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ABSTRACT

Learning with Label Proportions (LLP) is the problem of re-
covering the underlying true labels given a dataset when the
data is presented in the form of bags. This paradigm is partic-
ularly suitable in contexts where providing individual labels
is expensive and label aggregates are more easily obtained.
In the healthcare domain, it is a burden for a patient to keep
a detailed diary of their daily routines, but often they will be
amenable to provide higher level summaries of daily behavior.
We present a novel and efficient graph-based algorithm that
encourages local smoothness and exploits the global structure
of the data, while preserving the ‘mass’ of each bag.

1. INTRODUCTION

The whole spectrum of learning paradigms ranging from su-
pervised to unsupervised learning is densely packed with dif-
ferent settings that have limited (or no) access to the true la-
bels. For instance, in semi-supervised learning we have ac-
cess to labels only for a subset of the dataset (usually small).
Additionally, we can characterize the uncertainty in the label-
ing process when learning from noisy and partial labels [1, 2],
using noise as a proxy in the former and a subset of labels per
example in the later. Differently, in this paper we focus on
learning from aggregated labels, also commonly referred to as
Learning with Label Proportions (LLP) [3, 4]. In this setting,
we assume the data comes in the form of bags of examples
and for each of which we are given proportion of labels cor-
responding to each class. Hence, the supervision ranges from
the fully supervised case (as many bags as examples) to the
class priors of the whole dataset (one bag).

Applications for LLP range from elections (labels are
votes and bags are specified demographic areas) and health-
care (diagnosed diseases are released in proportions accord-
ing to ZIP code area) [4]. Our motivation stems from the
healthcare domain, where the Automatic Activity Recogni-
tion in Smart Home environments is key for the monitoring of
health conditions such as dementia or diabetes [5]. The task
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Fig. 1. Illustration of the Label Propagation for Learning with
Label Proportions (LP-LLP) procedure. The first step shows
the bag generation and in the second step we use each bag’s
label proportion as a soft label for each of its points. In the
last step we see that a point is influenced by its neighbors.

involves the classification of sensor data as belonging to a
predefined set of Activities of Daily Living (ADL). The prob-
lem is usually addressed in the supervised setting, assuming
that a human annotator (patient) has manually labeled enough
examples of each of the classes of interest. However, this ap-
proach is not realistic when deploying this systems in the
wild, as patients are reluctant to provide detailed labels. LLP
offers a more amenable annotation strategy since annotations
are aggregates of labels over time e.g. ‘today I slept 8 hours
and watched TV for 2 hours’.

Our proposed method is based on a graph-based formu-
lation of the problem where data-points are represented as
nodes and their relationships are encoded via edges with asso-
ciated weights. Each node is initially assigned a partial label
derived from its bag’s bag proportion. Then each node’s label
is updated based on its neighbors. The problem of preserving
estimated bag proportions is relaxed to the one of preserving
the total ‘mass’ of each bag. Our approach aims at recovering
the true labels based on the assumption of local smoothness
and by exploiting the global structure in the data.
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Our contributions are twofold. Firstly, we introduce an el-
egant and novel graph-based approach to learning from label
proportions building upon Label Propagation [6]. The main
intuition is illustrated in Fig. 1. Secondly, we use label pro-
portions as the only supervision when predicting activeness in
Smart Home environments for healthcare.

Problem Formulation We assume that we have a set of
observations X = {x1, · · · , xn} where xi ∈ Rd. The true
labels, y = {y1, · · · yn} with yi being the label of observation
xi, also exist but are hidden. This set is separated into distinct
bags X =

⋃K
k=1 Bk, where each Bk corresponds to the subset

of points assigned to the k-th bag, and Bk ∩ Bj = ∅,∀k, j ∈
[K]. Moreover, for each bag Bk we have access to its class
proportions, πk = {πk,1, · · · , πk,c}, where

∑c
h=1 πk,h = 1,

πk,h ≥ 0, with πk,h corresponding to the proportion of class
h in bag Bk and c being the number of classes.

