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Abstract—Massive multiple-input multiple-output
(MIMO) systems require downlink channel state
information (CSI) at the base station (BS) to better
utilize the available spatial diversity and multiplexing
gains. However, in a frequency division duplex (FDD)
massive MIMO system, the huge CSI feedback overhead
becomes restrictive and degrades the overall spectral
efficiency. In this paper, we propose a deep learning
based channel state matrix compression scheme, called
DeepCMC, composed of convolutional layers followed by
quantization and entropy coding blocks. Simulation results
demonstrate that DeepCMC significantly outperforms
the state of the art compression schemes in terms of the
reconstruction quality of the channel state matrix for the
same compression rate, measured in bits per channel
dimension.

I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) sys-
tems are considered as the main enabler of 5G and
future wireless networks thanks to their ability to serve
a large number of users simultaneously, achieving im-
pressive levels of spectral efficiency. The base station
(BS) in a massive MIMO setting relies on the downlink
channel state information (CSI) to achieve the promised
performance gains. Therefore, massive MIMO systems
are more amenable to time division duplex (TDD) op-
eration, which, thanks to channel reciprocity, does not
require CSI feedback. Frequency division duplex (FDD)
operation is more desirable due to better coverage it
provides; however, channel reciprocity does not hold in
FDD; and hence, downlink CSI must be estimated at
user equipments (UEs) during the training period and
fed back to the BS.

The resulting feedback overhead becomes significant
due to the massive number of antennas, and has moti-
vated various CSI reduction techniques based on vector
quantization [1], [2] and compressed sensing (CS) [3],
[4]. In vector quantized CSI feedback, the overhead
scales linearly with system dimensions, which becomes

restrictive in many practical massive MIMO scenarios.
On the other hand, CS-based approaches rely on sparsity
of the CSI data in a certain transform domain, which may
not represent the channel structure accurately for many
practical MIMO scenarios. CS-based approaches are also
iterative, which introduces additional delay.

More recently, following the recent resurgence of ma-
chine learning, and more specifically deep learning (DL)
techniques for physical layer communications [5], deep
learning (DL)-based CSI compression techniques have
also received attention, and are shown to provide sig-
nificant gains compared the aforementioned approaches
in the literature utilizing the sparsity prior. The CSINet
scheme, proposed in [6], is based on a neural network
(NN) autoencoder architecture to obtain a compressed
representation of the CSI by learning low-dimensional
features of the channel gain matrix from training data. In
[7], the authors improve CSINet by utilizing a recurrent
neural network to utilize temporal correlations in time-
varying channels as well. Utilizing bi-directional channel
reciprocity, the authors in [8] use the uplink CSI as an
additional input to further improve the results utilizing
the correlation between downlink and uplink channels.

In this paper, we develop a CSI compression net-
work (DeepCMC) that utilizes a deep convolutional NN
(CNN) in conjunction with quantization and entropy
coding blocks to efficiently compress and encode the
CSI for downlink MIMO channels. In comparison with
the previous DL-based CSI compression techniques, the
main contributions of the proposed DeepCMC architec-
ture can be summarized as follows:

i) Existing DL-based architectures for CSI compres-
sion [6]–[8] all include a fully connected layer, which
means that it can only be utilized for the specified input
size, i.e., for a given number of transmit antennas and
number of subchannels. This would mean that a different
NN needs to be trained for each possible setting, and
UEs need to store NN coefficients for all these networks,
limiting the practical implementation of these solutions.
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On the other hand, the proposed DeepCMC architecture
is fully convolutional, and has no densely connected
layers, which makes it flexible for a wide range of MIMO
scenarios with different number of sub-channels and
antennas. As shown by the simulation results, although
DeepCMC is trained for a specific number of sub-
channels and antennas it shows negligible performance
degradation for different number of sub-channels and
antennas.

ii) Previous works on NN-based CSI compression [6]–
[8] mainly utilize autoencoder architectures for feature
extraction, whose output is a low-dimensional complex
vector. The elements of this vector are then sent to the
transmitter by using a 32-bit representation for each com-
ponent. Instead, DeepCMC includes the quantization and
entropy coding blocks within its architecture to directly
convert the channel gain matrix into bits for subsequent
communication. In contrast to the literature that simply
minimize the reconstruction mean square error (MSE),
DeepCMC is trained with a rate-distortion cost that takes
into account both the compression rate (in terms of
bits per channel dimension) and the reconstruction MSE
which significantly improves the achieved performance
in comparison with the previous works.

