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ABSTRACT

Matrix factorization is a key component of collaborativefiing-

Kush R. Varshney, and Liu Yang
Mathematical Sciences Department

IBM Thomas J. Watson Research Center
Yorktown Heights, NY 10598 USA

[1,[2,[3,/4]. In these approaches, the rows of the data maprer

sent the users and columns the items. Such approaches w&e a st

space model to capture temporal dynamics, where the state is

based recommendation systems because it allows us to dempleset of user factors, and typically use a restrictive clasnafels to

sparse user-by-item ratings matrices under a low-rankngsson
that encodes the belief that similar users give similangsiand
that similar items garner similar ratings. This paradigns had
immeasurable practical success, but it is not the compleey s
for understanding and inferring the preferences of peoptéast,
peoples’ preferences and their observable manifestatismatings
evolve over time along general patterns of trajectoriecoBé, an
individual person’s preferences evolve over time througtuénce
of their social connections. In this paper, we develop a edifiro-
cess model for both types of dynamics within a state spaceapp,
together with an efficient optimization scheme for estimrativithin

model dynamics (typically linear), and errors ( typicallp@sian),
to allow for standard estimation techniques based on then&al
filter. Scalability is an important issue in all approach&sboth the
state space and measurement space can be quite large.

Two contributions of this paper are (1) relaxing restringaf
previous work on dynamic matrix factorization by allowingvide
variety of nonlinear and non-Gaussian state space modeds(2)
showing how to design tractable and scalable inferencediget
scale problems. We build on the optimization viewpoint ornkan
smoothingl[5], stepping away from the forward-backwardirsion
that is typically used and instead formulating a singledargtimiza-

that model. The model combines elements from recent develojon problem to be solved using quasi-Newton algorithms.

ments in dynamic matrix factorization, opinion dynamics ancial

learning, and trust-based recommendation. The estimatidds

upon recent advances in numerical nonlinear optimizati&m-

pirical results on a large-scale data set from the Epinioabsite

demonstrate consistent reduction in root mean squared byro
consideration of the two types of dynamics.

Index Terms— Social network, dynamic inference
1. INTRODUCTION
In many applications, there is a population of learning fBots,

which we might suppose share an underlying distributiorreiosh-
erwise correlated. In the collaborative filtering settifay,instance,

each user has a set of items he or she prefers and the fachthat o

user prefers items A and B increases our confidence that wers
prefer item A also tend to prefer item B. Similar types of teth
ness also arise in social media contexts. There are now rasge |
and highly-successful online communities, where each caerbe
modeled as a learning problem (for instance, for selectilvgrise-
ments, search results, or restaurant recommendatiorgs}hare is
significant benefit to be found in the correlations and paste¢hat
extend across users. However, there is every reason tocsubpe
the same connections between learning problems that akuaterb
group models in the static case can also help in the dynarttinge
as well. For instance, we might suppose that the driftingaieins of
the learning problems are also correlated, and this ceizalaan be
used to model the group’s drift, before adjusting to eaclividdal
member.

The third contribution is to incorporate dynamic phenomina
user behaviorsocial influencewhich is separate from the general
group-level user rating trajectories captured in the termpmodels
of [1,12,[3,4]. A person may eat at a restaurant with a menuhat
or she does not much fancy if a group of friends has decidedtto e
there. A legislator may vote for a bill sponsored by a seceqésla-
tor if that second legislator voted for a past bill sponsdrgthe first
legislator. In general, a person’s emotions, preferengpiions,
decisions, and actions are affected by other people. Soflia¢nce
includes conformity, compliance, and obedience as varnoasifes-
tations. Opinion dynamics and social learning are modelshiese
types of effects as they evolve over timel[[6, 7]. Social infleesin
recommendation via opinion dynamics has been consider{g],in
but not within the matrix factorization paradigm.

