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ABSTRACT

Graph-based spectral denoising is a low-pass filtering using
the eigendecomposition of the graph Laplacian matrix of a
noisy signal. Polynomial filtering avoids costly computa-
tion of the eigendecomposition by projections onto suitable
Krylov subspaces. Polynomial filters can be based, e.g.,
on the bilateral and guided filters. We propose construct-
ing accelerated polynomial filters by running flexible Krylov
subspace based linear and eigenvalue solvers such as the
Block Locally Optimal Preconditioned Conjugate Gradient
(LOBPCG) method.

Index Terms— Image denoising, spectral polynomial fil-
ter, graph Laplacian, Krylov subspace method

1. INTRODUCTION

In this note, we deal with noise removal from a given noisy
signal, which is a basic problem in signal processing, with ap-
plications, e.g., in image denoising [1]. Apart from the trivial
application of removing noise prior to presenting the image to
a human observer, pre-smoothing an image and noise removal
may help to improve performance of many image-processing
algorithms, such as compression, enhancement, segmentation
etc. A noise removal operation is often referred to as a filter.

Modern denoising algorithms endeavor to preserve the
image details while removing the noise. One of the most pop-
ular denoising filters is the bilateral filter (BF), which smooths
images while preserving edges, by taking the weighted av-
erage of the nearby pixels. The weights depend on both the
spatial distance and photometric similarity, thus providing
local adaptivity to the input image. Bilateral filtering was
introduced in [2, 3, 4] as an intuitive tool without theoret-
ical justification. Since then, connections between the BF
and other well-known filtering techniques such as anisotropic
diffusion, weighted least squares, Bayesian methods, kernel
regression and non-local means have been explored, see, e.g.,
survey [5].

A convenient way to represent images is by graphs [6],
especially when considering images over irregular grids and
treating non-local interactions between pixels. A single appli-
cation of the bilateral filter to an image may be interpreted as

a vertex domain transform on a graph with pixels as vertices,
intensity values of the pixels as the graph signal and filter co-
efficients as link weights that capture the similarity between
the vertices. The BF transform is a nonlinear anisotropic dif-
fusion, cf. [7, 8, 9], determined by entries of the graph Lapla-
cian matrix, which are related to the BF weights. In the lin-
ear case, the solutions of time-dependent anisotropic diffusion
problems are represented by operator exponentials or semi-
groups, which can be approximated by operator polynomials.

Eigenvalues and eigenvectors of the graph Laplacian ma-
trix allow us to apply the Fourier analysis to the graph signals
or images as in [6] and perform frequency selective filtering
operations on graphs, similar to those in traditional signal pro-
cessing. Expensive computation of eigenvectors is avoided
in polynomial spectral filters, which are fully implemented in
the vertex domain. For example, the spectral filters in [10, 11]
are based on optimal polynomials constructed by means of the
Chebyshev approximation and conjugate gradient algorithm.

A recent newcomer in the field of filtering is the guided
filter (GF) proposed in [12, 13] and included into the image
processing toolbox of MATLAB. According to our limited
experience, the GF filter is significantly faster than the BF
filter. The authors of [12] additionally advocate that GF is
gradient preserving and avoids the gradient reversal problems
in contrast to BF, which is not gradient preserving.

Iterative application of smoothing filters like BF and GF
can be interpreted as matrix power transforms, in general
case, nonlinear, or, equivalently as explicit integration in
time of the corresponding anisotropic diffusion equation. In
the present paper, we continue the approach of [10, 11] and
propose acceleration of the iterative smoothing filters based
on the polynomial approximations implicitly constructed in
the conjugate gradient (CG) algorithm and in the LOBPCG,
which is a leading eigensolver for large symmetric matri-
ces [14]. LOBPCG has been successfully applied to image
segmentation in [15].

The remainder of the paper is organized as follows. Sec-
tion 2 gives main formulas of the original bilateral filter in
the graph-based notation. Section 3 provides a similar de-
scription of the guided filter from [12]. Section 4 introduces
a basic Fourier calculus on graphs and applies it to a sim-
plified frequency analysis of iterations with the graph Lapla-
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cian matrix. Section 5 describes the CG acceleration of the
smoothing filters. Section 6 gives a brief description of the
LOBPCG method and suggests it as an acceleration for BF
and GF. Our numerical experiments in Section 7 demonstrate
improved performance of our accelerated filters in the one-
dimensional case mostly for the BF filter. Similar improve-
ments are expected when accelerating the GF filter.

