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ABSTRACT

The paper proposes the ScatterNet Hybrid Deep Learning
(SHDL) network that extracts invariant and discriminative
image representations for object recognition. SHDL frame-
work is constructed with a multi-layer ScatterNet front-end,
an unsupervised learning middle, and a supervised learn-
ing back-end module. Each layer of the SHDL network is
automatically designed as an explicit optimization problem
leading to an optimal deep learning architecture with im-
proved computational performance as compared to the more
usual deep network architectures. SHDL network produces
the state-of-the-art classification performance against unsu-
pervised and semi-supervised learning (GANs) on two image
datasets. Advantages of the SHDL network over supervised
methods (NIN, VGG) are also demonstrated with experiments
performed on training datasets of reduced size.

Index Terms— ScatterNet, Deep architecture design, Un-
supervised learning, Convolutional neural network.

1. INTRODUCTION

Object classification is challenging due to the large intra-class
variability, arising from translation and rotation of objects,
lighting, deformations and occlusions. Researchers have re-
lied on invariant and discriminative class-specific image rep-
resentations to tackle this problem [1].

Numerous attempts have been made to design learning ar-
chitectures that capture the necessary image representations
for object classification. These methods include architec-
tures that: (i) encode handcrafted features extracted from the
input images into rich non-hierarchical representations [2];
(ii) learn multiple levels of feature hierarchies, directly from
the input data [1]; (iii) make use of the ideas from both the
above-mentioned categories to extract feature hierarchies
from hand-crafted features.

Bag of Words (BoW) [3] models represent the first class
of architectures that encode handcrafted bag-of-visual-words
(BOV) descriptors into rich feature representations using un-
supervised coding and pooling [2]. The pipeline was im-
proved by encoding the local descriptor patches by a set of
visual codewords with sparse coding with a linear SPM ker-
nel [4]. This class of methods are very easy to design and

cheap to evaluate but achieve only marginally good classifi-
cation performance on different benchmarks [4].

The second category includes architectures such as Con-
volutional Neural Networks (CNNs) [5, 6], Deep Belief Net-
works [7] etc that learn feature hierarchies directly from the
input images. These networks have achieved state-of-the-art
classification performance on various datasets [5, 6], but de-
spite the success of these networks, their design and optimal
configuration is not well understood which makes it diffi-
cult to develop them. In addition, these models produce a
large number of coefficients that are learned with the help of
powerful computational resources and require large training
datasets which may not be available for many applications
such as stock market prediction [8], medical imaging [9] etc.

The third class of models combines the concepts from
both the above-mentioned models to learn feature hierarchies
from low-level hand-crafted descriptors [10]. Hierarchical
max (HMAX) [11] is one such model that uses an RBF ker-
nel to learn a single layer of high-level features from descrip-
tors captured with a battery of Gabor filters. He et al. [1]
learned three layers of sparse hierarchical features from SIFT
descriptors using unsupervised learning. Sivic et al. [10], dis-
covered object class hierarchies from visual codewords using
hierarchical LDA. This class of models has produced promis-
ing performance on various datasets [12, 13]. In addition,
each layer of these models can be posed as an optimization
problem resulting in optimal architectures [1].

The paper introduces the ScatterNet Hybrid Deep Learn-
ing (SHDL) network for object classification. This frame-
work first extracts ScatterNet handcrafted descriptors which
are used by an unsupervised learning module to learn hier-
archical features that capture intricate structure between dif-
ferent object classes. Supervised learning then selects the
features specific to each object class, from the feature hier-
archies, which are finally used for classification. The term
’Hybrid’ is coined because the framework uses both unsuper-
vised as well as supervised learning. Each layer of the net-
work is designed and optimized automatically that produces
the desired computationally efficient architectures.

