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ABSTRACT

Having knowledge of the environmental context of the user i.e. the
knowledge of the users’ indoor location and the semantics of their
environment, can facilitate the development of many of location-
aware applications. In this paper, we propose an acoustic monitoring
technique that infers semantic knowledge about an indoor space over
time, using audio recordings from it. Our technique uses the impulse
response of these spaces as well as the ambient sounds produced in
them in order to determine a semantic label for them. As we process
more recordings, we update our confidence in the assigned label. We
evaluate our technique on a dataset of single-speaker human speech
recordings obtained in different types of rooms at three university
buildings. In our evaluation, the confidence for the true label gener-
ally outstripped the confidence for all other labels and in some cases
converged to 100% with less than 30 samples.

Index Terms— Indoor Mapping, Room Semantic Inference,
Acoustic Monitoring

1. INTRODUCTION

During the last decade, location-based services (LBSs) have become
evermore pervasive with more than 153 million [1] users relying on
their smartphones for directions, recommendations, and other loca-
tion related information. However, most of these LSBs only func-
tion in outdoor environments due to the limitations of the current
localization and mapping technologies. Given that Americans spend
approximately 90% [2] of their time indoors and that the market for
location-based services is projected to exceed $77 billion by 2021
[3], developing systems that would facilitate the development of in-
door LBSs is a worthwhile endeavor.

A key per-requisite for developing rich indoor LBSs is the ability
to obtain information about the user’s environmental context without
any explicit human intervention. The environmental context would
include the user’s location within an indoor environment (e.g. sec-
ond floor, room opposite the elevator) as well as semantic informa-
tion about the surrounding space (e.g. bathroom). This information
could then be used by applications to adapt their behavior, for exam-
ple, by switching to silent mode if the user is in an auditorium, or
automatically declining calls if the user is in the bathroom.

The recent developments in the areas of indoor localization [4, 5,
6, 7, 8] and indoor mapping [9, 10, 11] have made it possible to gen-
erate accurate indoor floor plans and track users as they move within
them. However, these floor plans are largely devoid of any semantic
labels for the comprising spaces and therefore have limited useful-
ness. A few works have attempted to leverage multiple data sources
such as wireless signals, sound, light and sensor data to associate
semantic meanings with indoor locations [12, 13] while others have
tried to leverage social-network data, such as check-ins, to annotate

unlabeled floor plans with semantic labels [14]. The infrastructure
requirements and training overheads of these approaches limit their
feasibility to be deployed as part of a ubiquitous system.

To offer a more robust, scalable, and practical technique for in-
ferring the semantics of indoor spaces, we have chosen to rely on
audio recordings obtained from these spaces. While there are sev-
eral other modalities that can be employed for this purpose, includ-
ing wireless signals and images, certain properties of audio signals
make them particularly convenient to be used in this context. Au-
dio data is easy to collect, process, and store due to the popular-
ity of handheld devices sporting high quality recording hardware,
and low bandwidth of the audio signal. Furthermore, audio sig-
nals are relatively invariant to changes in the position and orienta-
tion of the recording device, and unlike visual data, are not limited
by ambient lighting conditions. More significantly, audio signals
carry potentially discriminative signatures of the environment they
were recorded in. These characteristics make sound well suited as
a modality to be incorporated in a lightweight semantic inference
system.

In this paper, we propose an acoustic monitoring technique that
infers semantic knowledge about an indoor space by collecting and
analyzing audio recordings from it over time. Current approaches
for extracting semantic information present in the acoustic forensics
[15] and scene classification [16, 17, 18] literature predominantly
rely on performing one-off classification in which each individual
data sample is classified independently. Meanwhile, our approach
to this problem is fundamentally different, and to the best of our
knowledge, has not been explored in the current literature. We treat
individual audio samples as evidence to help us infer a semantic la-
bel for the environment it was obtained from. Like in a forensic
investigation, a single piece of evidence is of limited significance.
As part of a robust investigative process, all the evidence must be
aggregated for inferences to be drawn from it. As we obtain and
analyze more samples we accumulate more evidence and our con-
fidence in the label we inferred for the space increases. Summariz-
ing the novelty of our approach, when analyzing an audio record-
ing, the current approaches try to answer the question “where was
this recorded?”, whereas we ask a different question altogether, i.e.
“given this recording, and n recordings that we had received earlier
from the same place, how likely is it that this place is, for example,
an office?”.