We would also like to note that DeepCMC can be
further improved utilizing similar approaches as in [7],
[8] to benefit from temporal correlations or channel
reciprocity.

This paper is organized as follows. In Section II, we
present the system model. In Section III we present the
proposed DeepCMC architecture for CSI compression.
Section IV provides the simulation results and compar-
ison with the state of the art results, and Section V
concludes the paper.

II. SYSTEM MODEL

We consider a massive MIMO channel, where a BS
with Nt antennas serves a single-antenna user utiliz-
ing orthogonal frequency division multiplexing (OFDM)
over Nc subcarriers. We denote by H ∈ CNc×Nt the
channel matrix, and by v ∈ CNt×1 the precoding vector.
The received signal at the user is then given by

y = Hvx+ z, (1)

where x ∈ C is the data-bearing symbol, and z ∈ CNc×1

is the additive noise vector.
In order to design the pre-coding vector v for ef-

ficient transmission, the BS uses an estimate of the
CSI matrix values H. To this end, in an FDD MIMO
system, users estimate downlink CSI values through
pilot-based techniques, and feedback the estimated CSI

to the BS. However, the excessive overhead of CSI data,
i.e., Nc × Nt, particularly for massive MIMO systems,
becomes prohibitive considering the limited feedback
resources available in practical scenarios.

To cope with this challenge, efficient compression and
encoding of the channel matrix H is desirable. Let H =
[h1,h2, . . . ,hNc ]

T , where hn ∈ CNt is the channel gain
vector over subcarrier n, for n = 1, . . . , Nc, and assume
the BS is equipped with a uniform linear array (ULA)
with response vector (simple 2D case):

a(φ) = [1, e−j
2πd
λ sinφ, · · · , e−j 2πd

λ (Nt−1) sinφ]T ,

where φ is the angle of departure (AoD), and d and
λ denote the distance between adjacent antennas and
carrier wavelength, respectively. According to [9], the
channel gain vectors can be modeled as

hn =

√
Nt
L

L∑
l=1

αle
−j2πτlfs n

Nc a(φ), (2)

where L is the number of multipath components, fs is
the sampling rate, τl is the delay, and αl ∼ CN (0, σ2α)
is the propagation gain of the lth path with σ2α denoting
the average power gain. According to (2), the CSI values
for nearby sub-channels and antennas are correlated due
to similar propagation paths, gains, delays and AoDs.
This correlation will be exploited to reduce the CSI
feedback. We note that this is a lossy compression
problem, where the source samples follow a complicated
correlation structure governed by (2). Designing good
practical codes for lossy compression is challenging even
for memoryless sources with simpler underlying source
distributions. Here, we will use a deep NN architecture,
called DeepCMC, which uses CNN layers and entropy
coding blocks to learn the CSI compression scheme that
can best leverage the underlying correlations.

III. DEEPCMC

The overview of our proposed model architecture for
encoding and subsequent reconstruction of the CSI feed-
back from user is shown in Fig. 1, where the two channel
inputs represent the real and imaginary parts of channel
matrix. The user compresses its CSI into a variable
length bit stream using the local encoder. The encoder
at the user comprises a CNN-based feature encoder, a
uniform element-wise scalar quantizer, and an entropy
encoder. The feature encoder extracts key features from
the CSI matrix to obtain a lower dimensional represen-
tation, which is subsequently converted into a discrete-
valued vector by applying scalar quantization. While
previous works simply send the 32-bit scalar quantized
version of the feature vector as CSI feedback, we have



Fig. 1: The encoder/decoder architecture for the proposed CSI feedback compression scheme DeepCMC.

observed that the CNN-based autoencoder structure does
not result in a sequence of independent and uniformly
distributed bits; and hence, can be further compressed.

