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ABSTRACT

Scattering Transforms (or ScatterNets) introduced by Mallat
in [1] are a promising start into creating a well-defined feature
extractor to use for pattern recognition and image classifica-
tion tasks. They are of particular interest due to their archi-
tectural similarity to Convolutional Neural Networks (CNNs),
while requiring no parameter learning and still performing
very well (particularly in constrained classification tasks).

In this paper we visualize what the deeper layers of a
ScatterNet are sensitive to using a ‘DeScatterNet’. We show
that the higher orders of ScatterNets are sensitive to complex,
edge-like patterns (checker-boards and rippled edges). These
complex patterns may be useful for texture classification, but
are quite dissimilar from the patterns visualized in second and
third layers of Convolutional Neural Networks (CNNs) - the
current state of the art Image Classifiers. We propose that
this may be the source of the current gaps in performance be-
tween ScatterNets and CNNs (83% vs 93% on CIFAR-10 for
ScatterNet+SVM vs ResNet). We then use these visualization
tools to propose possible enhancements to the ScatterNet de-
sign, which show they have the power to extract features more
closely resembling CNNs, while still being well-defined and
having the invariance properties fundamental to ScatterNets.

Index Terms— ScatterNets, DeScatterNets, Scattering
Network, Convolutional Neural Network, Visualization,
DTCWT

1. INTRODUCTION

Scattering transforms, or ScatterNets, have recently gained
much attention and use due to their ability to extract generic
and descriptive features in well defined way. They can be used
as unsupervised feature extractors for image classification [2,
3, 4, 5] and texture classification [6], or in combination with
supervised methods such as Convolutional Neural Networks
(CNNs) to make the latter learn quicker, and in a more stable
way [7].

ScatterNets have been shown to perform very well as
image classifiers. In particular, they can outperform CNNs
for classification tasks with reduced training set sizes, e.g.
in CIFAR-10 and CIFAR-100 (Table 6 from [7] and Table 4
from [4]). They are also near state-of-the-art for Texture Dis-
crimination tasks (Tables 1–3 from [6]). Despite this, there

still exists a considerable gap between them and CNNs on
challenges like CIFAR-10 with the full training set ( 83% vs.
93%). Even considering the benefits of ScatterNets, this gap
must be addressed.

We first revise the operations that form a ScatterNet in
Section 2. We then introduce our DeScatterNet (Section 3),
and show how we can use it to examine the layers of Scat-
terNets (using a similar technique to the CNN visualization
in [8]). We use this analysis tool to highlight what patterns
a ScatterNet is sensitive to (Section 4), showing that they are
very different from what their CNN counterparts are sensitive
to, and possibly less useful for discriminative tasks.

We use these observations to propose an architectural
change to ScatterNets, which have not changed much since
their inception in [1]. Two changes of note however are the
work of Sifre and Mallat in [6], and the work of Singh and
Kingsbury in [4]. Sifre and Mallat introduced Rotationally
Invariant ScatterNets which took ScatterNets in a new di-
rection, as the architecture now included filtering across the
wavelet orientations (albeit with heavy restrictions on the
fitlers used). Singh and Kingsbury achieved improvements
in performance in a Scattering system using the spatially
implementable DTCWT [9] wavelets instead of the Fourier
Transform (FFT) based Morlet previously used.

We build on these two systems, showing that with care-
fully designed complex filters applied across the complex
spatial coefficients of a 2-D DTCWT, we can build filters
that are sensitive to more recognizable shapes like those com-
monly seen in CNNs, such as corners and curves (Section 5).

2. THE SCATTERING TRANSFORM

The Scattering Transform, or ScatterNet, is a cascade of com-
plex wavelet transforms and modulus non-linearities (throw-
ing away the phase of the complex wavelet coefficients). At a
chosen scale, averaging filters provide invariance to nuisance
variations such as shift and deformation (and potentially rota-
tions). Due to the non-expansive nature of the wavelet trans-
form and the modulus operation, this transform is stable to
deformations.

Typical implementations of the ScatterNet are limited to
two ‘orders’ (equivalent to layers in a CNN) [3, 4, 7]. In addi-
tion to scattering order, we also have the scale of invariance,
J . This is the number of band-pass coefficients output from
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a wavelet filter bank (FB), and defines the cut-off frequency
for the final low-pass output: 2−J fs2 (fs is the sampling fre-
quency of the signal). Finally, we call the number of oriented
wavelet coefficients used L. These are the three main hyper-
parameters of the scattering transform and must be set ahead
of time. We describe a system with scale parameter J = 4, or-
derm = 2 and with L = 6 orientations (L is fixed to 6 for the
DTCWT but is flexible for the FFT based Morlet wavelets).

