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ABSTRACT

We apply belief propagation to a Bayesian bipartite graph
composed of discrete independent hidden variables and dis-
crete visible variables. The network is the Discrete counter-
part of Independent Component Analysis (DICA) and it is
manipulated in a factor graph form for inference and learn-
ing. A full set of simulations is reported for character images
from the MNIST dataset. The results show that the factorial
code implemented by the sources contributes to build a good
generative model for the data that can be used in various in-
ference modes.

Index Terms— Bayesian Networks; Belief Propagation;
ICA;

1. INTRODUCTION

Bi-directional information flow in belief propagation net-
works is becoming a very popular framework in many signal
processing applications [1][2] because inference and learning
can be easily manipulated with a small set of rules. Gener-
ally Bayesian models aim at capturing the hidden structure
that may underly observed data through the assumption of
a network of random variables that are only partially, or
occasionally, visible [3].

Independent Component Analysis (ICA) is a popular sig-
nal processing framework in which observed data are mapped
to, or generated from, independent hidden sources variables
[4]. The variables are typically continuous and the transfor-
mation between sources and visible variables is linear. ICA
has been used in many applications for signal separation and
for analyzing signals and images [4]. ICA filters, trained on
real images, seem to converge to patterns that resemble the
receptive fields found in the neural visual cortex [5].

In this paper we explore the possibility of using the gen-
erative model of the ICA on discrete variables. The Bayesian
model is constrained to a finite number of discrete hidden
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sources (factorial code) that feed the visible variables, also
discrete. Even if there are computational difficulties that nat-
urally emerge in dealing with the product space of discrete
alphabets, we find that even limiting our attention to tractable
small sizes, the DICA framework clearly shows some poten-
tial in the applications, perhaps as a building block of more
complex architectures. Discrete Component Analysis (DCA)
has also been discussed by Buntine et al. [7] with reference
to different models.

We reduce the DICA architecture to a Bayesian factor
graph in the so-called reduced normal form (see [9] and refer-
ence therein) that includes only simple interconnected blocks.
We experiment with belief propagation on this architecture
using images extracted from the MNIST dataset [12]. We
show that the DICA network nicely converges after learning
to a generative model that reproduces accurately the image
set.

In Section 2 the Bayesian model is presented and in Sec-
tion 3 its discrete version is transformed into a factor graph
for belief propagation. The various modes of inference are
discussed in Section 5 and learning in Section 6. The simu-
lations for unsupervised mapping of the MNIST images are
reported in Section 6 with the addition of the label variable in
Section 7. The conclusions are in Sections 8.

2. THE BAYESIAN MODEL

Fig. 1. The Bayesian Graph for M independent sources
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Fig. 2. The Bayesian Graph for M independent sources after
the sources have been grouped (married).

In this paper we focus on the generative model depicted
as the bi-partite graph of Figure 1 with M independent
source variables S1, S2, ...., SM (hidden). The main vari-
ables X1, X2, ...., XN (visible), are connected to the source
variables via the factorization

p(X1X2...XNS1S2...SM ) =
p(X1|S1S2...SM )p(X2|S1S2...SM )
· · · p(XN |S1S2...SM )p(S1)p(S2) · · · p(SM )

(1)

Note that X1, X2, ...., XN to be conditionally independent,
must be conditioned on the whole set of sources, even if
their marginal distribution factorizes: p(S1S2...SM ) =
p(S1)p(S2) · · · p(SM ). This appears to be the most gen-
eral model for independent hidden sources that underly a set
of dependent variables X1, X2, ...., XN . When M = 1, the
system degenerates into a single-variable latent model [2].

One way of solving for the probability functions involved
in the Bayesian model is to group (marry) the source vari-
ables (parents) [8] as in Figure 2. Note that the Bayesian
graph does not show that the source variables are marginally
independent. This is made more explicit in the factor graph
representation that will follow.

2.1. Generative model for classical ICA

Independent Component Analysis is obtained when all the
variables x1, x2, ..., xN , s1, s2, ..., sM ∈ R and the condi-
tional probability density functions p(xi|s1s2...sM ) are con-
strained to depend on linear combinations of s1, s2, ..., sM .
More specifically, the typical assumption is that the linear
combinations contribute to the means of X1, ..., XN and
the dispersion around the mean is spherical and follows a
Gaussian distribution

p(xi|s1s2...sM ) = N (xi;a
T
i s, σ

2), i = 1, ..., N, (2)

where the vector s contains all the source values sT =
[s1s2...sM ] and ai is the ith column of the N × M co-
efficient matrix A = [a1a2...aM ] [5]. More compactly
p(x|s) = N (x;AT s, σ2IN ), where xT = [x1x2...xN ]. The

sources’ pdfs p(s1), p(s2), ..., p(sM ) can follow various dis-
tributions that go from uniform to laplacian [5]. Typically for
the model to be identifiable, the sources cannot be Gaussian
(except perhaps for one out of M ).