For inferring the semantics of a space, our technique uses ap-
propriate models to extract and combine evidence from two acoustic
characteristics of the space, namely, ambient sounds and the impulse
response. We use Mel-Frequency Cepstral Coefficients (MFCCs) to
model the ambient soundscape. While, on the other hand, we use a
non-negative de-convolution approach to isolate the Room Impulse
Response (RIR). We then use Gaussian Mixture Models (GMM) and
Support Vector Machines (SVMs) to classify the MFCCs and RIR
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respectively . We find that both of these characteristics are capa-
ble of independently providing confirmation of the semantics of a
space. Moreover, we also find that combining evidence from both
yields significantly better performance than either of the characteris-
tics alone. As mentioned above, our approach incrementally builds
up confidence in the classification of a room over time from the accu-
mulated evidence of multiple recordings. It does so by aggregating
the evidence provided by our models using Bayesian inference.

We evaluated our approach on a large dataset of audio record-
ings. We collected over 12,000 recordings from five different types
of room in three university buildings using smartphones. Our tech-
nique was able to correctly identify all the room types when the
training and testing data came from the same set of buildings. When
tested on an unseen building it only misclassified one room type. In
our evaluations, our technique was able to reach 100% classification
confidence with as less as 30 recordings.

The remainder of the paper is organized as follows, section 2
presents the feature extraction techniques and learning models we
have used, section 3 presents the evaluation process and the results
and the discussion in section 4 ends the paper.

2. INFERRING ROOM SEMANTICS FROM AUDIO

Our objective is to automatically detect room semantics – the pur-
pose of any room – from audio recordings within that room. Audio
signals have a convenient property of being able to capture poten-
tially discriminatory information about the environment. From a
purely acoustic perspective, environments, rooms in our case, can
differ along two dimensions: (1) The acoustic content, that char-
acterizes the typical sounds in the room and (2) the room impulse
response, which characterizes its structure.

Our approach employs different pre-processing and classifica-
tion strategies to exploit each of these characteristics and combine
them for our final decision. We extract MFCCs from the audio
recordings then use GMMs to model the ambient soundscape present
in each room type. We also extract the RIR from the Short-Time
Fourier Transform (STFT) using the non-negative deconvolution ap-
proach below. We parameterize the RIR and use it to train SVM
classifiers for each room type. Finally, we must also consider that
a room may serve multiple purposes. For instance, a pantry may
double as a printer room in an office building. Thus, rather than at-
tempting to classify between multiple semantic options, we will treat
the problem as one of detection, applied to each semantic. The de-
cision is not intended to be instantaneous; rather, we will attempt to
determine the confidence with which each semantic may be assigned
to the room incrementally, from recordings obtained over time. As a
result, we require a higher-level framework within which evidence is
combined to incrementally build up confidence in the label attributed
to the room.

We describe each of the components of our procedure below.

2.1. Classifying by Acoustic Content

Ambient sounds can be used to qualitatively differentiate a room.
These ambient sounds can be thought of as composing an acoustic
scene that is intrinsically linked to some high-level semantic of the
space. For example, the sound of water splashing is a characteristic
of the bathroom, while a kitchen space may be expected to contain
the sounds of appliances humming.

We cast the problem of identifying a room type as one of acous-
tic scene classification [19]. In modeling the ambient sound scene,
the temporal arrangement of sound patterns is not of particular sig-
nificance, rather what we are interested in is capturing the qualitative

features of the sound scene. While a number of techniques have been
proposed for this purpose in the literature [19, 20, 21], in our work
we have chosen to use a Gaussian mixture classifier. We do so be-
cause it has been shown that the qualitative features of an acoustic
scene can be effectively modeled by the distribution of frame-based
spectral features [22]. Furthermore, this approach also enables us to
compute log-likelihoods, which is convenient for subsequent calcu-
lations.