Consider an input signal x(u),u ∈ R2. The zeroth order
scatter coefficient is the lowpass output of a J level FB:

S0x(u) , (x ∗ φJ)(u) (1)

This is invariant to translations of up to 2J pixels1. In
exchange for gaining invariance, the S0 coefficients have lost
a lot of information (contained in the rest of the frequency
space). The remaining energy of x is contained within the
first order wavelet coefficients:

W1x(u, j1, θ1) , x ∗ ψj1,θ1 (2)

for j1 ∈ {1, 2, . . . , J}, θ1 ∈ {1, 2, . . . , L}. We will want
to retain this information in these coefficients to build a useful
classifier.

Let us call the set of available scales and orientations Λ1

and use λ1 to index it. For both Morlet and DTCWT imple-
mentations, ψ is complex-valued, i.e., ψ = ψr + jψi with
ψr and ψi forming a Hilbert Pair, resulting in an analytic ψ.
This analyticity provides a source of invariance — small in-
put shifts in x result in a phase rotation (but little magnitude
change) of the complex wavelet coefficients2.

Taking the magnitude of W1 gives us the first order prop-
agated signals:

U1x(u, λ1) , |x ∗ ψλ| =
√

(x ∗ ψrλ1
)2 + (x ∗ ψiλ1

)2 (3)

The first order scattering coefficient makes U1 invariant
up to our scale J by averaging it:

S1x(u, λ1) , |x ∗ ψλ| ∗ φJ (4)

If we define U0 , x, then we can iteratively define:

Wm = Um−1 ∗ ψλm
(5)

Um = |Wm| (6)
Sm = Um ∗ φJ (7)

We repeat this for higher orders, although previous work
shows that, for natural images, we get diminishing returns
after m = 2. The output of our ScatterNet is then:

Sx = {S0x, S1x, S2x} (8)
1From here on, we drop the u notation when indexing x, for clarity.
2In comparison to a system with purely real filters such as a CNN, which

would have rapidly varying coefficients for small input shifts [9].

2.1. Scattering Color Images
A wavelet transform like the DTCWT accepts single channel
input, while we often work on RGB images. This leaves us
with a choice. We can either:

1. Apply the wavelet transform (and the subsequent scat-
tering operations) on each channel independently. This
would triple the output size to 3C.

2. Define a frequency threshold below which we keep
color information, and above which, we combine the
three channels into a single luminance channel.

The second option uses the well known fact that the human
eye is far less sensitive to higher spatial frequencies in color
channels than in luminance channels. This also fits in with the
first layer filters seen in the well known Convolutional Neu-
ral Network, AlexNet. Roughly one half of the filters were
low frequency color ‘blobs’, while the other half were higher
frequency, grayscale, oriented wavelets.

For this reason, we choose the second option for the archi-
tecture described in this paper. We keep the 3 color channels
in our S0 coefficients, but work only on grayscale for high
orders (the S0 coefficients are the lowpass bands of a J-scale
wavelet transform, so we have effectively chosen a color cut-
off frequency of 2−J fs2 ).

For example, consider an RGB input image x of size 64×
64 × 3. The scattering transform we have described with pa-
rameters J = 4 and m = 2 would then have the following
coefficients:

S0 : (64× 2−J)× (64× 2−J)× 3 = 4× 4× 3

S1 : 4× 4× (LJ) = 4× 4× 24

S2 : 4× 4×
(

1

2
L2J(J − 1)

)
= 4× 4× 216

S : 4× 4× (216 + 24 + 3) = 4× 4× 243

3. THE INVERSE NETWORK

We now introduce our inverse scattering network. This allows
us to back project scattering coefficients to the image plane;
it is inspired by the DeconvNet used by Zeiler and Fergus in
[8] to look into the deeper layers of CNNs.

We emphasize that instead of thinking about perfectly re-
constructing x from S ∈ RH′×W ′×C , we want to see what
signal/pattern in the input image caused a large activation in
each channel. This gives us a good idea of what each out-
put channel is sensitive to, or what it extracts from the input.
Note that we do not use any of the log normalization layers
described in [3, 4].