2. BILATERAL FILTER AS A VECTOR
TRANSFORM

The bilateral filter transforms an input image x into the output
image y by the weighted average of the pixels of x:

yi =
∑
j

wij∑
j wij

xj . (1)

Let pi denote the geometrical position of a pixel i. Then

wij = exp

(
−‖pi − pj‖

2

2σ2
s

)
exp

(
−|xi − xj |

2

2σ2
r

)
, (2)

where σs and σr are the filter parameters [4], ‖pi − pj‖ is
a spatial distance between pixels i and j. For color images,
the photometric distance |xi − xj | can be computed in the
CIE-Lab color space as suggested in [4].

The BF weights wij determine an undirected graph G =
(V, E), where the vertices V = {1, 2, . . . , N} are the pixels
of the input image and the edges E = {(i, j)} connect the
“neighboring” pixels i and j. The adjacency matrix W of the
graph G is symmetric and has the entries wij ≥ 0. Let D
be the diagonal matrix with the nonnegative diagonal entries
di =

∑
j wij . In the matrix notation, the bilateral filter op-

eration (1) is the vector transform with W depending on a
guidance image (we use x as a guidance image in (2))

y = D−1Wx = x−D−1Lx, (3)

where
L = D −W. (4)

is the Laplacian matrix for the graph G. Gershgorin’s theo-
rem from matrix analysis guarantees a smoothing effect of the
bilateral filter, when maxi di ≤ 2.

The bilateral filtering can be used iteratively. There are
two ways to iterate BF: (1) by changing the weights wij at
each iteration using the result of the previous iteration as a
guidance image, or (2) by using the fixed weights at each iter-
ation as calculated from the initial image as a guidance image
for all iterations. The first alternative results in a nonlinear fil-
ter, where the BF graph changes at every iteration and we can
only provide separate spectral interpretation for each stage.
The second alternative generates a linear filter, the Laplacian
matrix is fixed for all iterations, and it is possible to provide a
spectral interpretation of the whole cascaded operation. The

second way is also faster to compute since the BF weights are
computed only once in the beginning.

The fastest implementations of BF have the arithmetical
complexity O(N), where N is the number of pixels or voxels
in the input image [16, 17, 18].

3. GUIDED FILTER AS A VECTOR TRANSFORM

Algorithm 1 Guided Filter

Input: x, g, ρ, ε
Output: y
meang = fmean(g, ρ)
meanx = fmean(x, ρ)
corrg = fmean(g. ∗ g, ρ)
corrgx = fmean(g. ∗ x, ρ)
varg = corrg −meang. ∗meang
covgx = corrgx −meang. ∗meanx
a = covgx./(varg + ε)
b = meanx − a. ∗meang
meana = fmean(a, ρ)
meanb = fmean(b, ρ)
y = meana. ∗ g +meanb

Algorithm 1 is a pseudo-code of the guided filter from
[12], where fmean(·, ρ) denotes a mean filter with the win-
dow width ρ. The constant ε determines the smoothness de-
gree of the filter: the larger ε the larger a smoothing effect.
The arithmetical operations .∗ and ./ are the componentwise
multiplication and division.

The input image is x, the output image is y. The guidance
image g has the same size as x. If g coincides with x, then
the guided filter is called self-guided. The arithmetical com-
plexity of GF equals O(N), where N is the number of pixels
in x.

The guided filter operation of Algorithm 1 is the transform

y = W (g)x, (5)

where the implicitly constructed symmetric matrix W (g) has
the following entries, see [12]:

Wij(g) =
1

|ω|2
∑

k : (i,j)∈ωk

(
1 +

(gi − µk)(gj − µk)

σ2
k + ε

)
.

(6)
Here ωk is the neighborhood around pixel k of width ρ, where
the mean filter fmean(·, ρ) is applied, and |ω| denotes the
number of pixels in ωk, the same for all k. The values µk

and σ2
k are the mean and variance of the image g in ωk.

The graph Laplacian matrix is obtained from the matrix
W in the standard way. According to [12], the values di =∑

j wij equal 1. Therefore, the diagonal matrix D equals the
identity matrix I , and the graph Laplacian matrix is the sym-
metric nonnegative definite matrix L = I −W .