The paper is structured as follows. In Sec. 2 we review the
related work. In Sec. 3 we introduce the basic formulation of
Label Propagation and derive the algorithm that incorporates
label proportions. In Sec. 4 we respectively present the em-
pirical analysis in both real and synthetic datasets. Sec. 5 is
devoted to the conclusions.

2. RELATED WORK

Learning from bags of examples can be tracked back to tasks
such as Multiple-Instance Learning [7], where the learner is
provided with logical statements indicating the presence of a
class in a bag. For example, in binary classification, a bag
would have a positive label if it had at least one positive point
in it, while it would be labeled as negative otherwise.

Recently, more general methods to deal with label pro-
portions have attracted a wide interest and some of these are
discussed in subsequent subsections. Existing algorithms can
be loosely placed in three categories. Bayesian approaches
such as [8] approach the problem by generating labels con-
sistent with bag proportions. In [3] the authors propose an
algorithm that relies on the properties of exponential families
and the convergence of the class mean operator, computed
from the means and label proportions of each bag. Lastly,
maximum-margin approaches [9, 10] pose the problem as ei-
ther an extension of maximum-margin clustering [11] or Sup-
port Vector Regression. We focus on the latter two categories
as they outperform the first one experimentally [9].

2.1. Conditional Exponential Families

Let X and Y denote the space of the observations and the
(discrete) label space respectively, and let φ(x, y) : X ×Y →
H be a feature map into a Reproducing Kernel Hilbert Space
H with kernel k((x, y), (x′, y′)). A conditional exponential

family is stated as follows:

p(y|x,θ) = exp
(
φ(x, y)Tθ − g(θ|x)

)
with

g(θ|x) = log
∑
y∈Y

exp
(
φ(x, y)Tθ

)
where g(θ|x) is a log-partition function and θ ∈ Rd is the
parameter of the distribution. Under the assumption that
{(xi, yi)

n
i=1} are drawn independently and identically dis-

tributed by the distribution p(x, y), one usually optimizes
for θ by minimizing the regularized negative conditional
log-likelihood:

θ∗ = arg min
θ

{
n∑

i=1

[g(θ|xi)]− nµT
XY θ + λ||θ||2

}
,

where µXY := 1
n

∑n
i=1 φ(xi, yi). Unfortunately, we can-

not compute this quantity directly, as the labels are unknown,
however in [3] the authors present MeanMap, which makes
use of the empirical means of the bags to approximate the ex-
pectations with respect to the bag distribution. This approach
enjoys uniform convergence under the following (strong) as-
sumption: conditioned on its label, a point is independent of
its bag assignment i, namely, p(x|y, i) = p(x|y). Extensions
of MeanMap can be found in [12, 13].

2.2. Maximum Margin Approaches

The maximum margin principle has been widely used in both
supervised and semi-supervised learning [14]. In [11] it was
also introduced to the unsupervised setting under the name
Maximum Margin Clustering (MMC).

∝SVM In [9] the authors present ∝SVM, based on MMC
with an extra loss function depending on the provided and
estimated bag proportions. In MMC, one jointly optimizes
over the labels and the separating hyperplane, with the objec-
tive of maximizing the margin between the classes, while in
∝SVM, an additional constraint on the bag proportions is op-
timized over. The authors propose two approaches to solve
the problem. The first one is of alternating nature, repeating
the steps of solving the usual SVM problem and then arrang-
ing the points so that a loss on the bag proportions is mini-
mized. Informally, the labels are arranged in such a way, such
that, had an SVM been trained on the (labeled) data, it would
achieve a maximum margin solution. The second approach is
more convoluted and its presentation is omitted due to space.

Inverse Calibration In [10] the authors follow the maxi-
mum margin principle by developing a model based on the
Support Vector Regression. Inverse Calibration (InvCal)
replaces the actual dataset with super-instances [4], one
for each bag, with soft-labels corresponding to their bag-
proportions. The proportion of each bag is modeled as qk =



(1+exp(−wTmk+b))−1, wheremk = 1
|Bk|

∑
xi∈Bk

φ(xi).
The constraints of the objective try to enforce qk ≈ πk for
all bags [4]. As noted by [4] qk fails to be a good measure of
bag proportions when the data has high variance, or when the
distribution of the data depends on the bags, and the mean is
not an adequate statistic.

