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Abstract— We present a new deep learning-based approach
for dense stereo matching. Compared to previous works, our
approach does not use deep learning of pixel appearance de-
scriptors, employing very fast classical matching scores instead.
At the same time, our approach uses a deep convolutional
network to predict the local parameters of cost volume ag-
gregation process, which in this paper we implement using
differentiable domain transform. By treating such transform
as a recurrent neural network, we are able to train our
whole system that includes cost volume computation, cost-
volume aggregation (smoothing), and winner-takes-all disparity
selection end-to-end. The resulting method is highly efficient
at test time, while achieving good matching accuracy. On the
KITTI 2015 benchmark, it achieves a result of 6.34% error
rate while running at 29 frames per second rate on a modern
GPU.

I. INTRODUCTION

The use of deep convolutional networks has recently
advanced the accuracy of stereo matching algorithms consid-
erably [1], [2], [3], [4]. This improvement has been facilitated
by the emergence of sizeable training sets, such as the KITTI
datasets for autonomous driving [5], the new version of the
Middlebury dataset [6], and, most recently, synthetic datasets
of high quality [7]. The use of machine learning allows
to tune the stereo matching process to handle characteristic
image patterns. This allows to resolve various stereo ambi-
guities using semantic cues, surpassing the accuracy of more
traditional approaches that use low-level cues and priors.

Despite this success of deep learning methods in stereo,
designing real-time algorithms as required by the majority
of applications has proved challenging. The initial approach
of [1] required over a minute to process a KITTI stereo-pair.
A more recent (“fast”) variant discussed in the follow-up
work [3] and a similar approach of [2] have brought down
this time to as little as one second, which is still excessive
for many applications.

The computational bottleneck within methods [1], [3], [2]
is in the matching process of high-dimensional descriptors
of local appearance, which has to be done for all pairs of
potentially matching pixels across the two views. The most
recent method [4] streamlines this necessity by proposing
a deep architecture that directly outputs the disparity map
given the stereo-pair as an input. While the high-dimensional

descriptors still have to be implicitly matched within their
architecture, this matching process only happens at low
resolution, while further processing results in the efficient
upsampling.

Here, we propose a new way to apply deep learning in
order to improve the accuracy of stereo matching. In order
to achieve real-time frame rate, we avoid learning high-
dimensional descriptors and matching them and focus our
learning-based effort on the cost-aggregation process. We
thus use a simple linear combination of two classical and
very fast similarity measures based on census transform
[8] and sum-of-absolute-differences matching to define the
overall matching costs for various pixels and disparities.

To perform cost-aggregation, we smooth the obtained
noisy matching costs using one of the fastest edge-preserving
smoothing techniques, namely domain transform [9], [10]
across the four directions. Crucially, we make the parameters
of this cost-aggregation process spatially-varying and use
a deep convolutional network to predict them on a per-
pixel basis. Such prediction facilitates smoothing across parts
belonging to same object and prevents smoothing across
object boundaries. At test time, the deep learning module
processes only one of the input images, and the complexity
of this module is thus independent of the disparity range.

Our experiments demonstrate that a combination of a sim-
ple matching process and a trainable domain transform-based
cost aggregation is able to achieve a unique combination
of a high frame-rate (e.g. 29 fps for KITTI 2015 dataset)
and high matching accuracy (state-of-the-art for real-time
methods). The high accuracy is obtained via the end-to-
end learning process that takes into account the pixel-level
matching, the cost aggregation, and the final winner-takes-
all disparity selection. The ultimate accuracy greatly benefits
from initializing the weights within our deep network to the
weights of the network trained to detect natural boundaries
in images [11].

In the remainder of the paper, we discusses the related
work (II), detail the proposed method (III), present the results
of the experimental validation in and conclude with a
short discussion and outlook (V).



II. RELATED WORK

Our work is related to a large body of works on fast stereo
matching that investigate the use of efficient algorithms
such as few rounds of message passing [12], bilateral filter-
ing [13], guided filtering [14], or domain transform [10] in
order to achieve smoothness in the reconstructed depth maps.
The domain transform used in our approach and introduced
in [9] can be regarded as a fast approximation to bilateral
filtering and is overall the fastest of the global aggregation
methods employed within this class of stereo methods.