The guided filtering can also be used iteratively. Similar
to the BF filter, the guided filter is applied iteratively: (1)



either using the result of the previous iteration as a guidance
image, or (2) by using the initial image as a guidance image
for all iterations. The first alternative results in a nonlinear
GF filter. The second alternative generates a linear GF filter,
and the Laplacian matrix remains fixed at each iteration.

4. SPECTRAL INTERPRETATION OF THE
LOW-PASS FILTERS

The graph eigenstructure is the eigenvalues and eigenvectors
of the graph Laplacian matrixL, which is symmetric and non-
negative definite. In certain situations, the normalized Lapla-
cian matrix (diagL)−1/2L(diagL)−1/2 may be more suitable
than L. The spectral factorization of L is the matrix decom-
position

L = UΛUT , (7)

where the diagonal elements λi of the diagonal matrix Λ and
columns ui of the orthogonal matrix U = [u1, . . . , un] are,
respectively, the eigenvalues of L and corresponding eigen-
vectors of the unit 2-norm.

Similar to the classical Fourier transform, the eigenvec-
tors and eigenvalues of the graph Laplacian matrix L provide
the oscillatory structure of graph signals. The eigenvalues
λ1 ≤ · · · ≤ λi ≤ · · · ≤ λn can be treated as graph fre-
quencies. The corresponding eigenvectors ui of the Lapla-
cian matrix L are generalized eigenmodes and demonstrate
increasing oscillatory behavior as the magnitude of the graph
frequency increases. The Graph Fourier Transform (GFT) of
an image x is defined by the matrix transform x̂ = UTx, the
inverse GFT is the transform x = Ux̂.

Let us consider the BF vector transform (3). In numeri-
cal analysis, the linear transformations (D−1W )k are called
the power iterations with the amplification matrix D−1W or
simple iterations for the equation Lx = 0 with the precon-
ditioner D. Application of the transform (3) preserves the
low frequency components of x and attenuates the high fre-
quency components, cf. [10, 11]. It is also well-known that
the Krylov subspaces well approximate the eigenvectors cor-
responding to the extreme eigenvalues. Thus the projections
onto the suitable Krylov subspaces would be an appropriate
choice for high- and low-pass filters. The Krylov subspace
methods are efficient owing to their low cost, reasonably good
convergence and simple implementation without painful pa-
rameter tuning. The convergence can be accelerated by the
aid of good preconditioners.

5. CG ACCELERATION

Since the graph Laplacian matrix L is symmetric and non-
negative definite, the first candidate to replace the simple iter-
ation xk+1 = xk −D−1Lxk is the preconditioned conjugate
gradient (CG) method for the system of homogeneous linear
equations Lx = 0 with the preconditioner matrixD. To avoid

over-smoothing, only few iterations of the preconditioned CG
method must be performed. A large number of iterations for
Lx = 0 produces piecewise constant images and is better
applicable to the image segmentation problems. Good refer-
ences for the Krylov subspace methods are the books [19, 20].

Algorithm 2 Preconditioned CG(kmax) for Lx = 0

Input: L, x0, kmax, preconditioner D
Output: x
x = x0
r = −Lx
for k = 1, . . . , kmax do
s = D−1r
if k = 1 then
p = s

else
β = (sT (r − rold))/(sToldsold)
p = s+ βp

endif
q = Lp
α = (sT r)/(pT q)
x = x+ αp
rold = r
sold = s
r = r − αq

endfor
Algorithm 2 is a slightly modified standard precondi-

tioned CG algorithm formally applied to the system of linear
equations Lx = 0. It contains the formula for β that is
different from that in the MATLAB implementation of the
preconditioned CG. Such a formula converts the algorithm
into a flexible variant, which possesses better convergence
properties, when the input matrices L and D may change;
see, e.g., [21, 22].

The CG iterations are the polynomial filters, i.e., repre-
sented in the form xk = pk(L)x0, where the coefficients of
the polynomial pk(λ) of degree k depend on the matrix L and
initial vector x0. In the preconditioned case, the filter has the
form xk = pk(D−1L)x0, and the coefficients of the polyno-
mial pk(λ) depend on D−1L and x0.

6. LOBPCG ACCELERATION

A more powerful alternative to the Krylov subspace solvers
for linear systems as the polynomial spectral filters are the
eigensolvers with preconditioning. Since the graph Laplacian
matrix L is symmetric, we propose the symmetric eigensolver
LOBPCG with preconditioning for construction of low-pass
filters. LOBPCG is a very efficient eigensolver and gives
a fast solution to the spectral image segmentation problem,
see [15]. To avoid over-smoothing during noise removal,
LOBPCG must perform only few iterations.