For each room type C we model the distribution of Mel-
Frequency Cepstral vectors derived from acoustic recordings in
instances of that room as a Gaussian mixture:

p(~x|C) =

N∑
i=1

wC,iN (~x;µC,i,ΣC,i) (1)

, where ~x represents a random cepstral vector,N (~x;µ,Σ) represents
a Gaussian distribution for ~x with mean µ and variance Σ, N repre-
sents the number of Gaussians in the mixture, and wC,1, · · · , wC,N

are the weights of the Gaussians in the mixture. Similarly, the proba-
bility density function of vectors from recordings that do not belong
to the room are also modeled by a Gaussian mixture obtained by re-
placing C by ¬C in equation (1) where ¬C is the set of all rooms
types except C. The parameters of both distributions (namely the
mixture weights, means, and variances) are learned from training in-
stances of recordings using the expectation-maximization algorithm
[23].

Given a test recording X = ~x1, · · · , ~xT , we compute the
within class and out-of-class log likelihoods as LA(X|C) =∑

t log p(~xt|C), and LA(X|¬C) = Σt log p(~xt|¬C). Classi-
fication may be performed by directly comparing LA(X|C) −
LA(X|¬C) to a threshold. We will, however, use these values to
compute confidences as explained below.

2.2. Room Impulse Response Extraction and Classification

The purpose of a room is also reflected in the size, shape, and fur-
nishings of the room. These, in turn, will affect the Room Impulse
Response of the room. For instance, the reverberation times and
the room response of bathrooms, which are generally small-to-mid
sized, devoid of furniture, and often have hard reflective surfaces
such as tiles and mirrors, will be very different from those of a class
room with tables, chairs, and (usually) people occupying them, and
these in turn will be different from offices with their very different
form factors and furnishings.

In order to exploit this information to classify rooms, however,
it will be necessary to derive the room response from the recordings,
parametrize them appropriately, and utilize an appropriate classifier.
We discuss our approach below.

2.2.1. Extracting Room Impulse Response

Extracting exact room responses from a monaural recording remains
a challenging and unsolved problem. However, for our purposes, an
approximate estimate obtained from general principles will suffice.
We use the non-negative deconvolution method described in [24] for
our purpose.

Following the approach of [24], we model the effect of the room
on the acoustic signal as a convolution of the magnitude spectrogram
of the signal with the magnitude spectrogram of the room impulse
response. The room impulse response is then extracted from the
magnitude spectrogram of the reverberant recorded signal through
non-negative matrix deconvolution.



Given an observed signal, represented by a F × T magnitude-
spectrogram matrix, X, (where T represents the number of time
frames and F is the number of frequency bands), our goal is to
approximate F × T matrix, S and F × K matrix R, such that
Y = S ∗R and Y ' X, ∗ represents the convolution operation
and, S and R represent the magnitude spectrograms of the speech
and RIR respectively.

We define F × F matrices R1, . . . ,RK such that

Rk = diag(R1[k], ..., RF [k])

where Rk is a diagonal matrix with R1[k], ..., RF [k] as the values
on the diagonal and Rf [t] represents the magnitude spectral compo-
nent of the f th frequency sub-band at time index t for the RIR. Now
we can formulate the approximation as

Y =

K∑
k = 1

Rk ·
k →
S .

where k → represents a right shift of the spectrogram by k time
steps. Since we are dealing with speech, S needs to be sparse. To
encourage sparsity we use the update rule for S presented in [24],
which introduces sparsity parameters p and λ. The update rules for
S and R are

S← S⊗
∑K

k = 1 Rk ·
k ←
X

λ|S|p−1 +
∑K

k = 1 Rk ·
k ←
Y

Rk = Rk ⊗

X

Y
·
k →
S
>

1 ·
k →
S
> ,

where ⊗ represents the Hadamard product. After the procedure has
converged we reconstruct a F ×K matrix, R representing the RIR
by placing the diagonal of Rk at the kth column of R.

2.2.2. Parametrizing and Classifying the RIR

The outcome of the above procedure is a F ×K matrix representing
the magnitude spectrogram of the RIR. Note that although the actual
RIR of any room is infinite in length, our estimates returns a finite
and fixed-length RIR; this approximation enables us to obtain fixed-
and finite-length characterizations that we can use for classification.