The contributions of the paper are as follows:
• Hand-crafted Module: The hand-crafted descriptors

are extracted with the two-layer parametric log Scatter-
Net [14], instead of BOW [3] or SIFT [13] descriptors.
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Fig. 1. SHDL: The illustration shows the input image (64 × 64 (x)) from the CIFAR-10 dataset at resolution R1 decomposed to extract
the translation invariant relatively symmetric coefficients at L0 (Srs[L0]), L1 (Srs[L1]) and L2 (Srs[L2]). Features at the higher level of
abstraction are captured at L3 and L4 layers of the PCA-Net using unsupervised learning. Parametric log transformation is applied on the
output of each PCA stage to introduce relative symmetry. The representations extracts at each stage (L0, L1, L2, L3, L4) are concatenated and
given to the supervised OLS layer that select the object-specific features finally used for classification using the Gaussian SVM (G-SVM).

This extracts symmetrically distributed multiscale ori-
ented edge features at the first layer and additional
discriminative sparse features at the second layer [15].

• Unsupervised Learning Module: This module uses two
stacked PCA-Net [16] layers with parametric log non-
linearity to learn robust symmetrically distributed hi-
erarchical mid-level features across object classes. The
network is fast to train as opposed to other unsupervised
learning modules (autoencoders or RBMs) as the mini-
mization of the loss function (Eq. 8) can be obtained in
its simplistic form as the Eigen decomposition.

• Supervised Learning Module: OLS layer [17, 14] is
applied to the concatenated features obtained from the
layers to select a subset of object-class-specific fea-
tures, without undesired bias from outliers, due to the
introduced symmetry. The selected features are fed into
a Gaussian-kernel support vector machine (G-SVM) to
perform object classification.

• Network Layer Optimization: The number of filters in
each layer of the unsupervised learning module are op-
timized as part of the automated design process. The
optimization of the number of filters in a layer leads
to the efficient learning of the subsequent layer as the

filters are now learned from a smaller feature space.
The reduced feature space subsequently also makes the
learning of the OLS and SVM efficient.

The classification performance of the proposed architec-
ture is tested on CIFAR-10 and Caltech-101 datasets. Mul-
tiple experiments on different training dataset sizes are per-
formed to highlight the advantages of the proposed network
against supervised and unsupervised methods.

Section 2 of the paper briefly presents the proposed SHDL
network. Section 3 presents the experimental results while
Section 4 draws conclusions.

2. SHDL NETWORK

This section introduces the proposed ScatterNet Hybrid Deep
Learning (SHDL) network (Fig. 1) with the detailed mathe-
matical formulation of each module and a description of the
representations captured by them.

2.1. Hand-crafted Module: ScatterNet

Handcrafted descriptors are extracted using the parametric
log based two-level Dual-Tree Complex Wavelet Transform
(DTCWT) ScatterNet [14] that extracts relatively symmetric



Fig. 2. Illustration shows the DTCWT real filters at two scales used
at Layer L1 and L2. The filters learned by the PCA-Net at L3 and
L4 stage are also shown.

translation invariant low-level features at the first layer and
more discriminative sparse features at second layer [15, 18,
19]. The extracted features are also dense over the scale as
they are obtained by decomposing multi-resolution images
obtained at 1.5 times (R1) and twice (R2) the size of the in-
put image. This ScatterNet [14] is chosen over Bruna and
Mallat’s [15] due to its superior classification accuracy and
computational efficiency. The DTCWT ScatterNet formula-
tion is presented for an input signal (x) which may then be
applied to each multi-resolution image.

The features at the first layer are obtained by filtering the
input signal x with dual-tree complex wavelets ψj,r at dif-
ferent scales (j) and six pre-defined orientations (r) fixed to
15◦, 45◦, 75◦, 105◦, 135◦ and 165◦, as shown in Fig. 2. A
more translation invariant representation is built by applying
a point-wise L2 non-linearity (complex modulus) to the real
and imaginary part of the filtered signal:

U [L1] =
√
|x ? ψaλ1

|2 + |x ? ψbλ1
|2 (1)

The parametric log transformation layer is applied on the ori-
ented features, extracted at the first scale j = 1 with a param-
eter kL1[j], to reduce the effect of outliers by introducing rel-
ative symmetry (rs) to their amplitude distribution (as shown
in Fig. 3):