To further reduce the required feedback amount,
we employ an entropy encoder; in particular, we use
the context-adaptive binary arithmetic coding (CABAC)
technique [10], which outputs a variable-length bit
stream. Upon receiving this CSI-bearing bit stream, the
BS first processes it by an entropy decoder to reproduce
the lower-dimensional representation of the CSI feed-
back. This representation is then input to the feature
decoder NN to reconstruct the estimated channel gain
matrix. We present each component of our proposed
model in more detail below.

A. Feature encoder and decoder
The CNN architecture used for the feature encoder and

decoder are presented in Fig. 2 and Fig. 3, respectively,
where Conv|256|9 × 9 represents a convolutional layer
with 256 kernels, each of size 9×9. The feature encoder
consists of three convolutional layers, the first of which
uses kernels of size 9× 9, and the other two use kernels
of size 5 × 5. The “SAME” padding technique is used,
such that the input and output of each convolutional
layer have the same size (the number of channels vary).
Each convolutional layer is followed by downsampling
to reduce dimensionality. We use PRelu as the activation
function, and apply batch normalization to each layer.
Let

M = ff−en(H,Θen), (3)

where ff−en denotes the feature encoder at the user,
and Θen denotes its parameter vector. M consists of
256 feature maps of size Nt

16 ×
Nc
16 . Note that this fully

convolutional architecture allows us to use the same en-
coder network for any number of transmit antennas and
subcarriers, while the feature vector dimension depends
on the input size, which allows us to scale the CSI
feedback volume with the channel dimension.

The feature decoder at BS performs the counterpart
inverse operations, consisting of convolutional and up-
sampling layers. At the BS, the output of the entropy
decoder is fed into the feature decoder to reconstruct the
channel gain matrix. Similarly to the feature encoder, the

Fig. 2: Feature encoder architecture.

decoder includes three layers of convolutions (with the
same kernel sizes as the encoder) and upsampling (in-
verse of the downsampling operation at the encoder). The
decoder architecture also includes two residual blocks
with shortcut connections that skip several layers with +
denoting element-wise addition in Fig. 3. This structure
eases the training of the network by preventing vanishing
gradient along the stacked non-linear layers [11]. To
enable this, the input and output of a residual block must
have the same size. Each residual block comprises two
convolutional layers (normalized using the batch norm)
and uses PRelu as the activation function. Inspired by
[12], we also use an identical shortcut connecting the
input and output of the residual blocks, which improves
the performance as revealed by the experiments. Let

Ĥ = ff−de(M̂,Θde), (4)

be the output of the joint decoder where Θde is its set
of parameters and M̂ is the estimate of M provided by
the entropy decoder. Ĥ denotes the reconstructed CSI
feedback.

B. Quantization and Entropy coding

A major contribution of our proposed model in com-
parison with the existing DNN architectures for CSI
compression in the literature, such as CSINet [6], is the
inclusion of the entropy coding block which encodes
quantized CSI data into bits at rates closely approaching
the entropy.

Quantization is performed by a uniform scalar quan-
tizer denoted by fq, which quantizes each element of M
to the closest integer. We denote the quantized output as
M, i.e.,

M = fq(M). (5)



Fig. 3: Feature decoder architecture.

The entropy encoder converts the quantized values in
M into bit streams using CABAC [10] based on the input
probability model learned during training. Let

s = fe−en(M, P ) (6)

denote the bit stream derived by passing M through
the entropy coder, denoted by fe−en, where P is the
probability density function, estimated during training,
as it will be described later in the following subsection.

