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ABSTRACT

Echo State Newtworks (ESNs) are simplified recurrent neu-
ral network models composed of a reservoir and a linear,
trainable readout layer. The reservoir is tunable by some
hyper-parameters that control the network behaviour. ESNs
are known to be effective in solving tasks when configured
on a region in (hyper-)parameter space called Edge of Crit-
icality (EoC), where the system is maximally sensitive to
perturbations hence affecting its behaviour. In this paper, we
propose binary ESNs, which are architecturally equivalent to
standard ESNs but consider binary activation functions and
binary recurrent weights. For these networks, we derive a
closed-form expression for the EoC in the autonomous case
and perform simulations in order to assess their behavior in
the case of noisy neurons and in the presence of a signal. We
propose a theoretical explanation for the fact that the variance
of the input plays a major role in characterizing the EoC.

Index Terms— Reservoir computing; Binarization; Ran-
dom Boolean networks; Edge of Criticality.

1. INTRODUCTION

Echo State Networks (ESNs) [6] maximize predictive perfor-
mance on the Edge of Criticality or Edge of Chaos (EoC),
which is a region in parameter space where the system is
maximally sensitive to perturbations [9]. To date, a complete
theoretical understanding for the EoC is missing for input-
driven ESNs without mean-field assumptions. This perfor-
mance maximization at the EoC is known to be common to
many dynamical systems, even really simple ones [8]. This
property has lead many researcher to study these models in
order to explore the main features associated with the transi-
tion to chaos. In this direction, Random Boolean Networks
(RBNs) [7] are well studied networks. Their chaotic behavior
is well understood ( [3, 4, 14]), though their applicability is
scarce due to the that they only input binary signals.

In this paper, we propose binary ESNs (bESNs). The ar-
chitecture is equivalent to standard ESNs but simplified as
they consider binary activation functions and binary weights
for the recurrent connections. To the best of out knowledge,
this architecture has never been investigated before. bESNs

share some similarities also with a particular form of RBNs,
called Random Threshold Networks [13] (that are based on
the same idea of summing the input of neurons). We derive a
closed-form expression to determine the EoC in autonomous
bESNs (i.e., the network is not driven by signals) and perform
simulations to assess the behavior of bESNs both in the au-
tonomous and non-autonomous case. We experimentally as-
sess the quality of our theoretical prediction regarding the on-
set of chaos in bESNs in the autonomous case. Results show
perfect agreement with the theory. Then, in order to asses
the network stability, we analyze the impact of noise on the
neuron outputs on the onset of chaos. Our findings suggests
that the chaotic region expands linearly with the noise inten-
sity when the mean degree (i.e., the average number of links a
neuron has) is high enough. We also study the EoC for bESNs
driven by (continuous) signals, discussing how our findings
could be generalized considering the signal gain as an hy-
perparameter. This work sets also in the context of reducing
model complexity, in which binarization plays an important
role both for theoretical aspects [1] and applied perspectives
[2], since it would considerably reduce required hardware re-
sources and speed-up training algorithms.

2. BACKGROUND MATERIAL

2.1. Echo State Networks

An ESN is a discrete-time non-linear system with feedback,
whose model reads:

x[n+ 1] =f (Wx[n] +W r
iu[n+ 1] +W r

oy[n]) (1)
y[n+ 1] =g (W o

iu[n+ 1] +W o
rx[n+ 1]) (2)

An ESN consists of a reservoir of N neurons character-
ized by a non-linear transfer function f(·). At time n the
network is driven by the input u[n] ∈ RNi and produces an
output y[n] ∈ RNo , Ni and No being the dimensions of the
input and output vectors, respectively.

The weight matrices W ∈RN×N (reservoir internal con-
nections), W r

i ∈RN×Ni (input-to-reservoir connections) and
W r

o ∈ RN×No (output-to-reservoir feedback connections)
contain values in the [−1, 1] interval drawn from a uniform
(or sometimes Gaussian) distribution. The output weight
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matrices W o
i ∈ RNo×Ni and W o

r ∈ RNo×Nr , connecting
reservoir and input to the output, represent the readout layer
of the network. Activation functions f(·) and g(·) (applied
component-wise) are typically implemented as a sigmoidal
(tanh) and identity function, respectively. Training requires
solving a regularized least-square problem [6].

Various empirical results suggest that ESNs achieve the
highest expressive power, i.e., the ability to provide optimal
performances, exactly when configured on the edge of the
transition between a ordered and chaotic regime (e.g., see [6,
9–12, 15]). Once the network operates on the edge -or in
proximity to - it achieves the highest memory capacity (stor-
age of past information) and accuracy prediction, compatible
with the network architecture. For determining the edge of
chaos, one usually resorts to computing the maximum Lya-
punov exponent [5] or identify parameter configuration maxi-
mizing the Fisher information [10].

