of feature
vectors input to mean shift. In the mean shift algorithm, information
about the k-means pre-partitioning can be included by weighting these
pre-partitions by the number of points assigned to it. The idea of grad-
ually more complicated methods can be extended to use even more
stages to handle particularly large clustering tasks.

Preprocessing images. The image segmentation performed in this thesis
used the pixel intensities as features without any normalization while
the x and y coordinates were scaled to a be a fraction of the pixel
intensity range. There are many different ways to implement pre- and
post processing of image clustering that can improve the segmentation
result. A tutorial can be found in [40].

Clustering new data. A way to assign new feature vectors to clusters
found by MSSC is to find out which mean shift mode these feature

7.1. SUGGESTIONS FOR FURTHER WORK 129

vectors converge to. This by using mean shift with density estimate
based on the original dataset. If the new feature vectors are not in-
cluded in the data used for Parzen windowing, they will to converge
to one of the mean shift modes unless some very unlikely symmetry
causes it to remain stationary. New feature vectors should not simply
be assigned to the closest mode in case the dataset has a non-linear
cluster structure.

7.1.2 First Stage

As the mean shift algorithm is a computational bottleneck in MSSC, this
section’s primary focus is how to reduce the computational load in the first
stage.

K-means in first stage. It was mentioned in [28] that k-means or other
simple clustering methods such as Expectation Maximization with Gaus-
sian mixture models (see Section 2.3) can be used to obtain the initial
partitioning.

Reducing the number of points for density estimate. It is possible to
use only the closest feature vectors1 to the position mode-finding vec-
tor to obtain the density estimate. The number of feature vectors used
for each mode-finding vector can be significantly reduced, depending on
how much the feature vectors have to contribute to the density estimate
to avoid being cut. This option was included in the code developed for
this thesis, but not utilized as it caused memory problems for large
datasets. It is possible that better implementation of this system can
reduce the computational load of mean shift.

Increase in number of partitions. It is possible that the sudden increase
in number of partitions despite increasing kernel size can be used to
determine a good kernel size for the system. This can be an indication
that the algorithm starts describing the global structure of the data,
which means that the bandwidth is too large as this should be done by
the spectral method in MSSC. One could gradually increase the number
of mean shift iterations and see how long increases in cluster numbers
last as a function of mean shift iterations. This can be used to perform
an analysis analog to what is done for dendograms [39, Chapter 13].

Varying bandwidth between mean shift iterations. Gradually reduc-
ing the kernel size may speed up convergence as the mean shift moves

1Mode-finding vectors from the previous iteration when using blur.

130 CHAPTER 7. CONCLUSION

points further in regions of low densities. However one must study how
this influcences the clustering result.

Using fewer mode-finding vectors than data points. For datasets with
many low-dimensional samples, one might define a grid of mode-finding
vectors and use the mean shift algorithm on these. The density esti-
mate would still be based on the full dataset, but if the grid contains
fewer points than the dataset this will reduce the computational load.
Determining which data points converge to the same mode can be done
by some form of nearest neighbour assignment based on the points in
this grid. For this to be a good approach, the dimension of the dataset
should be low.

7.1.3 Second Stage

This section lists some suggestion for further development related to the
second stage.

Laplacian eigenmaps in MSSC. Laplacian eigenmaps will generally give
different results than KECA and KPCA and should therefore be tested
in MSSC.

Dimension of transformed data. All clustering results in this thesis are
based on setting the dimension of the transformed data equal to the
number of output clusters specified. This to avoid a tedious optimiza-
tion process by including an additional parameter to vary. However,
increasing the dimension of the transformed data might improve the
performance of MSSC in some cases.

KECA sensitivity to kernel size. The result of MSSC with KECA showed
a tendency to vary more than with KPCA. This could be investigated.
It might be connected with the cosine metric in the k-means algorithm
used in KECA spectral clustering.

Divergence measure for kernel matrix. The kernel matrix was constructed
based on the Cauchy-Schwarz divergence between partitions. Other di-
vergence measures could also be used.

Out of sample projection of outliers. In the experiments conducted for
this thesis, the mean shift algorithm often found several one point par-
titions for small bandwidths. These are included in the partition kernel
matrix, and contribute to its size and eigendecomposition result. To
avoid the outliers influencing the result, one can form the kernel matrix

7.1. SUGGESTIONS FOR FURTHER WORK 131

based on the other partitions and treat the outlier partitions as out-of-
sample data and project them feature space principal axes found by the
spectral method. An example of projecting out-of-sample data points
is included in [18].