3. LABEL PROPAGATION FOR LEARNING WITH
LABEL PROPORTIONS (LP-LLP)

Label Propagation is a graph-based approach to semi-supervised
learning that represents the data samples as nodes on a graph
and models the relationships through connecting edges with
associated weights [6]. In this section we will first present
LP in the semisupervised setting following [6, 15] and then
adopt the procedure to LLP. We then provide a comparison
with the k-Nearest Neighbours approach.

3.1. Label Propagation

Let F ,Y ∈ Rn×c, where c is the number of classes. F cor-
responds to a ‘soft’ label matrix with each row corresponding
to one point, and each element of that row corresponds to the
probability of assigning the particular data sample to its class.
Y encodes the true labels with Y ij = 1 if yi = j and 0
otherwise. Our method is presented in Algorithm 1.

Algorithm 1: Label Propagation

1 Compute a similarity matrixW for the whole dataset.
Restrict the diagonal to Wii = 0.

2 LetD be a diagonal matrix withDii being the sum of
the i-th row ofW . Compute S = D−1W .

3 Let 0 < α < 1 and iterate
F (t+ 1) = αSF (t) + (1− α)Y . (F (0) = Y )

4 Let F ∗ denote the limit of F (t). Assign labels based on
yi = arg maxj F

∗
ij .

The first step assigns weights to the edges based on a sim-
ilarity function. A popular choice is W ij = exp(−γ||xi −
xj ||2), with γ > 0. The second step normalizes the similarity
matrix such that each row sums to 1. In the third step α can
be thought of as controlling how the information coming from
your neighbors and the information coming from the labeled
examples are weighted. In the final step labels are assigned.

It can be shown [15] that the sequence convergences to
F ∗ = (1− α)(I − αS)−1Y .

In the following, without loss of generality, we restrict the
problem to the binary case for simplicity. We will now use
f ∈ [−1, 1]n to denote the predictions. An individual update
is as follows:

f t+1
i = α

∑
j

w̄ijf
t
j + (1− α)yi, (1)

where w̄ij = wij/
∑

j wij .

We now provide a different interpretation through the
analogy of a random walk. We have f∗ = (I − αS)−1y,
which as we have already seen, can be formulated as f∗ =∑∞

i=1(αS)iy. Think of S as a stochastic matrix and con-
sider a walker sitting on the i-th node about to decide where
to move next based on the i-th row of S. What is the prob-
ability that on the next step the walker lands on a positive
node? These (unnormalized) probabilities can be computed
by raising S to the corresponding power. Imagine keeping
track of the count of positive and negative visits, and using
them to provide an estimate for the label of the i-th node.
But of course, earlier visits are more important as they have a
higher probability of being close to i. This weighting is given
by the value of α.

3.2. Label Propagation with Label Proportions

In the label proportions setting no label is provided for any
of the points. Using the walker analogy, after the first step,
the walker has landed on node j, where xj ∈ Bk (to avoid
confusion, we imply that sample xj is assigned to the k-th
bag. However, in this case, we do not have access to the
true label of xj). What we exploit in this paper is the idea
that even if we do not actually know the true label of j, we
have access to its bag’s label proportions, which we cast as
prior probability of being assigned to a class. The intuition
of a random walk in semisupervised learning carries on, only
now, we have replaced the ‘hard’ labels with ‘soft’ labels, that
loosely represent probabilities. In the binary classification
case, our ŷ can now be defined as ŷi = πk,1 where xi ∈ Bk

and πk,1 represents the proportion of positive labels (1) in
bag k (πk,0 = 1− πk,1 is equivalently the proportion of neg-
ative labels (0) in the same bag). One could now compute
f∗ = (I − αS)−1ŷ, but trivial decision making on ŷ does
not guarantee preservation of the class proportions.

Let us now have a look at the problem from a regulariza-
tion perspective [6] as this will allow us to introduce the bag
proportions as constraints in a principled manner. Consider
the following loss function that we want to minimize.