Our approach has been inspired by the recent work of [15]
that establishes the connection between the domain transform
and the gated recurrent neural networks (such as LSTM [16]
and GRU [17]) and then uses this connection to discrim-
inatively train domain transform parameters for the task of
semantic segmentation. Our approach is reminiscent of other
works on semantic segmentation such as [18] and [19] that
also draw connections between recurrent neural networks
and conditional random fields, and use these connections to
impose spatial smoothness. Very recently (and concurrently)
to our work, several groups have considered the use of
learnable edge-aware smoothing for several image processing
operations, including post-processing of depth maps [20],
[21].

As discussed above, our work is also related to preceding
approaches that use deep learning for stereo. Our approach
differs markedly from [1], [3], [2] as we use deep learning
within the cost aggregation rather than to compute the
matching costs themselves. Unlike [1], [3], [2] and similarly
to [4] we also use end-to-end learning that encompasses all
stages of depthmap computation within our method. Unlike
[4], which uses a rather generic feed-forward convolutional
network trained on a massive amount of synthetic stereo
pairs, our method employs classical stereo matching algo-
rithms such as census transform as modules within a more
specific architecture that combines convolutional networks
with a gated recurrent neural network module (which is
equivalent to the domain transform operation).

III. METHOD

We consider a dense stereo correspondence problem where
a rectified pair of images I and I? (the left and the
right view images respectively) is given as an input and
the goal is to assign each pixel (z,y) in the left image
I* a label d from the set d € [0,dpar] Where dpqq is
the maximum allowed disparity. Our approach consists of
three steps: constructing the cost volume, the cost-volume
aggregation and the winner-takes-all label selection. As a
postprocessing we also apply left-right consistency check to
identify and fill in the occluded parts. We now discuss these
steps in detail.

A. Computing stereo-matching costs

In our method we operate on the cost volume explic-
itly stored as a three-dimensional array with dimensions
(h,w, dpq,) where h and w are the image dimensions.

Following the pipeline of a typical local stereo method,
we compute the following stereo matching cost based on
two terms. The first term is based on the sum of absolute
differences (SAD). We use 1x1 patches (i.e. individual pix-
els) for the sake of preserving maximum amount of texture
information and rely on the subsequent cost aggregation
scheme for further smoothing:

Esap(z,y,d) =Y |[TH(x,y) = TF (@ —d,y)| (1)

r,g,b

The second term Eepsus(, y, d) is based on matching of the
local census transform [8] which is a non-parametric local
transform that relies on the relative order of intensity values.
We convert images to gray-scale to compute this term. The
local image structure at each n x m patch is summarized
by (n? — 1) binary bits. Each bit is set according to the
comparison of the patch’s central pixel intensity with the
remaining pixels of the patch. The obtained descriptors are
then matched with the hamming distance when computing
the stereo matching costs. The census transform matching
computation can be naturally mapped to a data parallel
pipeline thus making it very efficient for modern GPU
architectures. Each thread is assigned to a single pixel
computation which is performed in constant time. Finally
we combine the two terms into the final matching cost:

E(.’IT, Y, d) = aESAD (xa Y, d) + (1 - O‘)Ecensus (J), Y, d) (2)

Where o € (0,1) and is a constant coefficient that controls
the ratio between the two cost values.

B. Spatial boundary detector

Similar to [14] we perform cost-volume aggregation using
a spatially-varying smoothing process. We rely on deep
convolutional network and the end-to-end training to set the
smoothing in an optimal and problem-specific way. Thus,
our task is to go beyond simple edge detection, as not all the
edges on the images are aligned with the disparity transitions.
Therefore, the accuracy of the method could increase during
the supervised training.

Still, because of an inherrent connection between object
boundaries and edge discontinuities, our method for smooth-
ing weight computations is based on the CNN-based archi-
tecture for object boundary detection proposed in [11]. This
architecture is thus embedded into the end-to-end learning
process. The method [11] addresses the challenging ambigu-
ity in edge and object boundary detection by learning rich
hierarchical representation. It combines the edges detected
at different image scales into a final edges map. To achieve
this combination, their architecture includes skip connections
merging together edges predicted at multiple scales (see fig.
[I). Thus the final loss is informed about the edges predictions
from the range of five scales.