U1rs[j] = log(U [L1][j] + kL1[j]), U [L1][j] = |x ? ψj |,
(2)

The parameter kL1 is selected such that it minimizes the
difference between the mean and median of the distribu-
tion [14]. Next, a local average is computed on the envelope
|U1[λL1]| that aggregates the coefficients to generate the
desired translation-invariant representation:

Srs[L1] = |U1rs| ? φ2J (3)

The energy (high-frequency components) lost due to smooth-
ing is recovered by cascaded wavelet filtering applied at the
second layer [15]. The recovered components are again not
translation invariant so invariance is achieved by first apply-
ing the L2 non-linearity to obtain the regular envelope:

Fig. 3. Illustration shows a representation obtained using the
DTCWT (15◦, j=1, R=1) at L1. The representation is affected by
outliers resulting in the skewed distribution. A relatively symmet-
ric representation is obtained using by applying the parametric log
transformation that also results in contrast normalization.

U [L2] = |U1rs ? ψλL2
| (4)

The parametric log transformation is applied again to produce
relative symmetry:

U2rs[j] = log(U [L2][j] + kL2[j]) (5)

Next, a local-smoothing operator is applied to improve trans-
lation invariance::

Srs[L2] = U2rs ? φ2J (6)

The output coefficients are typically formed from x?φ (Layer
0), Srs[L1] (Layer 1) and Srs[L2] (Layer 2) for each of the
two image resolutions R1 and R2.

2.2. Unsupervised Learning Module: PCA-Net Layers

This section details the optimization framework for the
stacked PCA-Net [16] layers used to learn symmetrically
distributed hierarchical mid-level features at L3 and L4, from
invariant features extracted at L1 or L2, as shown in Fig.
1. The mathematics is presented for Srs[R1, L1] (invariant
features obtained for R1 resolution image at layer L1). This
formulation is also applied to Srs[R1, L2] (features for R1
resolution at layer L2) as well as features extracted at R2
resolution at both layers (Srs[R2, L1] and Srs[R2, L2]).

The objective of the PCA layer is to minimize the re-
construction error by learning a family of multi-channel or-
thonormal filters. In order to learn the filters, M overlapping
patches of size z1 × z2 are collected from each channel of
the input S[R1, L1] i.e., x1, x2, ..., xM ∈ Rz1z2×P where x
is the sampled patch, M represents the number of patches
and P (12 and 36, Fig. 1) represents the number of channels
of the input. After this, the patch mean is subtracted to ob-
tain X̃ = [x̃1, x̃2, ..., x̃M ], where x̃ is a mean-removed patch.
Given N training images, we get the unified matrix:

X = [X̃1, X̃2, ..., X̃N ] ∈ Rz1z2M×PN . (7)

This filters are learned by minimizing the following equation,

min
WL3∈RsL3sL3×P×KL3

‖X−WL3W
T
L3X‖2F , s.t. WT

L3WL3 = IKL3
,

(8)
where WL3 are the learned filters at layer L3 with size sL3 ×
sL3 ×P ×KL3, where KL3 represents the number of filters.



Fig. 4. Illustration shows: (a) 5-CV classification accuracy (yL3)
vs. the number of filters (KL3) learned at layer L3 (b) optimal 5-CV
classification accuracy (ŷL3) vs. kL3, with fixed number of optimal
L3 filters (K̂L3). The optimal filters K̂L3 and chosen kL3 along with
their corresponding accuracies is shown in the graphs.

The solution in its simplified form represents KL3 principal
eigenvectors of XXT . These learned filters (Fig. 2) capture
the variance in the training dataset in the form of eigenvectors.

The output responses of the L3 layer can be obtained as:

yL3 = Srs[R1, L1] ? W
sL3×sL3×P×KL3

L3 , i = 1, 2, 3, ....., N
(9)

Srs[R1, L1] is zero-padded before convolving with WL3 so
as to make yL3 have the same size as Srs[R1, L1].