132 CHAPTER 7. CONCLUSION

List of Figures

1.1 Two datasets. 2
1.2 K-means solution. 3
1.3 MSSC solution. 4

2.1 Dataset with two different initial sets of cluster representatives. 20
2.2 Convergence after 6 iterations. 21
2.3 Convergance after 5 iterations. 22
2.4 Cost function and number of cluster changes. 23
2.5 Dataset with three normal components. 32
2.6 Gaussian mixtures fitted by EM. 33
2.7 Dataset with mixture contours. 34
2.8 KDE with h = 0.5 and mean shift. 41
2.9 KDE with h = 1 and mean shift. 42
2.10 KDE with h = 0.5 after one "blurring". 44
2.11 h = 0.5 , blurring and non-blurring mean shift. 45
2.12 Two concentric circles with noise. 54
2.13 Circle and "reverse L" shape. 55
2.14 Projection onto first 3 components. 56
2.15 Neighbouring points example. 58
2.16 Ring data. 63
2.17 First two components of transformation. 64
2.18 Three groups of data. 66
2.19 Four different eigenmaps. 67
2.20 kNN with k = 25. 68

3.1 Speed of molecules in a gas. 78

4.1 Two rings and a dense cluster. 87
4.2 Eigenvectors. 88
4.3 Clustering result. 90
4.4 Transformed data. 91

133

134 LIST OF FIGURES

4.5 Increasing bandwidth to h = 4.5. 92

6.1 Number of clusters for different mean shift bandwidths. 102
6.2 Number of clusters found by mean shift, different number of

iterations. 103
6.3 Classification accuracy as a function of mean shift bandwidth. 104
6.4 Classification accuracy as a function of spectral bandwidth. . . 106
6.5 KECA and KPCA classification, Euclidean distance used for

spectral step. 107
6.6 KECA and KPCA classification, cosine distance used for spec-

tral step. 108
6.7 The black and white cows picture. 109
6.8 Number of clusters found by mean shift. 111
6.9 Four cluster results for KECA and KPCA. 114
6.10 Larger pixel coordinate range. 115
6.11 Comparison with k-means. 116
6.12 Plane. 117
6.13 Spectral clustering with h = 2.0 118
6.14 Clustering results. 119
6.15 Plane. 120
6.16 Swiming water buffalo. 122
6.17 Mean shift result. 123
6.18 Clustering accuracy. 124
6.19 Difference in clustering accuracy. 125
6.20 Accuracy. 126

Bibliography

[1] S. Alpert, M. Galun, R. Basri, and A. Brandt. Image segmentation by
probabilistic bottom-up aggregation and cue integration. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
June 2007.

[2] H. Anton and C. Rorres. Elementary Linear Algebra : Applications
Version. Wiley, New York, 2005.

[3] G. Arimond and A. Elfessi. A clustering method for categorical data
in tourism market segmentation research. Journal of Travel Research,
39(4):391–397, 2001.

[4] M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduc-
tion and data representation. Neural Computation, 15(6):1373–1396,
2003.

[5] Christopher Bishop. Pattern Recognition and Machine Learning.
Springer, New York, 2006.

[6] Y. Cheng. Mean shift, mode seeking, and clustering. Pattern Analysis
and Machine Intelligence, IEEE Transactions on, 17(8):790–799, 1995.

[7] D. Comaniciu and P. Meer. Mean shift: A robust approach toward
feature space analysis. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 24(5):603–619, 2002.

[8] D. Erdogmus and J.C. Principe. From linear adaptive filtering to non-
linear information processing - the design and analysis of information
processing systems. Signal Processing Magazine, IEEE, 23(6):14–33,
2006.

[9] M. Fashing and C. Tomasi. Mean shift is a bound optimization. Pattern
Analysis and Machine Intelligence, IEEE Transactions on, 27(3):471–
474, 2005.

135

136 BIBLIOGRAPHY

[10] R.A. Fisher. The use of multiple measurements in taxonomic problems.
Annals of Human Genetics, 7(2):179–188, 1936.

[11] A. Frank and A. Asuncion. UCI machine learning repository, 2010.

[12] K. Fukunaga and L. Hostetler. The estimation of the gradient of a
density function, with applications in pattern recognition. Information
Theory, IEEE Transactions on, 21(1):32–40, 1975.

[13] D. Giancoli. Physics : Principles With Applications. Pearson/Prentice
Hall, Upper Saddle River, N.J, 2005.

[14] M. Girolami. Orthogonal series density estimation and the kernel eigen-
value problem. Neural Computation, 14(3):669–688, 2002.

[15] R. Hartley. Transmission of information. The Bell System Technical
Journal, 1928.

[16] A.K. Jain. Data clustering: 50 years beyond k-means. Pattern Recogni-
tion Letters, 31(8):651–666, 2010.

[17] E.T. Jaynes. Information theory and statistical mechanics. Statistical
Physics. Brandeis Lectures, 3:160–185, 1963.

[18] R. Jenssen. Kernel entropy component analysis. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, 32(5):847–860, 2010.

[19] R. Jenssen and T. Eltoft. A new information theoretic analysis of sum-
of-squared-error kernel clustering. Neurocomputing, 72(1-3):23–31, 2008.