We tackle the challenge of modeling social influence in a edifi
manner with dynamic matrix factorization by incorporatagegu-
larization term for the dynamics that can easily incorpaiatown
social influence structure via the graph Laplacian. In paldir, we
assume that we are able to observe the existence of sociaécon

tions among users as a graph at all times. Such data can be ex-

tracted from websites such as Epinions in which users fdyldie-
clare which other users they trust. Given the observed testigo
evolving social influence graph, we include a regularizatesm that
imposes the belief derived from opinion dynamics and sde&ain-
ing theory that future preferences of a user should be singléhe
preferences of users that he or she trusts. Mathematithiyis
encoded using the Laplacian of the social influence graplth &u
term has been used previously in static, but not dynamitingst
to impose similarity[[8_10]. We are able to include this tento

This perspective has led to the extension of static matrixhe overall formulation because of the flexibility affordexus by

factorization-based approaches for recommendation torpoe
rate rich temporal models of the change in preferences aver t
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the optimization viewpoint on Kalman smoothing; it would have
been able to be included otherwise.
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Our use of the trust graph to inform recommendation shanes si
ilarity with recent papers such as [11] 12} [13, 14], but tHosmula-
tions are for the static, not dynamic, setting. Moreoveg, 2phecific
way in which the social influence graph affects the objedtidiffer-
ent than our formulation. The evolution of the trust grapkraime
is analyzed in[[1B3], but the temporal insights are not useettly in
the recommendation task.

The final contribution herein is an experimental study on-rea
world large-scale ratings data that shows how including kibe
general preference trajectory dynamics and the more ihaiized
social influence dynamics to improve predictive accuragypdrtic-
ular, we conduct the study on data from the Epinions web8iee,
only available large, real-world data we know of containintime-
varying trust graph along with the more typical time-vagimser-
item ratings matrix. We show an improvement in root mean sgfua
error (RMSE) of dynamic matrix factorization with sociaflirence
for a large range of choices of the rank parameter (numbercodfs)
in the matrix factorization.

2. BACKGROUND

In this section, we review static factorization, and show tto ex-
tend from static formulations to dynamic matrix factorinat

2.1. Notation and Static Matrix Factorization

Suppose we are interested in the preferences asers forn prod-
ucts, where some users have expressed their preferencesnfier
products, stored in the vecter € R?, with 1 < p < mn. Let
R € R™*™ denote the full matrix listing all preferenceg, is ob-
served only through the dataset

z=A(R),

whereA is an operator fronR™>*"™ — RP.

Factorized matrix formulations look for a low rank represen
tion R = UVT, whereU € R™** andV ¢ R"**. The ap-
proach requires the modeler to select the latent dimerfsidppi-
cally £ << min(m,n).

and then explain the initialization procedure we use poaritering
the dynamic phase.

2.2. Dynamic Matrix Factorization

Datasets that track product preferences have a longitistingture,
as users continue to evaluate products in time. We are miast in
ested in dynamic settings where changes in user prefereacdse
modeled. The symmetry @f andV in () is therefore broken; in-
deed, we are much more interested in modeling and infereéhcseo
dynamicsso we focus orJ.

The general dynamic model is as follows. We assume our
dataset has a natural representation oMerobservation times,
t1,...,tn. We assume thal/; is an unknown time series (total
sizem x k x N) to be determined, and define some process transi-
tion matrix G, aknown linear procesthat describes the transition.
The modelsV; can be estimated e.g. by solvig (1) independently,
or obtaining an averaged modélover N time points.

TreatingU: as the unknown state aid as a known measure-
ment model, we arrive at the linear model

Uir1 = GiUs + €,

ze = Ay (UtVtT) + vt ®)
wheree; describes process noise, ande RP* is observation noise
with known covariance matri%;. Note that dimensions of observa-
tion vectorsz; can vary between time points, hengec RP*.

One of our main contributions is to define an appropriate hode
G+ that can capture inertia, or smoothness, in user prefesencel
combine it with measurement information and social trustfoBe
we discuss the dynamic model, we review how information &bou
influence can be brought to bear on the inference problem.