Since our stereo method requires prediction of two edge
maps (see the following sections for details), we slightly
modify the original architecture in the following way. The
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Architecture of the HED edge detector [11]. The last convolutional layers at each scale are connected directly to the final edge map using the side

outputs. Thus the supervision guides the side outputs towards edge predictions at the corresponding scale. The amount of feature maps has been increased
from 1 to 8 at each of the upsampling layers in order to produce 2 diverse feature maps at the last convolutional layer, each is used to the horizontal and

the vertical pass of the domain transform.

amount of feature maps at each of the side output is increased
from one to eight, each of them is further upsampled, so
that the last 1x1 convolutional layer is able to produce two-
channel output.

C. Smoothing with a domain transform

Our cost-volume aggregation scheme is based on the
domain transform method originally proposed for the edge-
preserving image filtering [9] and further used in a neural
network pipeline [15] in the context of semantic segmenta-
tion.

The domain transform method is originally used in order
to perform fast edge-aware filtering of an image guided by
a gradient information. It can be regarded as an instance of
a fast bilateral filter [9]. The domain transform takes two
inputs:(1) the input signal z, and (2) is the map of weights
w; € [0,1]. The output of the domain transform is a filtered
signal y. For a 1-D signal the output is given recursively by
the following recursive relation. After setting y; = 1, for
i=2,...,N.

yi = (1 — wi)z; + wiyi—1 3)

The set of weights w; is used in order to control the amount
of smoothing along the signal yielding a way to preserve
the edges by controlling the magnitude of w;. Indeed in
the regions of w; close to one, the maximum amount of
information propagates from the previous pixel y;_; to the
current pixel y;. On the contrary, if w; is small (e.g. in the
regions of large signal gradient), the output equals to the
input, i.e. y; = z;.

Domain transform filtering for 2-D images works in a
separable way, using 1-D filtering sequentially along each
dimension: a horizontal pass (left-to-right and right-to-left)
along each row is followed by the vertical pass along each
column (top-to-bottom and bottom-to-top). For the reasons
described in the subsection[[II-D] we use distinct weight maps

Wihor and Wy, for the horizontal and the vertical passes
respectively. We introduce the following notation for a 2D
domain transform which takes an image I and the two weight
maps and computes the filtered image 1 ;;;:

17" = DT(I, Whor, Woert) @)

The procedure can be formally described as the sequence
of the four recurisive passes (left-right, right-left, top-bottom,
bottom-top) computed in the following order:

IL(‘Tay) = (1 - WhOT(xvy)) I(I’,y)+
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IR(xayvd) = (1 - Whor(x7y)) I(.I',y)+ (6)
Whor(xvy) IR(x—’_ 17y)

IT(I',y,d) = (1 - errt(xvy)) I(lﬂ,y)+ (7)
Woert(2,y) IT(x7y_ 1)

IB(xayad) = (1 - errt(xay)) I(l‘,y)+ (8)

errt(xa y) IB(xvy + 1)

In order to achieve our goal, the weights must be predicted
based on the input image. The authors of [15] proposed
a piecewise-differentiable version of the domain transform
in order to backpropagate the errors within the semantic
segmentation pipeline. This approach is extended to the task
of cost volume filtering as described in the following section.

In order to explain how backpropagation works for the
1D filtering process of (3) we assume the output is given as
an input to the subsequent layer L. So each sample y; of
the output signal receives contribution of the gradients %'
In order to compute gradients of the inputs, we unroll the
recurrence (3) in the reverse order, i.e. fori = N,N—1,...,2:



Fig. 2. Example of learned domain transform weights. Original image (1), initial weights map (2), horizontal pass weights (3), vertical pass weights (4).
The set of edges detected by the HED model differs significantly compared to the original output.
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Thus, the four passes of the domain transform can be com-
bined into a learning pipeline where the recursive relation
(3) can be considered as an instance of the gated recurrent
unit [15]. Equation (3) defines DT filtering as a recursive
operation. In fact, in fact there is a precise connection to
GRU which was recently proposed for modelling sequential
data [22]. The value (1 — w;) is related to GRU’s “update
gate” and y;_1 is a “candidate activation” [15].

D. Cost-volume filtering

We follow the idea of cost-volume smoothing [14] using
an edge-preserving filter. In fact our approach might be
considered as the generalization of [10], [23] to a machine
learning pipeline where the filter weights are predicted by
the convolutional neural network.