[20] R. Johnson and D. Wichern. Applied Multivariate Statistical Analysis.
Pearson Prentice Hall, Upper Saddle River, N.J, 2007.

[21] J. Kapur. Measures of Information and Their Applications. Wiley, New
York, 1994.

[22] T. Lillesand, R. Kiefer, and J. Chipman. Remote Sensing and Image
Interpretation. Wiley, New York, 2004.

[23] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human
segmented natural images and its application to evaluating segmentation
algorithms and measuring ecological statistics. In Proc. 8th Int’l Conf.
Computer Vision, volume 2, pages 416–423, July 2001.

[24] G.J. McLachlan and D. Peel. Finite Mixture Models, volume 299. Wiley-
Interscience, 2000.

BIBLIOGRAPHY 137

[25] S. Mika, B. Schölkopf, A.J. Smola, K.R. Müller, M. Scholz, and
G. Rätsch. Kernel pca and de-noising in feature spaces. Advances in
neural information processing systems, 11(1):536–542, 1999.

[26] K.R. Müller, S. Mika, G. Rätsch, K. Tsuda, and B. Schölkopf. An in-
troduction to kernel-based learning algorithms. Neural Networks, IEEE
Transactions on, 12(2):181–201, 2001.

[27] A.Y. Ng, M.I. Jordan, and Y. Weiss. On spectral clustering: Analysis
and an algorithm. Advances in neural information processing systems,
2:849–856, 2002.

[28] U. Ozertem, D. Erdogmus, and R. Jenssen. Mean shift spectral cluster-
ing. Pattern Recognition, 41(6):1924–1938, 2008.

[29] D. Pelleg and A. Moore. X-means: Extending k-means with efficient es-
timation of the number of clusters. In Proceedings of the Seventeenth In-
ternational Conference on Machine Learning, pages 727–734. San Fran-
cisco, 2000.

[30] J.C. Principe. Information Theoretic Learning : Renyi’s Entropy and
Kernel Perspectives. Springer, New York, 2010.

[31] S. Rao, A. de Medeiros Martins, and J.C. Principe. Mean shift: An in-
formation theoretic perspective. Pattern Recognition Letters, 30(3):222–
230, 2009.

[32] A. Renyi. On measures of entropy and information. Fourth Berkeley
Symposium on Mathematical Statistics and Probability, pages 547–561,
1961.

[33] L. Scharf. Statistical Signal Processing : Detection, Estimation, and
Time Series Analysis. Addison-Wesley Pub. Co, Reading, Mass, 1991.

[34] B. Schölkopf, A. Smola, and K.R. Müller. Nonlinear component analysis
as a kernel eigenvalue problem. Neural computation, 10(5):1299–1319,
1998.

[35] C.E. Shannon. A mathematical theory of communication. The Bell
System Technical Journal, 27(1):379–423, 623–656, 1948.

[36] J. Shi and J. Malik. Normalized cuts and image segmentation. Pattern
Analysis and Machine Intelligence, IEEE Transactions on, 22(8):888–
905, 2000.

138 BIBLIOGRAPHY

[37] K.S. Song. Renyi information, loglikelihood and an intrinsic distribution
measure. Journal of Statistical Planning and Inference, 93(1-2):51–69,
2001.

[38] A. Strehl, J. Ghosh, and R. Mooney. Impact of similarity measures
on web-page clustering. In Workshop on Artificial Intelligence for Web
Search (AAAI 2000), pages 58–64, 2000.

[39] S. Theodoridis and K. Koutroumbas. Pattern Recognition. Academic
Press, 2008.

[40] T.N. Tran, R. Wehrens, and L. Buydens. Clustering multispectral im-
ages: A tutorial. Chemometrics and Intelligent Laboratory Systems,
77(1):3–17, 2005.

[41] U. Von Luxburg. A tutorial on spectral clustering. Statistics and Com-
puting, 17(4):395–416, 2007.

[42] R.E. Walpole, R.H. Myers, S.L. Myers, and K. Ye. Probability & statis-
tics for engineers & scientists. Pearson Prentice Hall, Upper Saddle
River, NJ, 2007.

[43] W.H. Wolberg and O.L. Mangasarian. Multisurface method of pattern
separation for medical diagnosis applied to breast cytology. Proceedings
of the national academy of sciences, 87(23):9193, 1990.

[44] K.Y. Yeung, C. Fraley, A. Murua, A.E. Raftery, andW.L. Ruzzo. Model-
based clustering and data transformations for gene expression data.
Bioinformatics, 17(10):977–987, 2001.

[45] S. Zhang, R.S. Wang, and X.S. Zhang. Identification of overlapping com-
munity structure in complex networks using fuzzy c-means clustering.
Physica A : Statistical Mechanics and its Applications, 374(1):483–490,
2007.