2.2. Random Boolean Networks

RBNs where first proposed in [7] as a model for the gene
regulatory mechanism. The model consists of N variables
σi ∈ {0, 1} – sometimes called spins – whose time-evolution
is given by σi[n+ 1] = fi(σi1 [n], σi2 [n], . . . , σiK [n]), where
each fi ∈ {0, 1} is a Boolean function of K variables, rep-
resenting the K incoming links to the i-th element of the net.
There exists 22

K

possible Boolean functions of K variables.
The output of fi is randomly chosen to be 1 with probability
r and 0 with probability 1− r, so that usually one refers to r
as the bias of the network.

RBNs show two distinct regimes, depending on both the
value of K and r: a phase in which the network assumes a
chaotic behaviour and a phase (sometimes called frozen) in
which the network rapidly collapses to a stable state. In [3],
the authors justify this behavior by studying the evolution of
the (Hamming) distance of two (initially different) configura-
tions. There, they derive the following formula for the onset
of the chaos: K > Kc =

1
2r(1−r) .

3. BINARY ECHO STATE NETWORK

In this section, we introduce bESNs and study the dynam-
ics of a reservoir similar to (1) constituted of binary neu-
rons xi ∈ {−1,+1} for i = 1, 2, ..., N and binary weights
Wij ∈ {−1, 0,+1} for i, j = 1, 2, ..., N (the zero value ac-
counts for the fact that two neurons may not be linked). For
simplicity, we will not consider feedback connection (i.e.,
W r

o = 0) . The bESNs system model simplifies as:

xi[n+ 1] = sgn(Si[n]), (3)

Si[n] :=

N∑
j=1

Wijxj [n] + u[t]. (4)

u[t] is the input signal, which we consider to be unfiltered
((W r

i ) = 1, i.e., the all-ones vector), for simplicity. When
u[n] = 0 for every n (i.e., there is no input), we say that
the system is autonomous. The study of the autonomous sys-
tem plays an important role, since it allows us to investigate
analytically the network dynamics and its properties. Reser-
voir connections W = (Wij) are instantiated according to the
Erdős–Rényi model where each linkWij is created with prob-
ability α. If the link is generated, the weight value is set to 1
with probability p or −1 with probability 1− p.

The proposed bESN model is controlled by three hyper-
parameters: (1) N , the number of neurons in the network; (2)
〈k〉 := αN , the mean degree of the network; (3) d := p− 1

2 ,
the asymmetry in the weights values. These hyperparameters
are related to α and p, although they are easier to understand:
in fact, 〈k〉 has a natural interpretation in terms of mean neu-
ron degree that does not depend on the network size N . The
choice of using d is due to the symmetry of the model around
the zero value and to the fact that, with this choice, a positive
(negative) value of the hyperparameter accounts for majority
of positive (negative) weights. Note that 〈k〉 can vary contin-
uously from 0 to N and d ∈ (− 1

2 ,
1
2 ). A similar model was

proposed in [13], but in their work the weights assume a pos-
itive or negative value with equal probability, i.e., their model
corresponds to ours in the p = 0 case.

3.1. Edge of chaos in binary ESN

Here, we study two networks with the same weight matrix
W , that are in the states x[n] and x′[n], the latter refers to
the perturbed network and differs only in one neuron whose
state is flipped. The goal is here to understand under which
conditions the time evolution of the perturbed network dif-
fers from the original one, i.e., whether the perturbation will
spread and significantly impact the network behavior or not.

For N → ∞, the fraction of positive-valued neurons is
equal to the probability for a neuron of being positive, namely
P+=p, while the fraction of negative neurons is P−=q=1−
p. By comparing the original network with the perturbed one,
the probability that the flipped neuron will have an influence
on a neuron connected to it will be given by two terms: the
probability that neuron state is positive P+ multiplied by the
probability of switching from positive to negative π+−, plus
an analogous terms accounting for the negative part (P− and
π−+ respectively. Assuming that π+−=P−=q (i.e., that the
probability of turning negative from positive is equal to the
probability of being negative) and, analogously, that π−+ =
P+ = p (that can be seen as a formulation of the annealed
approximation introduced in [3]), one obtains:

P+ · π+− + P− · π−+ = pq + qp = 2p(1− p) (5)

We now define kO and kI as the mean out-degree and in-
degree of a neuron, respectively. Since a single neuron has
influence on kO neurons, the expected number of changes



is given by 2p(1 − p)kO, to which one has to add the fact
that at least one neuron has changed due to the flip. There-
fore, if this number is bigger than half of the mean incoming
links of a neuron, i.e., kI/2, then the perturbation will dom-
inate the network dynamics and will propagate. Since in an
Erdös–Rényi graph kI = kO = 〈k〉, we obtain the following
condition for the onset of chaos:

1 + 2p(1− p)〈k〉 > 〈k〉
2

(6)

which using d := p− 1/2 can be rewritten as:

〈k〉 < kc :=
1

2d2
(7)

Note that the mean degree 〈k〉 in (7) plays a “stabilizing” role
(i.e., the higher the degree, the larger the magnitude of d re-
quired for chaos), as opposed to RBNs, where increasing the
mean degree leads towards a chaotic region.