The estimate of M, denoted by M̂, is recovered at
the BS by decoding the received codeword s using the
corresponding entropy decoder as

M̂ = fe−de(s, P ). (7)

Finally, M̂ is fed into the feature decoder to reconstruct
the CSI feedback.

C. Optimization

As quantization is not a differentiable function, it
cannot be implemented within the gradient-based opti-
mization framework. To overcome this, we replace the
uniform scalar quantizer with independently and iden-
tically distributed (i.i.d) uniform noise during training.
Hence, denoting the quantization noise vector by ∆M
with i.i.d elements from U [0, 1], we approximate the
quantized feature matrix by

M̃ = M + ∆M. (8)

Now denote by P (M̃,Θp), the probability density
function for M̃ specified by the set of parameters Θp,

TABLE I: Performance of DeepCMC and CSINet
schemes in terms of NMSE and cosine correlation for
similar compression rate values (bits per channel dimen-
sion) (Nc = 256, Nt = 32).

Methods λ Bit rate Entropy NMSE (dB) ρ

DeepCMC

104 0.006068 0.003853 -4.12 0.8401
5× 104 0.01353 0.01152 -7.31 0.9337
105 0.01931 0.01808 -9.20 0.9579

5× 105 0.05353 0.05478 -11.83 0.9732
106 0.07658 0.07488 -12.45 0.9770

5× 106 0.1526 0.1509 -13.57 0.9808

CSINet

NA 0.015625 NA -1.31 0.6903
NA 0.03125 NA -2.90 0.7806
NA 0.0625 NA -5.33 0.8856
NA 0.125 NA -5.25 0.8783

which is estimated during training utilizing a similar
technique as in [13]. Our loss function is given by

L(Θen,Θde,Θp) =

EH,∆M

(
− 1

NcNt
logP (ff−en(H,Θen) + ∆M,Θp)

+ λMSE
(
ff−de

(
ff−en(H,Θen) + ∆M,Θde

)
,H

))
, (9)

where

MSE
(
Ĥ,H, λ

)
=

1

NcNt
(Ĥ−H)2, (10)

and the expectation is over the training set of channel
matrices and the quantization noise. During training, the
entropy of the quantized encoder outputs, estimated by
the trainable probability model, is jointly minimized with
the reconstruction MSE by optimizing the parameters
for both the probability model and the autoencoder. By
utilizing the entropy coding block with the optimized
probability model, the actual bit rate of the encoder
output closely approximates this entropy. More precisely,
the first part of the loss function (9) represents the
entropy of the feedback data, or equivalently the size
of feedback that must be transmitted, while the second
part is the weighted mean square error (MSE) of the
reconstructed channel gain matrices. Hence, training
Θen,Θde and Θp values, which parameterize the feature
encoder, the feature decoder, and the probability models,
respectively, minimizes the feedback overhead and the
reconstruction loss, simultaneously. The λ value governs
the trade-off between the compression rate and the recon-
struction loss. A larger λ leads to a better reconstruction
but a higher feedback overhead and vice versa.

In order to recover the trade-off between the compres-
sion rate and the reconstruction loss, we train DeepCMC
with different λ values. For a small λ value, the network



tries to reduce the feedback rate, while as λ increases,
it tries to keep the MSE under control while slightly
increasing the rate. After training, each λ value specifies
a set of parameters Θen,Θde,Θp. By selecting the λ
value according to user’s requirements in terms of CSI
quality and the available feedback capacity, we can
obtain the encoder and decoder parameters with the best
performance under these constraints. This would require
the user and the BS to have a list of encoder/decoder
parameters to be used for different rate-MSE quality
trade-offs, and the user to send the λ value together
with the encoded bitstream s to the BS, so that the BS
employs the matching decoder parameters.

We emphasize here that the feature encoder and
decoder networks are fully convolutional, and do not
include any fully connected layers. Moreover the imple-
mented entropy code can operate on inputs of any size.
Therefore, the DeepCMC architecture can be trained on,
or used for any channel matrix whose height and width
are multiples of 16, since the feature encoder has a total
downsampling rate of 16 (or, of any size, which can
be made a multiple of 16 by padding). This is different
from the existing NN-based CSI comrpession techqniues
which are trained for a particular input size.

