Abstract:
Deep neural network has revolutionized machine learning recently. However, it suffers from both high computation and memory cost such that deploying it on a hardware with...Show MoreMetadata
Abstract:
Deep neural network has revolutionized machine learning recently. However, it suffers from both high computation and memory cost such that deploying it on a hardware with limited resources (e.g., mobile devices) becomes a challenge. To address this problem, we propose a new technique, called Tensor-Train Haar-wavelet decomposition, that decomposes a large weight tensor from a fully-connected layer into a sequence of partial Haar-wavelet matrices without retraining. The novelty originates from the deterministic partial Haar-wavelet matrices such that we only need to store row indices instead of the whole matrix. Empirical results demonstrate that our method achieves efficient model compression while maintaining limited accuracy loss, even without retraining.
Published in: 2018 IEEE 28th International Workshop on Machine Learning for Signal Processing (MLSP)
Date of Conference: 17-20 September 2018
Date Added to IEEE Xplore: 01 November 2018
ISBN Information:
Print on Demand(PoD) ISSN: 1551-2541