4. EXPERIMENTS

4.1. Edge of chaos

In order to assess the agreement between the prediction given
by Eq. 7 and experimental results, we conducted an explo-
ration of the parameter space. Here, we exploit the fact that
our neurons assume binary states only and consider their
Shannon entropyH as an indicator for the transition to chaos.
The entropy H was computed considering a time average H ,

H :=
1

T − t0

T∑
n=t0

H(x[n]) (8)

where the entropy of a configuration x is estimated as
H(x) := −ρ(x) log(ρ(x)) − (1 − ρ(x)) log(1 − ρ(x)), in
which ρ(x) is the number of neurons whose state is +1 and
(1 − ρ(x) the number of neurons with state −1. We expect
Eq.(8) to be be almost zero in the frozen regime and almost
one in the chaotic one, with a sharp region of intermediate
values that we consider to be the edge of chaos.

In order to explore the parameter space, we run a series
of simulations using a network of N = 1000 neurons with
different random initial conditions and connection matrices
W, generated using specific values of 〈k〉 and d. In Eq. 8,
we used T = 300 time-steps and t0 = 100 accounting for an
initial transient from the initial state to a stationary condition.
Results are showed in Fig. 1 and demonstrate almost perfect
agreement with the theoretical result (7).

4.2. Effects of perturbations on state evolution

In order to assess the effect of chaos on the network behavior,
we compare the evolution of a bESN instantiated with weight

Fig. 1: Values of H for different configurations of the asymmetry
and the mean degree. The experiment shows a good agreement with
the predicted EoC region (dashed line), where we observe an abrupt
change of the entropy from 0 to 1.

matrix W but different initial conditions. Starting from a ran-
dom initial condition, we generated 50 additional initial con-
ditions by flipping the state of a single neuron (as in Sec. 3.1).
Here, an initial condition x0 is randomly generated with a bi-
ased probability c = 0.6 for a neuron to assume a positive
value. We let the original and perturbed networks evolve, and
take into account the (normalized) Hamming distance, DH ,
between trajectories.

Results are summarized in Fig. 2. We observe that, in the
ordered phase, perturbations on the initial state have no effect
on the network evolution and the Hamming distance of the
perturbed trajectory from the original one is zero. As d de-
creases (i.e., the networks approach the chaotic regime), we
observe how the Hamming distance significantly increases,
leading to chaos. Note that the maximum value achievable
by the (normalized) Hamming distance is 0.5, corresponding
to the distance of two random binary vectors (a larger dis-
tance would imply a negative correlation). In the same set
of figures, we show three additional indicators, called En-
ergy, Activity, and Entropy. The mean Energy, defined as
E(x[n]) := 1

N

∑N
i=1 xi[n], quantifies the average number of

positive and negative neurons. In the frozen phase, the net-
work almost instantly evolves towards values close to 1 (cfr.
the role of c, discussed above), and then rapidly decreases to
0, which is the expected value in the chaotic phase. The mean
Activity of network at time-step n is defined as the (normal-
ized) Hamming distance of the current state w.r.t the previ-
ous one, A(x[n]) = DH(x[n],x[n − 1]), i.e., the number
of neurons that changed their states in one step. As expected,
networks operating in chaotic regimes are characterized by an
elevated activity. Lastly, we plot the evolution of the Entropy
(8) over time. As expected from the theory, transitioning to a
chaotic regime is signaled by a sharp increase of entropy.



(a) d = 0.25

(b) d = 0.184

(c) d = 0.157

(d) d = 0.144

(e) d = 0.131

(f) d = 0.105

Fig. 2: Mean values of the Hamming distance, Energy, Activity and Entropy of the 50 perturbed networks, with N = 1000 and K = 22 for
selected values of d (see 4.2). The x-axis represents time. The values of the quantities are plotted in blue, while the dashed red lines show the
variance. The predicted system should turn chaotic for d < 1/

√
2〈k〉 ≈ 0.15 , according to the theoretical formula.



4.3. Impact of noise in bESN edge of chaos

Here, we study how the EoC is influenced when consider-
ing an independent noise term for each neuron, xi[n + 1] =
sgn(Si[n] + ν ·〈k〉·ξi[n]), where ν is the noise gain, ξi ∼
N (0, 1), and Si is the same as in Eq.(4). The choice of scal-
ing the noise with 〈k〉 was made to account for the fact that
the network stability increases with it, as we discuss below.