Next, G-SVM is used at the output of the L3 layer, with
varying number of filters (10,20,..,KL3), to select the optimal
number (K̂L3) of learned filters that result in the highest five-
fold cross-validation accuracy (5-CV) on the training dataset
(Fig. 3). The optimum output a L3 layer (ŷL3) is computed
using Eq. 10 using the optimum number of filters (K̂L3)

As explained in the previous section, parametric log trans-
formation is applied on ŷL3 to introduce relative symmetry:

ŷL3,rs = log(ŷL3 + kL3) (10)

Next, KL4 filters with weights W4 at layer L4 can be
learned similarly:

min
WL4∈RsL4sL4×K3×KL4

‖XL3 −WL4W
T
L4 X

L3‖2F , s.t.

WT
L4WL4 = IKL4

,
(11)

where XL3 represents the matrix computed by extracting
patches from ŷL3,rs (L3 output (relatively symmetric (rs)) ob-
tained using the optimal (K̂L3) number of filters). The output
response at Layer L4 can be computed as shown:

yL4 = ŷL3,rs ? W
sL4×sL4×KL3×KL4

L4 , i = 1, 2, 3, ....., N
(12)

Here, ŷL3,rs is also zero padded before applying the convo-
lutions as described above. The optimal L4 output (ŷL4) is
computed using K̂L4 filters, obtained using five-fold cross-
validation as shown in Fig. 4. Parametric log transformation
is finally applied on ŷL4 to introduce relative symmetry:

ŷL4,rs = log(ŷL4 + kL4) (13)

Fig. 5. Illustration shows: (a) 5-CV classification accuracy (yL4)
vs. the number of filters (KL4) learned at layer L4 (b) optimal 5-CV
classification accuracy (ŷL3) vs. kL4, with fixed number of optimal
L4 filters (K̂L4). The optimal filters K̂L3 and chosen kL3 along with
their corresponding accuracies is shown in the graphs.

2.3. Supervised Learning Module: OLS and G-SVM

The features obtained from each layer of the network (L0,
L1, L2, L3, L4) for both R1 and R2 images are concate-
nated, normalized across each dimension and fed to the OLS
as shown in Fig. 1. Orthogonal least square (OLS) regres-
sion [17]selects discriminative features specific to class C in
a supervised way using a one-versus-all linear regression. The
regression is applied to the training set of scattering features
where each vector of N (Cifar: N ≈ 176000, Caltech: N ≈
474000) dimensions is reduced to N ′ (Cifar: N’ ≈ 10300,
Caltech: N’ ≈ 21000) selected dimensions. The reduced
training feature dataset is utilized by the G-SVM to learn
weights that best discriminate the classes in the dataset. Fea-
ture selection results in limited dimensions that lead to a more
efficient training of the G-SVM and improves generalization.

3. OVERVIEW OF RESULTS

The performance of the SHDL network is evaluated on
CIFAR-10 and Caltech-101 datasets. CIFAR-10 contains
a total of 50000 training and 10000 test images each of size
32 × 32. The Caltech-101 dataset is an unbalanced image
dataset with images of different sizes. In these experiments,
30 images (resized to 128 × 128) per class (clutter class re-
moved) are used for training, 10 for validation and the rest
of the images in each class are used for testing. Average per
class classification results are reported with an averaging over
5 random splits. A detailed comparison with unsupervised,
semi-supervised, and supervised methods is also presented.