We compress the RIR further by taking the logarithm of the mag-
nitude spectra and performing a Discrete Cosine Transform (DCT)
on individual rows. We only keep the first 20 cepstral features from
the DCT, so that we are left with a 20 × K matrix for the RIR.
Since the temporal pattern represented by the arrangement of the
rows is significant we simply flatten this matrix to obtain a 20K-
dimensional feature vector. Note that this way we retain the entire
RIR as a feature and in doing so we account for the temporal struc-
ture of the audio frames in the RIR.

To classify the RIR, we use Support Vector Machines (SVMs).
We chose SVMs, instead of using distribution models such as i-
vectors or GMMs, for this task because, unlike the acoustic scene,
classifying RIR requires us to explicitly account for the temporal
variations in the signal, making distribution-based method unsuit-
able. We setup the SVM to map the classification scores to values be-
tween 0 and 1 and can be interpreted as probabilities. Let LR(X|C)
and LR(X|¬C) represent the log probabilities assigned to C and
¬C by the SVM. In order to classify the RIR, we can compare the
difference of the two log probabilities to a threshold; however, as in
the case of scene classification described above, we will use them to
compute confidences.

2.3. Incremental Confidence Calculation

Finally, we compose the results from the individual recordings to
obtain an incrementally updated confidence value for each room type
C. In principle, these could be computed directly through iterated
computation of a posteriori probabilities of the classes via Bayes
rule using the original probability values obtained from the GMMs
and SVM. Instead, we employ the approach described in [25] as we
find it to be more effective.

First we combine the results from the GMMs and SVMs into
a hybrid model. Each model is designed to capture a specific set
of features from the recordings so relying exclusively on one of
them may lead to potentially relevant information being discarded.
While on the other hand by combining the two classifiers we stand
to benefit from the unique information captured by each model. For
each recording, X, we compute log-likelihood ratio scores, LA =
LA(X|C)−LA(X|¬C) and LR = LR(X|C)−LR(X|¬C), from
the acoustic scene and RIR classifiers respectively. We then compute
a single overall log-likelihood ratio score given by

pi = α(LA) + (1− α)(LR) (2)

where α weighs the contribution of the acoustic scene classifier in
the overall score. Let p′i = pi − tC where tC is a constant threshold
value. Define P (p′i|C) and P (p′i|¬C) to be the distributions of the
p′i values for C and ¬C. In practice we set tC to be the threshold
value at which the False Positive Rate (FPR) equals the False Nega-
tive Rate (FNR) for classC. This value of FPR and FNR is known as
the Equal Error Rate (EER). Following [25] we model both as Gaus-
sian Mixtures, the parameters of which can be trained from training
data. Given a sequence of observations p1, · · · , pn and the respec-
tive p′i, the incremental confidence update rule is given by

P (C|p′1, · · · , p′n) =
Πn

i P (p′i|C)

Πn
i P (p′i|C) + ωΠn

i P (p′i|¬C)
(3)

where ω is a constant that represents
P (¬C)

P (C)
.

3. EVALUATION

3.1. Dataset

We have compiled a data set comprising over 12,004 speech record-
ings for our experiments. The speech is recorded by two smart-
phones simultaneously over a single channel at a sampling rate of
44.1 Khz. A Samsung Galaxy SIII mini is held by the speaker at
chest level, while a Sony Xperia Z1 Compact is in his pocket. The
recordings were performed in several Bathrooms(BR), Offices(O),
Pantries(P), Classrooms(C) and Lecture Halls (LH) on three univer-
sity buildings (referred to as C-I, C-II and C-III below). In each
room we took 100 recordings, 3 seconds each. The speaker stood at
5 locations within the room and uttered 4 short sentences, repeating
each sentence 5 times. The recordings were obtained at times when
there was low foot traffic in order to keep them as clean as possible.

For the experiments in this paper, we use only the recordings
from the aforementioned dataset in which the smartphone was held
up by the speaker, since the recordings obtained with the phone kept
in the speaker’s pocket could not have effectively captured the RIR.

We divide the data into four folds for cross-validation. All exper-
imental results reported below have been averaged over the 4 folds.
The folds are constructed such that no two folds have data from the
same room in order to ensure that the training set does not have any
data from the rooms in the test set.