2.3. Initialization Procedure

Inference over the dynamic modEl (3) is a convex probledlin},

as long ag(V;} are assumed fixed. However, to obtain these mea-
surement model®;, we need to initially factor each matri; into
form U;V;. The key idea here is to extrakt, which then become

The factorized representation allows a fast computation opart of the fixed measurement model, as we tidgk

A(R). Note that
Rij = (Ui, V),
an inner product between two vectors of lendth Therefore,
A(UVT) can be computed in exacthp operations, which is a key
point for tractable approaches in large-scale settings.
Optimization formulations to obtain factok§ 1 are of the form

I[Ijll‘I/lp (z — A(UVT)) + ¢1(U) 4+ ¢2(V), 1)

To obtain the factorizatio®, ~ U, V,* , we follow the approach
of [18], and solve the problem

1
min —
U, Vi 2

s.t.||b — AU V)2 < 0.
using publicly available code. Formulatidd (4) controls tjuality

of factorization by means of both the rakkof the factors, and the
regularizer} (||Ue|% + ||V2]|%); itis well known (see e.g.[ 16, 17])

2 2
(el + IVell7) @

wherep is a measure of misfit between observed and predicted dathat

(often least squaresp; and¢- are regularization penalties, and

AWUVT) = A(V @ I)vec(U), 2

. 1 2 2
R|. = f = (U7 + ||V .
1Bl = inf > (10 + (V)

Therefore, every solutiofi,, V; corresponds tdt; = UV, with

with A € RP*™" g sparse mask that selects the observed entries antR: ||« < & (|U¢||% + |V¢||%), where(TU, V) minimize the Frobe-

vec the vectorization operator.

Problem[(1) is nonconvex, but has been tremendously sifatess

in practice. Factorization-based approaches allow medrixpletion
for extremely large-scale systems by avoiding costly SV gota-
tions [15/16[ 1/7. 18].

nius norm over the set
{U, Vi 2 |Ib— AUV )||l2 < o}

Thus, even if the rank is picked to be too large, the formulatidg (4)
maintains control of model complexity through minimizitgtfunc-

While we are interested in dynamic settings, we use an approa tional. We performed our experiments over raiks: 5, 10, 15, 20

analogous td{|1) to initialize our (convex) dynamic infarerfiormu-
lation. In the following section, we detail the dynamic faration,

(see in FigureEIZ35), and the static RMSE (obtained fromrtitiali
factorization[[#)) is slightly increasing ik but does not vary much.



2.4, Similarity Using the Graph Laplacian

Our main goal is to incorporate the effect of social trust banges

in preferences. In particular, suppose that for each tinmg poe are
given matrices¥V, € R™*™ that encode the trust/influence between
users. Recall that degree matrices corresponding/taare given
by diagonalD; € R™*™, with d;; = >_7'_, w,, while graph
Laplacian matrice€; are defined by., = D; — W,.

We want to look for solutiong/; that are more consistent with
relationships encoded h¥,, which makes it more likely for pref-
erences users with mutual trust to evolve in a mutually cbest
manner, i.e. along level sets of the following functional:

oe(Uy) = tr (UELtUt) . (5)

The key missing detail is continuity in preferences; or sqner
on thesmoothnesef preference changes over time. In the next sec
tion, we show how to incorporate this notion in order to tralgk
namic preference systems of forf (3).

3. PROPOSED FORMULATION

To capture thesmoothnessr inertia of user preferences over time,
we use a model common to physical systems. In particular,osé p
the existence of gelocitystatelU, together with a simple integration
model to linkU andU':

ol -l

This model is frequently used for smooth systems in dynanfiri
ence [[5]. Pairs of elementd/.(i, j), U: (¢, 7)) are pairwise corre-
lated with known covariancé [19]

Note that our state is no longer jugt and model{B) doubles the
state space. However, the dynamics are so simple that thitha
tle effect on computational complexity when properly impented.
We now specify the full dynamic model, starting with the digfin
relationship between the state variableand the dynamic prefer-
enceq U, Uy):