Q(f) =

n∑
i=1

n∑
j=1

sij(fi − fj)2 + γ

n∑
i=1

(fi − yi)2

where the first term encourages local smoothness while
the second penalizes deviation from y. The balance be-
tween the two is controlled through γ. The solution of
arg minf Q(f) gives the same solution as before [6]. In
its original form, the problem would be an Integer Program,
arg minf∈{0,1}n Q(f), which is in general intractable. Build-
ing on this, one could enforce bag constraints through a sys-
tem of linear equations Af = b, where A ∈ RK×n, with
K being the number of bags and b ∈ RK . A is defined as
Aji = 1, if xi ∈ Bj and 0 otherwise, and bj = nj,1, where
nk,c corresponds to the number of instances of class c inBk.



We now have a constrained Integer Program and proceed
by relaxing it to a constrained Linear Program as follows. In-
stead of controlling the exact number of points for each class
for each bag, we are instead controlling the total ‘mass’ of
each class in each bag. With f unconstrained, any f i can
dominate over the others, rendering the ‘mass’ conservation
principle useless. A more suitable constraint would then be
f ∈ [0, 1]n instead, giving our final problem formulation:

f∗ = arg min
f∈[0,1]n

Q(f)

s.t.Af = b (2)

Label Propagation for Learning with Label Proportions
The proposed algorithm solves Eq. 2 in two steps, by first
solving the unconstrained problem f = (I − αS)−1ŷ (with
ŷi = πk,1 where xi ∈ Bk), and then applying Alternating
Projections [16] to determine f∗ such that Af∗ = b. Al-
ternating Projections is a simple approach for finding a point
in the intersection of convex sets. In our case the sets cor-
respond to row and column sums, as each row of F should
live on a probability simplex and column comes from the bag
proportions, respectively. We refer the reader to [16] and the
references therein for convergence guarantees.

These two steps are repeated until convergence, with
f (t+1) = (I − αS)−1f (t), and f (0) = ŷ.

The procedure for solving the optimization problem in
Eq. 2 is depicted in Alg. 2.

Algorithm 2: Label Propagation for Learning with La-
bel Proportions (binary case)

Input : Bag assignment matrixA and vector b with
bj = nj,1

Output: Estimated labels f̂
1 Compute similarity matrixW and then S
2 Compute f (t+1) = (I − αS)−1f (t), where f (0) is

defined as: f (0)i = πk,1 for xi ∈ Bk, ∀i.
3 Solve for f (t+1)∗ using Alternating Projections.
4 Repeat steps (2) and (3) until convergence.
5 Estimate labels based on f̂i = sgn(f∗i − 0.5)

Weighted k-Nearest Neighbors (k-NN) We now analyze
the connection between LP-LLP and the weighted versions of
k-NN. Referring back to the LP formulation we showed that

f∗ = (I−αS)−1y =

∞∑
k=0

(αS)ky = y+(αS)y+(αS)2y+· · ·

For one sample, and considering already normalized weights
to ease the notation, we have:

fi = yi + α
∑

j∈N (i)

w̄ijyj + α2
∑

k∈N (i)∩N (j)

w̄ikw̄kjyj + · · ·

N (i) refers to the neighborhood of i, that is wij 6= 0.

fi =
∑

j∈N (i)

yj

αw̄ij + α2
∑

h∈N (i)∩N (j)

w̄ihw̄hj + · · ·


In a weighted k-NN setting, the updates would be of the form
ḟi =

∑
j∈N (i) w̄ijyj . Ignoring α for now, we see that the

first term of the LP update is equivalent to the k-NN update.
This term encourages nearby points to have the same label
(local smoothness). Looking at the second term of the LP up-
dates we see that it is an iteration over common neighbors of
nodes i and j (node i is the node we wish to update, while
node j is one of the neighbors we will be ‘influenced’ by).
If nodes i and j have close common neighbors, then this will
enhance the ‘influence’ of j on i. We can understand this as
an exploitation of the global structure of our data, points ly-
ing on the same structure, should have the same label. These
two attributes, local smoothness and global structure, are the
underlying principles of many semisupervised learning algo-
rithms, and LP-LLP brings them to the Learning with Label
Proportions setting.