Unfortunately when ICA is used as a generative model it
is hard to produce realistic images even when experimental
densities are used as density sources [5]. Structured patches
are easy to obtain, but they do not resemble the complex struc-
tures found in natural images. The reason is that independent
continuous sources do not carry the necessary structure to as-
semble the ICA into the complex structures found in natural
images. We report a simulation in the following that seems
to confirm these results. Attempts have been made to use the
ICA in two-layer architectures [5]. However, it is not clear
how to properly include non linearities (without non lineari-
ties the whole system would still be linear) and investigations
in this direction are still in progress.

Fig. 3. The DICA model as a factor graph in reduced nor-
mal form. The shaded boxes represent the fixed matrices
P (S1S2...SM |Si), i = 1, ...,M . The unshaded boxes repre-
sent the conditional probability matrices P (Xj |S1S1...SM ),
j = 1, ..., N .

2.2. Discrete ICA

In this work we experiment on the unconstrained ICA model
with discrete variables. More specifically we assume that
both sources and visible variables take values in the finite dis-
crete alphabets S1,S2, .... ,SM , X1,X2, ....,XN , with sizes
|S1|, |S2|, ...., |SM | and |X1|, |X2|, ...., |XN |.

The difficulties in dealing with such a model are clearly
related to the computational complexity in the manipulation
of the product space S = S1 × S2 × ... × SM , that has
size |S| = |S1||S2| · · · |SM | (Figure 2). However, we find
that even limiting our attention to small dimensionalites, i.e.



to few source variables and to small alphabets, the frame-
work applied to natural images reveals quite interesting re-
sults. Furthermore, the basic architecture can be used as a
building block for more complicated multi-layer Bayesian ar-
chitectures (not discussed in this paper).

3. DICA IN REDUCED NORMAL FORM

Probability propagation and learning for the graph of Figure
1 can be handled in a very flexible way if we transform the
model into a factor graph as in Figure 3. The graph is in
the so-called reduced normal form (see [9] and references
therein), that is composed only of one-to-one blocks, source
blocks and diverters (these are equal constraint blocks that
act like buses for belief propagation). One-to-one blocks are
characterized by a conditional probability matrix and sources
by a probability vector. We have often advocated the use of
such a representation because it can be handled as a block di-
agram and it is amenable to distributed implementations. We
have also designed a Simulink library for rapid prototyping
[10].

More specifically for the DICA model, the source vari-
ables, that have prior distributions ΠS1

, ... ΠSM
, are mapped

to the product space via the fixed row-stochastic matrices
(shaded blocks)

P ((S1S2...SM )(1)|S1)

= |S1|∏M
i=1 |Si|

I|S1| ⊗ 1T|S2| ⊗ 1T|S3| ⊗ ...⊗ 1T|SM |,

P ((S1S2...SM )(2)|S2)

= |S2|∏M
i=1 |Si|

1T|S1| ⊗ I|S2| ⊗ 1T|S3| ⊗ ...⊗ 1T|SM |,

.....
P ((S1S2...SM )(M)|SM )

= |SM |∏M
i=1 |Si|

1T|S1| ⊗ 1T|S2| ⊗ 1T|S3| ⊗ ...⊗ I|SM |,
(3)

where⊗ denotes the Kronecker product, 1K is aK-dimensional
column vector with all ones, and IK is the K × K iden-
tity matrix. The conditional probability matrix is such that
each variable contributes to the product space with its value
and it is uniform on the components that compete to the
other source variables. The blocks at the bottom of Figure
3 represent the |S| × |Xj | conditional probability matrices
P (Xj |S1S2...SM ), j = 1, ..., N , that with the source prior
distributions are typically learned from data. Information
flows in the network bi-directionally: for each branch vari-
able there is a forward (f ) and a backward (b) message, which
are (or proportional to) discrete probability vectors. Messages
are usually kept normalized for numerical stability. The vari-
ables connected to the diverter represent a replicated version
of the same variable, but they all carry different forward and
backward messages that are combined with the product rule
[11]. Propagation through each one-to-one block follows the
sum rule which in the variable direction is the matrix multi-
plication fout = P (out|in)T fin (already normalized) and in

the opposite direction b′in = P (out|in)bout and bin =
b′in∑
b′in

(normalization). After propagation for a number of steps
equal to the graph diameter (if there are no loops), posterior
probability p for a variable branch can be computed with the
normalized product p = f�b∑

(f�b) (� denotes the element-by-
element product of two vectors). For the reader not familiar
with this framework, it should be emphasized that these
simple rules are rigorous translation of marginalization and
Bayes’ theorem [11].