3.1. ScatterNet feature extraction

The scattering representations are extracted by first obtaining
multi-resolution images of size (64 × 64 (R1) and 48 × 48
(R2)) for CIFAR-10 and (256 × 256 (R1) and 192 × 192
(R2)) for Caltech-101, as described in Section. 2.1. The im-
ages in the CIFAR dataset are decomposed for each colour



channel separately using DTCWT filters at 5 (for R1) and 4
(for R2) scales respectively, while the images in the Caltech
dataset are decomposed with at 6 and 5 scales for R1 and
R2 resolutions respectively. Next, log transformations are ap-
plied to the representations obtained (except at the coarsest
scale) for both the R1 and R2 pipeline with parameters kj=1

= 1.1, kj=2 = 3.8, kj=3 = 3.8, kj=4 = 7 and kj=4 = 6.8 (se-
lected as described in Section. 2.1), obtained by averaging
the individual k value for the particular scale for all the im-
ages in the training dataset. The classification accuracies for
each layer (L0, L1, L2) and the concatenated features (HC =
S[L0, L1, L2]) are presented for both resolutions, using G-
SVM in Table. 1. L2 features give a less good performance
on their own than L1, probably due to their lower energies,
but still, give a useful improvement when combined with L1.

Table 1. Accuracy (%) on CIFAR-10 for features extracted at dif-
ferent layers and resolutions. Srs[Layer], HC = S[L0,L1,L2]

S[L1] Srs[L1] S[L2] Srs[L2] HC HCrs

R1 71.48 72.58 60.34 60.51 80.7 81.7
R2 72.04 73.39 60.12 60.39 80.9 81.9

3.2. PCA Layers: features and layer optimization

The L3 PCA layer of the network is trained on Srs[R1L1],
Srs[R1L2], Srs[R2L1] and Srs[R2L2], to learnKL3=100 fil-
ters of size sL3=5. Cross-validation is used (as explained in
Section. 2.2) on the L3 layer output (yL3) to select the 40, 70,
50 and 80 optimal filters (K̂L3) for the four cases, as shown in
Fig. 3(a). Next, the relatively symmetric L3 output (ŷL3,rs)
is obtained by applying a log transformation with kL3 = 1.8,
1.9, 1.7 and 7.0 on ŷL3, respectively (Fig. 3(b)).

L4 PCA layer is trained on L3 layer outputs (ŷL3,rs) cor-
respondingly to learn 200 (KL4) filters, of size 5 (sL4). Sim-
ilarly, 150, 140, 120 and 130 optimal filters (K̂L4) are se-
lected for the four cases (Srs[R1L1], Srs[R1L2], Srs[R2L1]
and Srs[R2L2]), as shown in Fig. 4(a). Next, the relatively
symmetric L4 outputs (ŷL4,rs) are obtained by applying a log
transformation with kL4 = 2.0, 1.3, 2.1 and 7.2 on ŷL4,rs, re-
spectively, for the four cases, as shown in Fig. 4(b).

The five-fold cross-validation (5-CV) classification ac-
curacies on CIFAR-10, obtained using G-SVM, at different
stages of Layers L3 and L4 are presented in Table 2. There
are fewer optimal filters in (Kop

L3, Kop
L4) than the originally

learned filters (KL3, KL4) but produce an equal or higher
cross-validation accuracy. This suggests that some of the fil-
ters learn redundant information which can be removed. This
results in efficient learning of L4 layer (subsequently for OLS
as well as SVM) as the L4 filters are learned from a smaller
feature space ŷL3,rs (obtained with K̂L3 << KL3).

3.3. Classification performance

This section evaluates the classification performance of each
module of the SHDL network. The classification accuracy

Table 2. 5-CV Accuracy (%) on CIFAR-10 at L3 and L4. yL3,
yL4 output, ŷL3, ŷL4 optimal output and ŷL3,rs, yL4,rs relatively
symmetric output, at L3 and L4.

yL3 ŷL3 ŷL3,rs yL4 ŷL4 ŷL4,rs
Srs[R1L1] 73.83 74.13 74.68 74.81 75.02 75.06
Srs[R1L2] 60.78 60.96 61.04 60.93 61.36 61.38
Srs[R2L1] 73.86 74.07 74.29 74.88 75.63 75.69
Srs[R2L2] 60.81 61.11 61.23 61.78 62.02 62.67