Ty i= vec (

U t

Lo U} +tw, w~N0,Q).  (6)

dt 1

U t+1
U

dt  dt?/2

dt?/2  dt*/3 )

o-|

Ut
U

ze+1 = (Ge + Zt)fﬂt +e, €~ N(0,Qx),
zt = Hixy + vy, Ve~ N(070’2—Ipp)7 (8)
I 0 = 0 O
Gf*{At I}’ Lt*{o Lt]’

Ho=AV,@D)[0 I]x,

where
Qt = Q by I(m+n)k

for Q in (@), and we have used the characterization (2) toieixyl
write Hy.

4. ESTIMATION METHODOLOGY

In order to write down the full time series smoothing probjene
use the following definitions:

Q=diag({Q:}) = = vec({z:})

H = diag({H:}) w = vec({go,0,...,0})
£ = diag({L:}) z = vec({z1,22,...,2N})
1 0
G — -Gy I
. 0
-Gy I

wherego := g1(z0) = Gixo. Using this notation, the full smooth-
iing problem can be written

. 1 1 A
min f(z) = o [Hz — 2|” + 5 |Gz — wl[g-1 + 52’ La. (9)

We have now cast the problem as a very large and extremely
sparse least squares system. This formulation incorpobatth the
inertial information from[(B) and effect of social inferenfrom [3).
The parameten controls the relative influence of each modeling
component, and its effect can be seen in Figulg$ 2-5.

We also want to allow the flexibility to replace the procesd an
measurement penalties by more robust variants, includiagHu-
ber loss and other loss functioris [20]. Modelers may als@sto
to place simple constraints or regularizers on the statiahlarz.
Therefore, rather than focusing on the linear sysi€if(z) = 0,
we treat[[D) as a general optimization problem, focusingamum-
plexity analysis on gradient computation. The compligatiactor
to any approach is the systeth From [3), it clear that forming{
explicitly is equivalent to computing

2z = AU VD)

by first formingU, VT at each time point and then applying a sparse
mask, which has complexit®(mnp), and is intractable even for a
single time point! In contrast, as discussed earlier, cdingu: by
exploiting structure has complexity(pk), which can be done very
quickly. Therefore, we are forced to sol¥é (9) using onlyimefree
methods (i.e. methods using matrix-vector products).

4.1. Complexity of Gradient Computation

We can proceed to minimizE](9) using matrix-free methodssiife
plify the analysis, we assume that we will use gradient-thaxsti-
mization, such as steepest descent or L-BEGS [21], and centipel
complexity of each gradient computation.

The gradient of{{(9) is given by

%’H,*(Hz —2)+G Q7 (Gx — w) + A La.

The systeng; is block lower bidiagonal, with identity matrices
on the main block, and G blocks on the subdiagonal block. There-
fore, G has three nonzero diagonals, and so applgnor G has
costO(Nkm), whereN is the number of time stepk,is the chosen
rank of U, andm is the number of users. The matrg is block
diagonal, and its inverse can be computed and appli€d(Nmk)
operations.



Next, £ is block diagonal, containing zeros and sub-blo€ks
Each matrixZ; is given byD, — W, whereD, is diagonal, andV;
represents influence information, and is typically spalte.is the
average number of nonzero entries of the influence méitixthen
applying £ has complexityO(N (m + q)k).