Time Complexity The algorithm requires the computation
of a similarity matrix which would require O(N2), where N
is the number of data points, and then compute the general-
ized Laplacian. The bottleneck is computing its inverse which
has complexity O(N3). Similarly to other well-established
machine learning algorithms which share this bottleneck, one
could make use of approximations that would trade off accu-
racy for computational expenses [17]. We also note that the
per iteration complexity scales linearly in N , due to the nor-
malization step.

3.3. Comparison of Methods

A critical assumption of MeanMap is the conditional inde-
pendence of a data sample and its bag assignment, given its
label. Moreover, the practitioner has no control over the esti-
mated bag proportions. Some of the merits of this approach
include probabilistic labels, principled handling of multiclass
classification problems and a straightforward implementation.
Moreover, the techniques that rely on the max-margin princi-
ple lose probabilistic labels but these are not limited to the
dependence of data generation to bags. Unlike, ∝-SVM, In-
vCal cannot handle multiclass problems naturally and does
not offer a direct control over bag proportions. It is, how-
ever, easy and cheap to implement, whereas ∝-SVM is more
convoluted.

Our proposed graph-based method does not make as-
sumptions on the bag generation process and can seamlessly
handle multiclass classification tasks. It does not offer prob-
abilistic labels, but instead it provides constrained values that
can be interpreted as ranks. These are then used to provide a
degree of control over the estimated bag-proportions.



Fig. 2. The two synthetic datasets considered in this paper.
From left to right, Half Kernel and XOR.

4. EXPERIMENTS

In our experiments we consider synthetic and real-world
datasets. We first describe both and then present the results.

Synthetic Datasets We have two different synthetic datasets
shown in Fig. 2. The XOR dataset was created by generating
four Gaussian distributions with means lying on the corners
of a square with size size of 10 and identity covariance matrix.
The Half-Kernel dataset was generated by a weighted com-
bination of trigonometric functions, sin and cos, and added
noise.

Real-World Dataset In the Sphere Challenge dataset [18],
sensor data (including accelerometer, video, and environmen-
tal) was collected from 10 people on two separate occasions.
There were 8 males and 2 females, with 8 between the ages
of 18 to 29 and 2 within the ages of 30 to 39. Each partici-
pant was wearing a wrist-worn accelerometer and was asked
to complete a series of scripted activities, taking around 25 to
30 minutes in total. The participants performed several activ-
ities included that are categorized into ambulation activities
(e.g. walking), posture activities (e.g. standing) and transi-
tional activities (e.g. sit to stand). This script was carried
out twice in full by each participant on different days, and
each was annotated at least twice, producing labels which are
themselves proportions. Our experiments consider the task
of classifying between ambulatory and sedentary activities.
We consider two settings of this dataset. Setting 1 involves
predicting ADLs from the raw sensor data, while Setting 2
involves predicting ADLs from the simple baseline features
of the dataset, as described in [18].

Model Setup We focus only on binary classification prob-
lems in this work since this is the setting of our baseline meth-
ods. The data samples into three bags. In the case of synthetic
data, the data is first generated according to the desired total
size and then separated into the bags, respecting the desired
bag proportions. We consider that test data is provided in the

format of a bag with known bag proportion. The approach we
take is to train our models with the test data included, ignor-
ing the true label of each instance. For the experiments we fix
parameter α to 0.50 and choose γ by running the algorithm
on a grid of values and then choosing based on the heuris-
tic of highest score in terms of f̄T

Sf̄ . We compare LP-LLP
against ∝SVM and InvCal. MeanMap is not included exper-
iments mainly because its application is not universal, due to
its assumptions, and secondly because it has been shown to
perform slightly worse than other approaches[9, 10]. Each
data-point corresponds to features extracted (such as, mean,
min, max etc) from accelerometer data from a small time-
window. The data-points were annotated so true labels ex-
ist. We ignore the time aspect of the data and separate the
data-points in bags at random such that each bag has a pre-
specified proportion of each class.