Room Type Scene RIR
Lecture Hall 8.72 13.53
Classroom 12.23 34.03

Pantry 10.68 22.05
Office 6.42 23.23

Bathroom 8.2 5.5

Table 1: EER, acoustic scene classification.

3.2. Feature Extraction

We extract two feature sets from the raw audio signal, Mel-
Frequency Cepstral Coefficients (MFCCs) and the RIR. For both,
we compute the Short Time Fourier Transform (STFT) using a 64ms
hamming window with 32ms overlap. To model ambient sound we
compute 20-dimensional MFCCs, extended with difference coeffi-
cients [26]. To extract the parameterized RIR we apply the NMFD
based de-reverberation procedure described earlier to STFT.

3.3. Training

For scene classification we train two Gaussian mixtures, each having
64 components, per room type. One mixture is trained on the data
for the specific room type while the other is trained on the data from
all other room types. To classify the RIRs, we trained a binary SVM
with a radial-basis function (RBF) kernel for each room type using
LIBSVM[27]. We setup the SVM to output probability values for
the positive and negative classes and used grid search with five fold
cross-validation to find the optimal parameters for the SVM.

3.4. Results

3.4.1. Classifier Evaluation

We first evaluate room classification performance on individual
recordings obtained from campuses C-I and C-II, using the equal
error rate (EER) as the metric. It is important to note that while
the testing and training set do not have data from the same rooms,
they do have data from the same set of buildings. The EERs for
the acoustic scene and RIR classifiers are given in Table 1. While
both classifiers produced encouraging results, the acoustic scene
classifier outperformed the RIR classifier in all room types except
for the bathrooms suggesting that the acoustic scene is well suited
for characterizing rooms of different types. Though less impressive
than the acoustic scene classifier, the results from the RIR classifier
are still quite good. The RIR classifier performs very well on en-
vironments with distinctive structural features, namely lecture halls
and bathrooms. The high ceilings of lecture halls and the ceramic
tiling in the bathrooms would produce acoustic artifacts which are
not found in other types of rooms. However, we see that structural
information alone, as obtained from the RIR, may not be sufficient
when trying to classify more complex acoustic environments such
as classrooms, offices and pantries. With that said, we still maintain
that the structural information captured by the RIR is salient in the
semantic inference process. As we shall see in the next section, aug-
menting the acoustic scene classifier with the structural information
from the RIR yield significantly better classification performance.

3.4.2. Combining The Classifiers

As we stated in 2.3, we want to aggregate the information obtained
from both, the acoustic scene and the RIR classifiers into a hybrid

Fig. 1: Total EER as α is varied. Each color represents one type of
room.

model using equation (2). We empirically determine the optimal
value of the weight parameter α in equation (2) by computing the to-
tal EER, across all room types, for different values of α and choosing
the α at which the total EER is minimized.

Fig.1 illustrates how the total EER decreases as α is varied. The
EER decreases as α is decreased reaching a minimum at α = 0.10.
In fact, the total EER obtained by combining the classification re-
sults, with α = 0.10, is 14.7% lower than that of the audio scene
classifier (α = 1.0) and 59.9% lower than that of the RIR classi-
fier (α = 0.0). This observation is quite interesting because the RIR
classifier alone yields very high error rates but by providing just a lit-
tle information from the acoustic scene classifier we can drastically
reduce them and obtain better performance than the acoustic scene
classifier itself.

3.4.3. Confidence Calculation

We evaluate the ability of the proposed approach to incrementally
buildup confidence in semantic labels for the rooms. Given a set
of recordings, all obtained from within the same room, we use the
Bayesian inference procedure described in 2.3 to incrementally up-
date our confidence in the candidate semantic labels for the given
room. As more audio samples are made available to the classifier we
expect to see the confidence in the true label increase while the con-
fidence in other labels diminishes. In our experiments we set ω = 4
and, model P (p′i|C) and P (p′i|¬C) as a four component Gaussian
mixture. Figure 2 illustrates the process of confidence build up on
the data from campuses C-I and C-II when classified using the hy-
brid model with α = 0.10.