The overall scheme of our algorithm is given in Figure [T}
The cost volume filtering is performed in four directional
passes of the domain transform. In order to use two-
dimensional domain transform weights Whop yert(2,y) for
the three-dimensional array filtering, we simply replicate the
2D edge maps for each slice of the energy tensor. For each
slice of the cost volume E; = E(z,y,d), x = 0,..,w,
y =0, .., h, the domain transform is computed independently
as follows:

Egilt = DT(Ed7 Wh0r7 errt)7
d={0,1,.... dpas}

The cost-volume filtering is than followed by the classical
winner-take-all strategy for disparity label selection.

The authors [15] use the shared weights w;; for each of
the four directional passes. We, however, use separate weight
maps for the vertical and the horizontal passes Wi yert as
it is beneficial for our task due to the the fact that the rate and
the statistics of disparity changes along the horizontal and the

(12)

vertical directions can be quite different. Using two weight
maps instead of one implies very small computational over-
head during the test-time stereo processing, while increasing
the accuracy.

In order to reduce the computational complexity of our
algorithm we train the edge detector for the half resolution
of the original image and then use bilinear interpolation
in order to upsample the edge maps to the original size.
While the cost volume is computed for the original image
size. Indeed, there is sufficient amount of information in
real-world imagery at half resolution in order to extract
edges relevant to the disparity discontinuities. Thus, some
additional run-time reduction is gained at the cost of little or
no increase in the disparity error.

We use the exponential non-linearity to map the output
of the convolutional network to the weights of the domain
transform:

errt,hor = eXp(fo—Evert,hor) (13)
where o is, once again, a tunable parameter, that affects the
convergence speed of the training process.

E. Loss

In order to match the filtered cost volume with the ground
truth disparity field, we represent each of the ground truth
labels as a one-hot vector and use the cross-entropy soft-max
loss to evaluate the final disparity field error, thus maximizing
the log-probability of the correct displacement at every pixel
(where the disparity is known at training time). We did
not observe practical benefit from using narrow gaussian
distribution instead of one-hot vector as proposed in [2].

The training in our method is end-to-end (fig. ) as the
disparity field error is backpropagated through the recurrent
part (comprised of four differentiable domain transforms) to
the weight-computing convolutional neural network, so that
the network learns to find disparity edges suitable for the
cost volume filtering.

IV. EXPERIMENTS
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Fig. 3. Cost-volume filtering algorithm schematic view. The domain transform weights are replicated for each slice of the matching cost volume and 4
directional passes (left-right, right-left, top-bottom, bottom-top) are performed in parallel. Finally, winner-takes-all strategy is used for the disparity labels
selection.
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Fig. 4. The overall scheme of our learning pipeline. The left and the right images are given as an input for the raw matching cost volume. The left
image chosen as the reference view for the disparity computation serves as an input to the edge detection CNN. The domain transform which can be
regarded as an instance of RNN takes two inputs: the raw cost volume and the pair of edge maps predicted by the CNN. Finally, the cross-entropy loss
is used to penalize the error between the predicted disparity and the ground-truth values. The error is back-propagated to the CNN values through the
domain-transform RNN.

Fig. 5. Example of the filtering process with the trained domain transform. Each of the three patches on the right hand side denoted with magenta, green
and red colors respectively show relative contribution of its central pixel to the rest of the pixels of the patch. The central pixel of the first patch shown in
magenta corresponds to the road milestone, thus the smoothing process is localized by the border of the milestone. The patches shown in green and red
demonstrate how the road markings relevant (red) and irrelevant (green) to the disparity change are discriminated by the trained domain transform.

A. Data set

We evaluated our method on the KITTI 2015 public
data set [24]., which is a collection of color image pairs
taken from a car roof while driving in a European city.
Each of the pair rectified and the ground truth is given in
a form of a sparse disparity field obtained with LIDAR.
The disparity field regions corresponding to cars were then
refined to dense fields using geometrically accurate CAD
models fit to the point clouds. Each image has dimensions
1242 x 375 pixels with relatively large displacement within

[0..256] pixels range. Computing the stereo correspondence
is especially challenging around the reflecting surfaces es-
pecially car windshields and windows, textureless regions
including homogeneous car bodies, and traffic forming thin
regions surrounded by large disparity fields discontinuities.
Whereas most of the disparity fields consist of slanted
surfaces corresponding to the road surface.