To explore the dependency from ν, we ran an experi-
ment where we fixed 〈k〉 and plotted ν versus d. Results are
shown in Fig. 3. We can recognize three regimes: (1) for low
noise values, the chaotic region remains almost constant; (2)
for intermediate values, the chaotic region linearly expands
with the noise intensity up until (3) there is only chaos. We
repeated the experiments with different values of 〈k〉 (not
shown) and they all confirm the same linear expansion of the
chaotic region (in units of 〈k〉). To verify this fact for a wider

Fig. 3: Values of H for different configurations of d and the ν. Note
that ν is multiplied by the mean degree, which is here fixed to 〈k〉 =
200.

range of 〈k〉, we repeated the experiment in Fig. 1 with noise
intensity ν = 0.1. It is possible to observe in Fig. 4 how the
EoC maintains its shape for lower values of 〈k〉, while for
higher average degrees it deviates from the theoretical predic-
tion and the chaotic region depends on d only. We explain
this fact as follows. Neurons can only assume 1 or−1 values.
The probability of a neuron having j positive inputs is then
Pk(j) =

(
k
j

)
pjqk−j where k is its in-degree. If we consider

that j = k+s
2 , where s is the value of the sum of the positive

and negative inputs (whose sign determines the value of the
neuron), then we obtain s= 2j − k. The expectation of j is
〈j〉=pk, so that the expectation of s and its variance are:

〈s〉 = k(p− q) = 2kd (9)

〈(s− 〈s〉)2〉 = 4kpq = k(1− 4d2) (10)

Note that these values are related to a single neuron. For a
general understanding of the network behavior, one simply
uses 〈k〉 instead of k in the expressions above, so that it is
possible to consider σ2 := 〈k〉(1− 4d2) as a mean-field vari-
ance of the total inputs to neurons. The impact of the noise

Fig. 4: The same experiment of Fig.1, but with the presence of a
noise term with ν = 0.1 (multiplied by the mean degree, so that it
increases along the x-axis). Note how for higher degree the chaos re-
gion is constant (the predicted value is the red dashed line), deviating
from the autonomous-case prediction (red dashed line).

Fig. 5: Network driven by white noise. Values of H for different
configurations ofA and d. The mean degree was fixed to 〈k〉 = 150.

Fig. 6: Network driven with the sum of three sinusoids. Values ofH
for different configurations of A and d. The mean degree was fixed
to 〈k〉 = 150.

on the network can then be studied considering the ratio be-
tween ν and σ2. As previously discussed, the noise expands
the chaos region linearly with its ν.



The noise we are considering has a standard deviation
θk = ν · 〈k〉. This leads us to a formula for the chaotic re-
gion which, for 〈k〉 � 1, is |d| < a · ν + b. This relation,
as shown in Fig. 4, does not depend on 〈k〉. As such, hav-
ing Gaussian noise with standard deviation θ, the formula is
|d| < a · θ

〈k〉 , or in terms of 〈k〉, we have 〈k〉 < knoise
c := aθ

|d| .
In our experiments, constant a was determined as a ≈ 0.65.

4.4. Impact of a signal

As for the noise, the magnitude of the signal should have a
major role in the EoC, but this time the chaotic region should
reduce instead of expanding, since the signal is known to sup-
press chaos in certain conditions [11]. The signal introduces
a correlation among neurons, which makes the annealed ap-
proximation ineffective. We drive the network with the signal
as in (4), but we scale u[n] with a gain factor A, since we are
interested in its usage as an hyperparameter and not in rela-
tion with 〈k〉. We initially feed the network with white noise
(note that this is different from what we did in 4.3, since in
this case the noise is the same for each neuron): from Fig. 5
one can observe how the chaotic region rapidly shrinks as A
increases, but a region with an intermediate value of entropy
expands (linearly). This is due to the fact the signal prevents
the system from collapsing in a stable state, keeping the en-
tropy above zero.

In Fig.6 we show the results obtained for the normalized
sum of three sines with incommensurable frequencies (re-
peated also with different numbers of sinudoids, not shown).
Again we note how the chaotic region shrinks as A increases,
with the appearance of the region characterized by intermedi-
ate entropy values which, instead, expands.

5. CONCLUSIONS

The binary ESN model herein introduced is in principle sim-
ilar to regular ESNs. However, its simplicity permits a theo-
retical analysis of some important aspects of the transition to
chaos. The expression we derived here for the autonomous
case perfectly matches the experimental results. Our analy-
sis of the noise applied to neuron activations showed how the
network stability increases linearly with the mean degree of
recurrent connections. The effects of input signals on the net-
work dynamics are more complex to understand, since they
introduce correlations among neurons. Our analysis partially
explained the role that the signal magnitude and the mean de-
gree play in shaping the EoC of the non-autonomous case.
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