Algorithm 3 below is a standard non-blocked version of
the preconditioned LOBPCG algorithm, which smooths the



input signal x0 with respect to the eigenmodes of the Lapla-
cian matrix L. If necessary, Algorithm 3 can be modified to
obey the constraint that the vectors xk must be orthogonal to
the vector e with all components equal to 1. The vector e is
the eigenmode corresponding to the zero eigenvalue of L.

Algorithm 3 LOBPCG method as a low-pass filter

Input: L, D, x0, and a preconditioner T
Output: xkmax

p0 = 0
for k = 0, . . . , kmax − 1 do
λk = (xTk Lxk)/(xTkDxk)
r = Lxk − λkDxk
wk = Tr
use the Rayleigh-Ritz method for the pencil L− λD

on the trial subspace span{wk, xk, pk}
xk+1 = wk + τkxk + γkpk

(the Ritz vector for the minimum Ritz value)
pk+1 = wk + γkpk

endfor

7. NUMERICAL EXPERIMENTS WITH THE
KRYLOV SUBSPACE-BASED POLYNOMIAL

ACCELERATION OF THE FILTERS

Our experiments have been done in MATLAB. We have com-
pared performance of the bilateral filter versus the CG ac-
celerated BF (BF-CG) filter versus the self-guided GF filter
for several one-dimensional signals. The clean 1D signal is
piecewise linear with steep ascents and descents. The noisy
signal is obtained from the clean signal by adding the Gaus-
sian noise 0.1 · randn(N, 1), where we test N = 500 in Fig-
ure 1 and N = 1000 in Figure 2, where N is number of
samples in the signal discretized on a uniform grid.

Figure 1 and Figure 2 display our test results comparing
500 iterations of the self-guided BF with the window width
equal to 3, 20 iterations of the self-guided GF with the MAT-
LAB default window width 5, and, finally, 20 iterations of the
CG accelerated BF, using the noiseless signal as a guidance
and the diagonal matrix D as the preconditioner.

In Figures 1 and 2, we observe high quality denoising by
all tested filters, both in terms of the average fit of the noise-
less signal and of preserving the signal details. We notice that
GF has a tendency to round sharp corners compared to BF and
BF-CG, which is not surprising, since GF performs extensive
smoothing on relatively wider neighborhoods. Interestingly,
GF error is strongly discontinuous on the signal edges, while
BF and BF-CG provide more conservative approximations.
Increasing the number of samples apparently makes the BF
and BF-CG errors smoother as can be seen comparing Fig-
ure 1 and Figure 2.

Miraculously all three filters give nearly the same error
with the reported parameters, which requires further investi-
gation and explanation.
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Fig. 1. Filters in 1D case: 500 points
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Fig. 2. Filters in 1D case: 1000 points

Our second series of tests deals with image denoising. We
use the 5-point stencil to generate the lattice for the graph
Laplacian matrix and the edge weights are determined by the
BF filter with σr = 0.1.

Twenty iterations are performed using the CG and LOBPCG
accelerated filters with and without the constraint. The quality
of denoising is similar improving PSNR from approximately
20 for the noisy image to approximately 21 for the filtered
images. The edges are well preserved but one can notice
forming salt and pepper noise, which gets more extensive
if the number of iterations is increased. Figure 4 compares
the BF filter with the window half-width 5 and bilateral filter
with the standard deviation σ = 0.1.



Fig. 3. Noisy versus clear image: gaussian noise, mean = 0,
variance = 0.01, PSNR = 20.1

Fig. 4. BF filter versus CG

Conclusions
We propose accelerating iterative smoothing filters such as the
bilateral and guided filters, by using the polynomials, gener-
ated by the conjugate gradient-type iterative solvers for lin-
ear systems and eigenvalue problems. This results in efficient
parameter-free polynomial filters in the Krylov subspaces that
approximate the spectral filters corresponding to the graph
Laplacians, which are constructed using the guidance signals.
Our numerical tests for one-dimensional signals demonstrate
the typical behavior of the proposed accelerated filters and
explain the motivations behind the construction. The tests

Fig. 5. LOBPCG with versus without the constraint

Fig. 6. LOBPCG with the constraint versus CG

showing image denoising reveal that the proposed filters are
competitive. Our future work will concern accelerating the
guided filters, testing the influence of non-linearities on the
filter behavior, and incorporating efficient preconditioners.
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