of each module is presented by applying the supervised OLS
layer on the features to select the relevant features which are
then fed to the G-SVM to compute the accuracy. The accu-
racy of the handcrafted module (HC) is computed on the con-
catenated relatively symmetric features extracted at L0, L1,
L2, for both resolutions (R1, R2) using OLS for feature se-
lection and then G-SVM for classification. The hand-crafted
module produced a classification accuracy of 82.4% (HC) on
CIFAR-10 as shown in Table. 3. An increase of 0.4% is ob-
served when the mid-level features, learned at L3 with sL3=5
are concatenated with the features of the hand-crafted mod-
ule (HC,(L3)sL3=5), again for both R1 and R2. A further in-
crease of 0.7% (HC,(L3, L4)sL3,L4=5) is noticed when mid-
level features from the L4 layer learned with sL4=5 are con-
catenated to (HC,(L3)sL3=5) features. This suggests that the
PCA layers (L3 and L4) learn useful image representations as
they improve the classification performance. Finally, in order
to test the optimality of the filter sizes, the L3 and L4 layers
were also trained with sL3=3 and sL4=3. A further increase of
around 0.4% (HC, (L3, L4)3,5) is observed by concatenating
the features obtained at L3 and L4 layers, with filters trained
with the kernel sL3, sL4 of size 3 and 5, with the hand-crafted
module (HC). This suggests that filters of different sizes learn
unique and useful image representations.

Table 3. Accuracy (%) on CIFAR-10 for each module computed
with OLS and G-SVM. The increase in accuracy with the addi-
tion of each layer is also shown. HC: Hand-crafted, PCA features
((Layer)filter−size): eg (L3)sL3=5

HC HC, (L3)5 HC, (L3, L4)5 HC, (L3, L4)3,5

Acc. 82.4 82.8 83.5 83.9

Next, the performance of the SHDL network is evaluated
on the Caltech-101 dataset. The network results in a classifi-
cation accuracy of 81.46%, as shown in Table. 4.

3.4. Comparison with the state-of-the-art

The SHDL outperformed the semi-supervised and unsuper-
vised learning methods on both datasets however the network
underperformed by nearly 13% against supervised deep learn-
ing models [5, 6], as shown in Table. 4.

3.5. Advantage over supervised learning

Supervised models require large training datasets to learn
which may not exist for most application. Table. 4 shows



Table 4. Accuracy (%) and comparison on both datasets. Unsup:
Unsupervised, Semi: Semi-supervised and Sup: Supervised.

Dataset SHDL Semi Unsup Sup
CIFAR-10 83.90 83.3 [20] 82.9 [12] 96.2 [21]

Caltech-101 81.46 81.5 [22] 81.0 [13] 92.7 [6]

that SHDL network outperformed VGG [6] and Network in
Network (NIN) [5] on the CIFAR-10 datasets with less than
2k images. The experiments were performed by dividing the
training dataset of 50000 images into 8 datasets of different
sizes. The images for each dataset are obtained randomly
from the full 50000 training dataset. It is made sure that an
equal number of images per object class are sampled from the
training dataset. The full test set of 10000 images is used for
all the experiments. Deeper models like NIN [5] and VGG [6]
result in low classification accuracy due to their inability to
train on the small training dataset.

Table 5. Comparison of SHDL network on accuracy (%) with two
supervised learning methods (VGG [6] and NIN [5] against different
training dataset sizes on CIFAR-10.

Arch. 500 1K 2K 5K 10K 20K 50K
SHDL 50.3 57.9 63.4 68.6 72.3 78.4 83.9
NIN 15.6 54.5 61.1 72.9 81.2 86.7 89.6
VGG 10.3 10.7 43.4 63.4 72.0 83.1 92.7

4. CONCLUSION

The paper proposes the SHDL network that uses PCA-Net
based unsupervised learning module to learn mid-level fea-
tures while OLS based supervised learning is used to select
features that aid the discriminative SVM learning. It is shown
that a very simple PCA based network can learn useful fea-
tures that can greatly improve the classification performance.
The network has also shown to outperform unsupervised and
semi-supervised learning methods while evidence of the ad-
vantage of SHL network over supervised learning (CNNs)
methods is presented for small training datasets.
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