It is encouraging to see that our technique can confidently in-
fer the correct semantic label for different room types given a set of
audio recordings. For all the room types in our dataset, our confi-
dence in the true label clearly outstripped our confidence in all other
labels. For three out of five room types the confidence in the true la-
bel rapidly approached 100%, with less than 30 samples and thereby
demonstrating the practical viability of our proposed approach. By
far the most impressive performance was shown by bathrooms which
were unambiguously labeled with 100% confidence with less than a
handful of recordings. The performance was not as impressive for
lecture halls but confidence in the true label still converged to more
than 75% with less than 20 samples, while the confidence for all
other labels remained much lower.

Another interesting consequence of our technique is that the



(a) Lecture Halls (b) Offices

(c) Pantries (d) Bathrooms

Fig. 2: Confidence build up per room using the hybrid classifier with
α = 0.10

confidence values for different rooms are not correlated. This per-
mits our technique to accurately represent situations in which a room
serves multiple purposes and needs to be assigned more than one
semantic tag or, if the room is of a type that is not known to our
classifier, to be flagged as unknown.

3.4.4. Testing On An Unseen Building

While the results in Fig. 2 are very encouraging they are not con-
clusive because the rooms in the training and testing set come from
the same set of building. It is very common for rooms of a particu-
lar type in the same buildings to be homogeneous in their structure
and layout. This homogeneity can lead to similar acoustic features
being observed in these rooms. Therefore, we run the risk of our
models over-fitting to these common features and producing overly
optimistic results.

To obtain a more reliable set of results we evaluate our technique
on an “unseen” building i.e. a building not included in the training
set. We train our classifiers using the data from the campuses C-I
and C-II and test on the data from the campus C-III. We use the hy-
brid classification model with α = 0.10 and calculate confidence
using equation (3) with thresholds, tC , set to threshold values corre-
sponding to the EER values in Table 1. Due to space considerations
we have chosen to only illustrate the final confidence values for each
label in the form of a confusion matrix presented in Fig.3.

Notwithstanding the fact that our training dataset only had data
from two buildings and hence was lacking in diversity, our tech-
nique was able to correctly infer the labels for four out of the five
room types in our dataset. We were able to confidently label lec-
ture halls, bathrooms and offices. While we were absolutely certain
about our labels for the offices and bathrooms, the lecture halls were
being confused with classrooms in some cases. This is not a serious
setback since lecture halls and classrooms can have a lot of similar
features and their structural layout can vary significantly across dif-
ferent buildings. However, our technique was not very sure about the

Fig. 3: Confusion Matrix of final classification confidence values on
the unseen building.

label for pantries and grossly miss-classified the classrooms. We be-
lieve that these errors were caused by the fact that the classrooms and
pantries in the test building significantly differed in their layout and
content from their counterparts in the training buildings. Unlike the
training classrooms, the classrooms in the test buildings also served
as computer clusters while the pantries in the test building were sig-
nificantly smaller than the ones in the training set and lacked certain
appliances such as printers. These differences would probably have
changed the ambient sound patterns present in the rooms as well the
impulse response.

4. CONCLUSION

We have proposed an acoustic monitoring scheme to detect room
semantics from audio recordings. We have demonstrated that both
qualitative (ambient sound scene) and structural (RIR) identifiers of
spaces are capable of providing confirmation of a room’s seman-
tic label, however, a linear combination of the two classifiers yields
lower error rates than each classifier achieved individually. We have
also developed a Bayesian inference technique for aggregating the
evidence obtained from the classifiers to build up confidence in se-
mantic labels for rooms over time. Finally we have evaluated our
system using audio recorded in three university buildings. On the
validation dataset, consisting of data from two campuses, the con-
fidence of our system in the true label significantly outstripped its
confidence in all other labels. Moreover, our system also performed
very well on the data from the third campus, that was not included in
a training set, assigning correct labels to 4 out of 5 different classes
of rooms.

The work presented in this paper is part of a larger project to
create a lightweight crowdsourced system for automated annotation
of indoor floorplans, in which audio is one of the modalities, along
with visual and sensory data, to be employed to infer the semantic
labels for rooms. As future work, we plan on performing evaluation
trials with volunteers. We intend to make all the data we gather
available to the public to facilitate future work in this area.
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