4. INFERENCE IN THE DICA GRAPH

The flexibility of this framework allows the use of the factor
graph of Figure 3 in various inference modes. Information
flow is bi-directional and assuming that all the parameters
have been learned and that the unspecified messages are ini-
tialized to uniform distributions, we can use the DICA graph
in:
(1) Generation: Source values are picked and are injected as
forward delta distributions at S1, S2, ..., SM . After three steps
of message propagation, the forward distributions are col-
lected at the terminal variables X1, X2, ..., XN . They are the
(soft) decoded version of the source values. Note that these
are distributions that are typically displayed as their means or
their argmaxes (see simulation results in the following).
(2) Encoding: Observed values for X1, X2, ..., XN are in-
jected as delta backward distributions at the bottom. After
three steps of message propagation, the backward distribu-
tions are multiplied with the forward at S1, S2, ..., SM . The
normalized result is a (soft) factorial code of the input. The
set of argmaxes of these distribution is the MAP decoding of
the input.
(3) Pattern completion: Only a subset of values forX1, X2, ...
, XN is available (there are erasures). The available values are
injected at the bottom as delta backward distributions. For
the missing values uniform densities are usually injected. Af-
ter three steps of message propagation, forward distributions
are collected at the bottom variables. For the observed vari-
ables the forward-backward products return just the deltas
on the observations and provides no new information. At
the unknown variables, the forward distribution is our best
(soft) knowledge of that variable. Here too the means or the
argmaxes can be used as a final result. The inference on the
erasures is the synthesis of the information coming from the
observations and the priors.
(4) Error correction: Available values for X1, X2, ..., XN

may contain errors. They are presented as backward delta
distributions at the bottom variables. After three steps of
message propagation, forward distributions (or their means or
argmaxes) are collected and used as corrections. No product
with the backward is applied here because we do not know
which component is reliable. In a similar scheme the values
forX1, X2, ..., XN may be known softly via distributions that
are injected at the bottom as backward messages.



Note that in both (3) and (4) also coded versions of the
observations are available at the source branches.

5. LEARNING IN THE DICA GRAPH

To train the DICA system, we assume that a set of T examples
is available for the visible variables (x1[n]x2[n]...xN [n]), n =
1, ..., T (training set). Learning the system matrices for the
bottom blocks and the vectors for the sources, is performed
using an EM search. Various algorithms can be used, all
inspired by a localized maximum likelihood cost function.
The iterations are confined to each block and use only locally
available forward and backward messages. Details on the
learning algorithms for the factor graph in reduced normal
form have been reported elsewhere and are omitted here for
space reasons (see [6] [9] and references therein).

Fig. 4. Distribution means generated by the factorial code for
increasing number of sources (M = 1, 2, 3, 4, 8). The bars
show the learned source priors.

6. DICA SIMULATIONS

We report here a full set of simulations on the MNIST data
set [12]. We have reduced the images to 28 × 28 binary pix-

els and extracted 500 images as our training set. In a first set
of experiments we train the architecture of Figure 3 with all
binary variables: Xj = {x0, x1}, j = 1, ..., N (N = 784);
Si = {s0, s1}, i = 1, ...,M , for various number of sources
M = 1, 2, 3, 4, 8. During learning the 500 images of the
training set are presented as backward delta distributions on
X1, ..., XN , one time, with 5 cycles inside each block (the
maximum likelihood algorithm inside each block is iterative
[9]). Therefore for each order M we obtain the conditional
probability matrices P (Xj |S1...SM ), j = 1, ..., N , and the
prior distributions πS1

, ..., πSM
.

Generation: Figure 4 shows, for increasing M , the means
of fX1 , ..., fXN

when at the sources we inject the 2M bi-
nary configurations in the forward messages fS1

, ..., fSM
.