Finally we considerH{. The number of measurements can
change between time points, but letbe the average number of
measurements. Since each measuremoan be computed from
the faCtOl’iZatiorUt‘/tT byasingle inner prOdUCt |ﬁ)(k),We can
apply# andH* in O(Nkp) operations. @ (b)

The final complexity is then given b (Nkm + Nkp +
NEk(m+q)) = O(Nk(m +p+ q)). In particular, it scales linearly
with the number of time step¥, and the chosen rarik Moreover,
the number of products affects the complexity only though the
observed data points (the number of observations should with
bothm andn to get meaningful inference). This complexity is rea- ] ) ) o )
sonable, sinc®(Nkm) is required simply to update the decision ratings withk = 5 anq static matrix factorlzgtlon on the entire set of
variablez. Furthermore, it would not change if we replaced the least” = 22164 users (without any training/testing split). A key thing to
squares penalty with another smooth penaltadditional steps to  Notice is that the sets of edges do not intersect much, sigothat
evaluateV p would requireO(Nkm) operations for the process and the trust relationships and the ratings do in fact providempemen-
O(Np) for the measurement. Similarly, any separable regularizef"y information.
or constraint onc would require either a®(/Nkm) operation or
O(Nkmlog(Nkm)) evaluation to complete.

Fig. 1. (a) Trust relationships and (b) rating similarity above a
threshold among 500 random users at 2.

5.2. Experimental Setup and Results

5. EMPIRICAL RESULTS We split the ratings data randomly within each of the 11 titeps
into 50% training and 50% testing. This split is maintainedoas

In this section, we demonstrate the value of the proposecehigd @l experimental settings. We compare three different risodlin-

using it to estimate ratings in a data set from the Epinionissite. creasing expressibility: static matrix factorization épendently for
each of the time steps, dynamic matrix factorization usiadnian

L smoothing, and dynamic matrix factorization with socidllence.
5.1. Description of Data Set We learn the factors using the estimation procedure destitbSec-

Epinions was a general consumer review website launchegiga 1 tioni on the training set and then multiply the learned fescoit to
and active until March 2014, whose rating and reviewing eont complete the matrices. We calculate the average RMSE oreste t
was compared favorably tGonsumer ReporisUsers entered nu- Set, weighted by,. Both of the dynamic matrix factorizations re-
merical ratings on a one to five scale and text reviews of mtsdu 9uire a knownV; for each time; we use thg; obtained from the
and services across a large number of categories, and mnggrt  Static matrix factorizations. We examine the performanicéoar
for this work, the site included community features throwgich ~ different values of the number of latent factoks= 5, 10, 15, and
users could indicate which other users they trusted. 20. In the dynamic matrix factorization with social influenaeg
The numerical ratings for all users and items along with the d  COnSider relative weight between the smooth trajectory @nd the
of posting were scraped as part of the work of [13]. Trust ansted SO(EI4a| |nf1Lgence term across several orders of magnitde:10™7,
relationships were also scraped along with the day theioegtip 10" > 1077,0.01,0.1, and1.. . . . N
was established. Parsed versions of the raw data and theataw d ~ The results are plotted in Figuiield 25 with each figure giveag
itself are made available by the auth@réinfortunately the parsed Sults for a different value . The plots are given as a functionof
data does not contain a dictionary of user ids that wouldhals to with the static matrix factorization and dyamic matrix fagtation
connect the ratings for a user with his or her trust relatigrs and ~ being constant because the respective models do not contdine
thus we reparsed the raw data. We limited ourselves to uséns w first thing to notice is that except fdr = 5, the error of dynamic
more than ten ratings. matrix factorization is smaller than the error of static rafactor-
Through our parsing, we obtained ratings data from July 8919 ization. This behavior recapitulates existing work on dyi@matrix
to May 9, 2011 constitutings = 22164 users,, = 305301 prod- factorization on a large-scale data set.kAt 5, the number of fac-
ucts, and> p; = 975449 ratings. We also obtained trust rela- tOrs is so small that the dynamic model is unable to reallyes®
tionship data from January 17, 2001 to April 19, 2011 coustit itself. Ask increases, the error of the static model increases whereas

ing 264022 undirected edges created. We quantized the tites the error of the dynamic model continues to decrease. Whée t
N = 11 bins using the same cutoff values &s|[13]. The data is eximprovement in RMSE of the dynamic model over the static rhode