Discussion Tables 1, 2, 3 and 4 present our experimental
results. The number of experiments performed per dataset
was 25. These should be read as follows. The first column
describes the format of the dataset, for example, ′100A′ cor-
responds to a dataset consisting of a training set of size 100
and a test set of size 20% of that. The letter denotes the bag
proportion configuration (recall we have separated our data
into 3 bags), A - (0.60, 0.40, 0.50) and B - (0.85, 0.25, 0.40).
The rest of the values should be read as mean(one standard
deviation). Finally, the model that performs best is embold-
ened in the results tables. (We would like to point out that for
Table 3, ∝-SVM did not converge.) As seen empirically our
proposed method, in general, compares favorably with alter-
native approaches over the broad set of experimental config-
urations considered. With regards to synthetic data, we see
that even if ∝SVM has a low predictive mean accuracy, it has
a high standard deviation. This is due to the method confusing
the two classes. In general the performance of all three meth-
ods improves with increasingly large datasets, as expected.
We note that the Sphere2 configuration of the dataset has the
most varied performance (Table 4). We believe that this is
a more challenging representation for all models (due the its
higher dimensionality) and this is illustrated by higher predic-
tive variance on all models.

5. CONCLUSION

We have introduced a new approach to the problem of learn-
ing with label proportions based on a graph-based representa-
tion of the data. Our approach encourages local smoothness
and exploits global structure to assign labels. This is justi-
fied both qualitatively and empirically. Experiments carried
out demonstrate the performance of our approach as com-
pared to existing algorithms. Our method is not constrained
by the generation of the bags, as opposed to MeanMap. By
taking a transductive approach to training we tend to overfit
less, which is not always the case for ∝SVM and InvCal.



Table 1. XOR
∝SVM InvCal LP-LLP

120A 0.54(0.19) 0.81(0.08) 0.91(0.14)
120B 0.66(0.46) 0.73(0.05) 0.97(0.04)
180A 0.50(0.04) 0.83(0.08) 0.88(0.18)
180B 0.42(0.09) 0.73(0.06) 0.97(0.03)
300A 0.49(0.06) 0.88(0.13) 0.92(0.12)
300B 0.56(0.07) 0.73(0.04) 1.00(0.01)
600A 0.45(0.43) 0.94(0.04) 0.99(0.01)
600B 0.67(0.46) 0.69(0.04) 0.99(0.01)

Table 2. Half-Kernel
∝SVM InvCal LP-LLP

120A 0.81(0.08) 0.46(0.26) 0.58(0.16)
120B 0.73(0.05) 0.56(0.31) 0.74(0.18)
180A 0.83(0.08) 0.63(0.06) 0.59(0.13)
180B 0.73(0.06) 0.50(0.50) 0.93(0.13)
300A 0.88(0.08) 0.67(0.08) 0.84(0.19)
300B 0.73(0.04) 0.50(0.50) 0.96(0.08)
600A 0.94(0.04) 0.70(0.08) 0.96(0.05)
600B 0.69(0.04) 0.74(0.05) 1.00(0.00)

Table 3. Sphere 1

∝SVM InvCal LP-LLP

60A 0.50(0.00) 0.58(0.29) 0.76(0.39)
60B 0.50(0.00) 0.50(0.00) 0.88(0.29)
120A 0.50(0.00) 0.54(0.28) 0.59(0.45)
120B 0.50(0.00) 0.50(0.00) 1.00(0.00)
180A 0.52(0.05) 0.56(0.26) 0.80(0.26)
180B 0.50(0.00) 0.50(0.00) 1.00(0.01)
240A 0.50(0.00) 0.62(0.19) 0.78(0.16)
240B 0.50(0.00) 0.50(0.00) 0.98(0.01)

Table 4. Sphere 2

∝SVM InvCal LP-LLP

60A 0.48(0.03) 0.54(0.09) 0.53(0.09)
60B 0.47(0.04) 0.54(0.07) 0.50(0.09)
120A 0.47(0.11) 0.47(0.12) 0.50(0.13)
120B 0.44(0.09) 0.57(0.10) 0.58(0.12)
180A 0.60(0.11) 0.65(0.14) 0.60(0.16)
180B 0.51(0.10) 0.57(0.13) 0.65(0.16)
240A 0.68(0.16) 0.58(0.19) 0.56(0.20)
240B 0.34(0.19) 0.54(0.10) 0.74(0.12)
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