3.1. Inverting the Low-Pass Filtering
Going from the U coefficients to the S coefficients involved
convolving by a low pass filter, φJ followed by decimation to
make the output (H×2−J)× (W ×2−J). φJ is a purely real



Fig. 1. A DeScattering layer (left) attached to a Scattering layer (right). We are using the same convention as [8] Figure 1 -
the input signal starts in the bottom right hand corner, passes forwards through the ScatterNet (up the right half), and then is
reconstructed in the DeScatterNet (downwards on the left half). The DeScattering layer will reconstruct an approximate version
of the previous order’s propagated signal. The 2× 2 grids shown around the image are either Argand diagrams representing the
magnitude and phase of small regions of complex (De)ScatterNet coefficients, or bar charts showing the magnitude of the real
(De)ScatterNet coefficients (after applying the modulus non-linearity). For reconstruction, we need to save the discarded phase
information and reintroduce it by multiplying it with the reconstructed magnitudes.

filter, and we can ‘invert’ this operation by interpolating S to
the same spatial size as U and convolving with the mirror im-
age of φJ , φ̃J (this is equivalent to the transpose convolution
described in [8]).

Ŝm = Sm ∗ φ̃J (9)

This will not recover U as it was on the forward pass,
but will recover all the information in U that caused a strong
response in S.

3.2. Inverting the Magnitude Operation
In the same vein as [8], we face a difficult task in inverting
the non-linearity in our system. We lend inspiration from the
switches introduced in the DeconvNet; the switches in a De-
convNet save the location of maximal activations so that on
the backwards pass activation layers could be unpooled triv-
ially. We do an equivalent operation by saving the phase of
the complex activations. On the backwards pass we reinsert
the phase to give our recovered W .

Ŵm = Ûme
jθm (10)

3.3. Inverting the Wavelet Decomposition
Using the DTCWT makes inverting the wavelet transform
simple, as we can simply feed the coefficients through the
synthesis filter banks to regenerate the signal. For complex
ψ, this is convolving with the conjugate transpose ψ̃:

Ûm−1 = Ŝm−1 + Ŵm

= Sm−1 ∗ φ̃J +
∑
j,θ

Wm(u, j, θ) ∗ ψ̃j,θ (11)

4. VISUALIZATION WITH INVERSE SCATTERING

To examine our ScatterNet, we scatter all of the images from
ImageNet’s validation set and record the top 9 images which
most highly activate each of the C channels in the ScatterNet.
This is the identification phase (in which no inverse scattering
is performed).

Then, in the reconstruction phase, we load in the 9 × C
images, and scatter them one by one. We take the resulting
4 × 4 × 243 output vector and mask all but a single value in
the channel we are currently examining.



Fig. 2. Visualization of a random subset of features from S0 (all 3), S1 (6 from the 24) and S2 (16 from the 240) scattering
outputs. We record the top 9 activations for the chosen features and project them back to the pixel space. We show them
alongside the input image patches which caused the large activations. We also include reconstructions from layer conv2 2 of
VGG Net [10](a popular CNN, often used for feature extraction) for reference — here we display 16 of the 128 channels. The
VGG reconstructions were made with a CNN DeconvNet based on [8]. Image best viewed digitally.



Fig. 3. Shapes possible by filtering across the wavelet orientations with complex coefficients. All shapes are shown in pairs:
the top image is reconstructed from a purely real output, and the bottom image from a purely imaginary output. These ‘real’
and ‘imaginary’ shapes are nearly orthogonal in the pixel space (normalized dot product < 0.01 for all but the doughnut shape
in the bottom right, which has 0.15) but produce the same U ′, something that would not be possible without the complex filters
of a ScatterNet. Top left - reconstructions from U1 (i.e. no cross-orientation filtering). Top right- reconstructions from U ′1
using a 1 × 1 × 12 Morlet Wavelet, similar to what was done in the ‘Roto-Translation’ ScatterNet described in [6, 3]. Bottom
left - reconstructions from U ′1 made with a more general 1 × 1 × 12 filter, described in Equation 14. Bottom right - some
reconstructions possible by filtering a general 3× 3× 12 filter.

This 1-sparse tensor is then presented to the inverse scat-
tering network from Figure 1 and projected back to the image
space. Some results of this are shown in Figure 2. This figure
shows reconstructed features from the layers of a ScatterNet.
For a given output channel, we show the top 9 activations
projected independently to pixel space. For the first and sec-
ond order coefficients, we also show the patch of pixels in the
input image which cause this large output. We display acti-
vations from various scales (increasing from first row to last
row), and random orientations in these scales.

The order 1 scattering (labelled with ‘Order 1’ in Figure 2)
coefficients look quite similar to the first layer filters from the
well known AlexNet CNN [11]. This is not too surprising,
as the first order scattering coefficients are simply a wavelet
transform followed by average pooling. They are responding
to images with strong edges aligned with the wavelet orienta-
tion.