B. Left-right disparity check.

Since the ground truth disparity fields include occluded
regions, it is necessary to perform the standard left-right



check procedure in order to interpolate the disparity fields
within those regions in order to obtain accurate results.
Following the algorithm described in [1], we compute the
disparity fields for both left-right and right-left image pairs
and then interpolate the occluded and mismatched pixels.

C. Details or learning

The data set was split into the training set (160 image
pairs) and the validation set (40 images). The pre-processing
including mean subtraction was adopted from the edge
detection network.

The data term corresponds to the linear combination of
1 x 1 SAD difference blocks with 7 x 7 census transform,
the value parameter o = 0.43 is chosen experimentally. The
parameter o is set to 4 and does not affect the final accuracy.

The original architecture was modified in two ways. First,
the amount of feature maps in the convolutional layers was
halved in order to decrease the run-time. Second, the amount
of feature maps used for the final linear combination was
changed from 1 to 8 (fig. [I).

We train the network to minimize the cross-entropy loss
using ADAM [25] method. The learning rate is set to
2.5 -1075. We benefit from using the edge detection model
pretrained to extract edges for BSDS data set [26]. The
network is pre-trained for a edge-detection task. The ground
truth labels obtained from the manual annotation are pro-
vided. The combination of cross-entropy losses for different
scales is performed as described in [11].

An example of the original HED edge detection output
compared to the learned domain transform weights can be
observed on the fig. 2| Although there is no general intuition
on the learned weights, one can observe that some of the
edges were suppressed during the training. The degree of
smoothing for the horizontal and the vertical pass is different
after the training.

D. Runtime

The learning was implemented using the combination of
Theano [27] framework and fast CUDA kernels for the AD-
census cost volume computation. The test time evaluation
framework combines the edge detector implemented using
CuDNN library with CUDA implementation of the the
domain transform. We measure the runtime of our imple-
mentation on a PC with NVIDIA GeForce GTX Titan X
GPU. Training takes about 4-5 hours.

The runtime of our method across the pipeline stages can
be observed in the table [l The total run-time is 34 msec
(29 frames per second) runtime per image pair including
overhead associated with the left-right check. The greatest
fractions of the run-time are spent for the domain transform
and the edge detection CNN forward computation.

E. Quantitative results

Our method achieves 6.34% error on the KITTI 2015 data
set. The predicted disparity fields for the first images of
the test set can be observed on fig. [ The most notable
challenges for the method arguably are dense ground truth

stage # of calls | total runtime, msec
data term 2 3
CNN 1 9
domain transform 2 19
WTA 2 1
left-right check 1 2
total 34

TABLE I

RUNTIME FOR OUR PARALLEL IMPLEMENTATION OF THE LEARNED
DOMAIN TRANSFORM COST AGGREGATION ALGORITHM FOR KITTI
2015 DATASET IMAGES ON NVIDIA GEFORCE GTX TITAN X GPU.
THE STEREO ALGORITHM IS RUN TWICE SINCE THE LEFT-RIGHT CHECK
IS PERFORMED. THE DOMAIN TRANSFORM WEIGHTS ARE PREDICTED
BY A SINGLE FORWARD PASS OF THE CNN FOR A BATCH CONTAINING 2
IMAGES. MOST OF THE TIME IS CONSUMED BY DOMAIN TRANSFORM
AND THE EDGE DETECTOR.

labels for the car bodies. The method also fails to predict
disparity for some thin curved regions that are not aligned
with the vertical or horizontal axes. Overall it is able to pro-
duce correct labels for most of the labels which correspond
to slanted surfaces, e.g. the road surfaces.

V. CONCLUSION

We proposed a new method of computing dense stereo
correspondences using convolutional neural network trained
to aggregate the cost volume. The methods is based on the
multi-scale edge detector using to extract relevant edges and
the domain transform trained to perform the cost volume
aggregation. The method was evaluated using KITTI 2015
data set and achieves 6.34% error at the 29 frames per second
rate (see fig. [6).

Our approach can be extended to incorporate other cost
aggregation approaches such as semi-global matching [12]
that can also be unrolled to recurrent neural networks for
training. We are currently investigating this approach, as it
can potentially lead to more accurate aggregation, especially
at slanted surfaces.
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