tremely sparse. may seem small at first glance, as discussed_ by [13], impremtsm
We plot the trust graph for 500 random users on one of the tim@f the order of magnitude we see are in fact quite valuable.
steps in Figurﬂl(a). (If we plot more users, then it is hardee Now let us turn to the model with the social influence compo-

anything_) There is some structure to the graph’ but most e nent. We see that the performance behavior as a functionofs
not connected. For comparison, in Figlire 1(b), we plot alycam- ~ €xpected from the structural risk minimization principl€here is
taining edges between users that have similar ratings. ifRjadly, ~ large error caused by overfitting at the very large value\ of 1

this similarity is computed from inner products of compteteatrix ~ and an optimal performance at an intermediate valug afound
0.01, perhaps a bit larger fdt = 5. In practical operation) could

1Epinions data is available/Bt tp: //www. jiliang.xyz/trust .htmibe determined by cross-validation. Models with small valog
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Fig. 2. Test accuracy fok = 5 factors.

perform like the dynamic matrix factorization without salcinflu-
ence as they should. The main thing to notice is that for qpjate
choices of), inclusion of the social influence term noticeably im-
proves the performance of ratings prediction. This is tre®ss a
wide range of choices fdr and\. Among the values we tested on,
the best RMSE was 3.2783 far= 15 and\ = 0.01, whereas the
best RMSE for the static model fér = 5 was only 3.3352. From
this analysis, it is apparent that the evolution of peopteéferences
really is caused by two different phenomena, one generaloaed
individual based on social learning.

6. CONCLUSION

In this paper, we considered dynamic modeling of user peefas
for products, and developed a framework that incorporatest te-
lationships into these dynamics. The framework allows tloeeter
to combine observed preference ratings with three sakatifes of
preference dynamics: 1. Low rank structure: evolving peafees
are described by hidden latent states; 2. Time continuatgrnit vari-
ables controlling preferences change smoothly in time;r8stlbe-
tween users: users influence each other through sociabredatps.
The approach is initialized by obtaining estimates of lagtates for
each time point where data are available, and then is cast@wex
dynamic smoothing problem over the observed period.

For large-scale data, computational complexity becomesya
consideration. Maintaining or explicitly forming any stture in the
user-product space is prohibitively expensive. We casirifeeence
problem as a structured objective formulation, with motemm-
plexity of O(Nk(m + p + ¢q)) operations per gradient evaluation,
where N is the number of time periods observédjs the chosen
rank of the latent variables, is the number of userg, is the aver-
age number of preference observations per time pointgdadhe
average number of edges in the trust graph.

Numerical experiments showed that incorporating influence

graph information into the process model can yield scieatiify
significant improvements in RMSE. The approach requiremtua
trade-off parametek, that controls the balance between continuity
of preferences across time and trust-graph relationships.

4.4 i i
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Fig. 3. Test accuracy fok = 10 factors.

In this work, the social influence or trust relationships abe
served and available as a graph at each time step. One diiréoti
future work is to pose a model and estimation procedure irchwvhi
we simultaneously infer the social influence graph as pahestate
and include a forward model of its time evolution based omties
of opinion dynamics. This direction of research relateshtogocial
radar method of [22] and will have to deal with issues of itfext
bility. Moreover, A can be made time-varying and a part of the state
to be estimated as well.

A significant model enhancement is to consider the case bf bot
U, andV; being parts of the state having smooth forward trajectories
to be estimated, rather than orily being estimated witly; fixed in
advance. Such an option introduces a highly nonlinear nneamsant
model that cannot be handled by any typical Kalman smootapig
proach, but can be handled by the optimization apprdach 23]
ferent choices for noise distributions, such as heavedaines for
robustness, and solution preferences, such as sparsitysdied in
Sectior B, may be considered as well.

One direction forward for computationally improving thetiep
mization is to replace the gradient-based iterations watvtdn iter-
ations that include the Hessian of the objective[in (9), Whiould
need to be calculated in a matrix-free way. Numerical expenits
with synthetic data generated based on social theoriesgahara-
tion, choice, and influence may be enlightening.
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