The second order coefficients (labelled with ‘Order 2’ in
Figure 2) appear very similar to the order 1 coefficients at first
glance. They too are sensitive to edge-like features, and some
of them (e.g. third row, third column and fourth row, second
column) are mostly just that. These are features that have the
same oriented wavelet applied at both the first and second or-
der. Others, such as the 9 in the first row, first column, and
first row, fourth column are more sensitive to checker-board
like patterns. Indeed, these are activations where the orien-
tation of the wavelet for the first and second order scattering
were far from each other (15◦ and 105◦ for the first row, first
column and 105◦ and 45◦ for the first row, fourth column).

For comparison, we include reconstructions from the sec-

ond layer of the well-known VGG CNN (labelled with ‘VGG
conv2 2’, in Figure 2). These were made with a DeconvNet,
following the same method as [8]. Note that while some of
the features are edge-like, we also see higher order shapes
like corners, crosses and curves.

5. CORNERS, CROSSES AND CURVES

These reconstructions show that the features extracted from
ScatterNets vary significantly from those learned in CNNs af-
ter the first order. In many respects, the features extracted
from a CNN like VGGNet look preferable for use as part of a
classification system.

[6] and [3] introduced the idea of a ‘Roto-Translation’
ScatterNet. Invariance to rotation could be made by apply-
ing averaging (and bandpass) filters across the L orientations
from the wavelet transform before applying the complex mod-
ulus. Momentarily ignoring the form of the filters they apply,
referring to them as Fk ∈ CL, we can think of this stage as
stacking the L outputs of a complex wavelet transform on top
of each other, and convolving these filters Fk over all spatial
locations of the wavelet coefficients Wmx (this is equivalent
to how filters in a CNN are fully connected in depth):

Vmx(u, j, k) = Wmx ∗ Fk =
∑
θ

Wmx(u, j, θ)Fk(θ) (12)

We then take the modulus of these complex outputs to
make a second propagated signal:

U ′mx , |Vmx| = |Wmx ∗ Fk| = |Um−1x ∗ ψλm
∗ Fk| (13)



We present a variation on this idea, by filtering with a
more general F ∈ CH×W×12. We use F of length 12 rather
than 6, as we use the L = 6 orientations and their complex
conjugates; each wavelet is a 30◦ rotation of the previous, so
with 12 rotations, we can cover the full 360◦.

Figure 3 shows some reconstructions from these V coeffi-
cients. Each of the four quadrants show reconstructions from
a different class of ScatterNet layer. All shapes are shown in
real and imaginary Hilbert-like pairs; the top images in each
quadrant are reconstructed from a purely real V , while the
bottom inputs are reconstructed from a purely imaginary V .
This shows one level of invariance of these filters, as after tak-
ing the complex magnitude, both the top and the bottom shape
will activate the filter with the same strength. In comparison,
for the purely real filters of a CNN, the top shape would cause
a large output, and the bottom shape would cause near 0 ac-
tivity (they are nearly orthogonal to each other).

In the top left, we display the 6 wavelet filters for refer-
ence (these were reconstructed from U1, not V1). In the top
right of the figure we see some of the shapes made by us-
ing the F ’s from the Roto-Translation ScatterNet [6, 3]. The
bottom left is where we present some of our novel kernels.
These are simple corner-like shapes made by filtering with
F ∈ C1×1×12

F = [1, j, j, 1, 0, 0, 0, 0, 0, 0, 0, 0] (14)

The six orientations are made by rolling the coefficients in F
along one sample (i.e. [0, 1, j, j, 1, 0, . . .], [0, 0, 1, j, j, 1, 0, . . .],
[0, 0, 0, 1, j, j, 1, 0, . . .] . . . ). Coefficients roll back around
(like circular convolution) when they reach the end.

Finally, in the bottom right we see shapes made by
F ∈ C3×3×12. Note that with the exception of the ring-
like shape which has 12 non-zero coefficients, all of these
shapes were reconstructed with F ’s that have 4 to 8 non-zero
coefficients of a possible 64. These shapes are now beginning
to more closely resemble the more complex shapes seen in
the middle stages of CNNs.

6. DISCUSSION

This paper presents a way to investigate what the higher or-
ders of a ScatterNet are responding to - the DeScatterNet de-
scribed in Section 3. Using this, we have shown that the sec-
ond ‘layer’ of a ScatterNet responds strongly to patterns that
are very dissimilar to those that highly activate the second
layer of a CNN. As well as being dissimilar to CNNs, visual
inspection of the ScatterNet’s patterns reveal that they may be
less useful for discriminative tasks, and we believe this may
be causing the current gaps in state-of-the-art performance be-
tween the two.

We have presented an architectural change to ScatterNets
that can make it sensitive to more recognizable shapes. We
believe that using this new layer is how we can start to close
the gap, making more generic and descriptive ScatterNets
while keeping control of their desirable properties.

A future paper will include classifier results for these new
filters.
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