Reported in the picture are also the learned priors. We note
that, for larger number of sources, the product space (sizes
2,4,8,16,256), corresponds to increasingly accurate pattern
memorization. For some characters, that are different in
shape, the system builds separate representations. The source
variables, independent by definition (factorial code), learn
marginal distributions progressively less uniform as the num-
ber of sources increases (recall that the vector that represents
p(S1, ...., SM ) is the Kronecker product of the individual bi-
nary distributions and that even small non uniformities in the
priors cause p(S1, ...., SM ) to be highly non uniform).
Encoding: Figure 5 shows the typical results of presenting to
the DICA graph of Figure 3, with M = 8, images from the
test set (i.e. not included in the 500 images used for training)
as backward delta distributions at X1, ..., XN . In the third
column the posterior distributions at the sources are shown
(only the probability on the symbol s1 is depicted). Here the
DICA graph acts as an Encoder: the (soft) binary configura-
tions are the factorial code of the presented images. Note that
not all the codes are sharp. In the second column the mean of
the forward distributions at X1, ..., XN is also shown.
Decoding: In Figure 6 the same DICA graph is used as a soft
decoder when smooth and sharp distributions are injected at
the sources.
Pattern completion: Figure 7 shows the results of the same
network when as backward at X1, ..., XN we present images
(from the test set) with 50 % of the pixels removed. For the
erased pixels a backward uniform distribution is presented.
The third and the fourth columns report the mean for the for-
ward and the posterior distributions respectively. The network
fills-in rather well the missing parts.

6.1. Continuous ICA on the same dataset

The natural question at this point is whether with continu-
ous ICAs it would be possible to obtain similar results. The
model is clearly very different, but on the same data set we
have attempted a comparison. On the 500 MNIST images of
the training set we have computed ICAs using the Fast ICA
algorithm available for Matlab [13]. We have retained only



Fig. 5. Encoding of some images from the test set. Col. 1: im-
ages presented as delta backward distributions. Col. 2: means
of the forward distributions. Col. 3: posterior probabilities at
the sources (the bars represent [pS1

(s1)...pS8
(s1)]).

the first 8 components (largest variance) and estimated the
output densities using average histograms. Random samples
from these densities are used to generate the images though
the inverse ICA [14]. Figure 8 shows the 8 masks and some
generated images. The results confirm that, even if the ICA
nicely represent bases for the data, with unconstrained inde-
pendent samples at the sources, only average structures are
generated. We have also tried with larger number of compo-
nents and the obtained images look very similar. These results
seem to be consistent with other experiments presented in the
literature [14] for patches of natural images where only aver-
age textures are obtained. The linear ICA with independent
unconstrained sources do not seem to be a generative model
that preserves the structured composition of the training set.

7. DICA FOR CLASSIFICATION

The great flexibility of the factor graph framework allows
to extend easily the architecture of the DICA graph to the
one shown in Figure 9 where also a label variable C is in-
cluded. The variable C belong to the finite alphabet C =
c0, c1, ..., c9 and it is attached directly, through a conditional
probability matrix P (C|S1, ..., SM ), to the product space di-
verter. Diverters in the reduced normal form act like proba-
bility pipelines [9].

Simulations have been performed on the same MNIST
training set of 500 binarized images in the same mode as in
the unsupervised experiments with the addition, during train-

Fig. 6. Decoding for smooth forward distributions at the
sources (in the brackets the probabilities [fS1(s1)...fS8(s1)])

Fig. 7. Pattern completion of images from the test set after
50% removal.

ing, of the label information as a backward delta distribu-
tion. All the blocks, including now the probability matrix
P (C|S1, ..., SM ), are trained for M = 8. On the learned
network, a typical recognition task on two images from the
test set is shown in Figure 10. The bar graph represents si-
multaneously classification and encoding. Note how in the
first row the network is naturally confused between c4 and c9.

A generative experiment is also performed on this archi-
tecture with backward delta distributions injected at C. The
results are shown in Figure 11. The images are the mean for-
ward distributions at X1, ..., XN and could be considered as
the prototypes for the ten labels. The bar graphs are the cor-
responding simultaneous encoding at the sources.



(a)

(b)

Fig. 8. Continuous ICA comparison: (a) 8 ICA masks for
the Training Set (b) 8 generated images using at the sources
random values drawn from estimated output histograms.

Fig. 9. The DICA model for classification

8. CONCLUSIONS

The simulations on the MNIST dataset with binary sources
show that belief propagation in the DICA architecture, also
with the addition of the label variable, provides a unified
framework in which image data can be coded, generated and
corrected in a very flexible way. We have also experimented
on natural images on quantized patches obtaining very simi-
lar results, also when the sources have alphabet sizes greater
than two. These results will be reported elsewhere. We are
currently pursuing the use of this framework for building
multi-layer architectures.
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