IV. SIMULATION RESULTS

We use the COST 2100 channel model [14] to gen-
erate sample channel matrices for training and testing
DeepCMC. We consider the indoor picocellular scenario
at 5.3 GHz, where the BS is equipped with a ULA of
dipole antennas positioned at the center of a 20m×20m
square. The user is placed within this square uniformly at
random. All other parameters follow the default settings
in [14].

We use the normalized MSE (NMSE) and cosine
correlation as the performance measures to compare our
results with CSINet [6]. These measures are defined as
follows,

NMSE , E

{
‖H− Ĥ‖22
‖H‖22

}
, (11)

and

ρ , E

{
1

Nc

Nc∑
n=1

|ĥH
n hn|

‖ĥn‖‖hn‖

}
. (12)

We first compare the performance of our DeepCMC
scheme with CSINet. We train both models on the same
data set of 80000 CSI realizations with Nc = 256 and
Nt = 32. Table I provides the corresponding results
tested on 20000 CSI realizations with same size as the
training data. We train the DeepCMC architecture for
different λ values, which governs the trade-off between

Fig. 4: Bit rate-NMSE trade-off of DeepCMC vs.
CSINet, Nc = 256, Nt = 32.

the compression rate and the reconstruction loss. We
evaluate both the average entropy of the quantized out-
puts of the feature encoder with the test CSI matrices
as input, i.e., M, and the average number of actual bits
sent by the user. The latter includes the length of the bit
streams generated by the entropy encoder with M as the
input and the value of λ as a 16-bit integer, assuming that
the user can decide on a different λ value at each training
instance. Naturally, the bit rate will further reduce if the
BS and the user agree on a fixed λ value throughout
their operation. These two metrics are both normalized
by NcNt, the total channel dimension. It is shown that
the actual bit rate closely approximates the entropy of the
quantized feature encoder outputs. The encoder output
of CSINet is the feature vector, consisting of 32-bit
float values. The length of this vector, denoted by m,
determines the compression ratio, and hence the bit rate,
of CSINet. We train CSINet for m = 8, 16, 32, 64, which
correspond to bit rates of 0.01562, 0.03125, 0.0625, and
0.125, respectively.

The bit rate-NMSE trade-offs achieved by DeepCMC
and CSINet are plotted in Fig. 4. As it can be observed
from Table 1 and Fig. 4, DeepCMC provides significant
improvement in the quality of the reconstructed CSI at
the BS with respect to CSINet at all bit rate values.
We remark here that, as reported in [3], CSINet itself
provides 3 − 6 dB improvement in NMSE compared
to other known CSI compression techniques in the
literature exploiting the sparsity of the channel gain
matrix. However, the gains from DeepCMC are even
more drastic, achieving remarkably good reconstruction
of the channel gain matrix with NMSE of −13 dB and
ρ equals to 0.98 at a bit rate lower than 0.16 bits per
channel dimension. These results show that DeepCMC



TABLE II: Performance of DeepCMC (trained with
λ = 105) for different number of subcarriers in the test
channel with Nt = 32

Nc Bit rate Entropy NMSE (dB) ρ
128 0.02192 0.02017 -8.53 0.9542
160 0.02086 0.01933 -8.76 0.9557
192 0.01877 0.02016 -8.91 0.9569
224 0.01836 0.01966 -9.03 0.9577
256 0.01808 0.01931 -9.20 0.9579

outperforms CSINet 4 to 6 dB in NMSE for the range
of compression rates considered here. For example, for a
target value of NMSE = −5 dB, DeepCMC can provide
more than 5 times reduction in the number of bits that
must be fed back from the user to the BS.

We remark here that, due to the critical nature of
channel estimation at the BS, these feedback bits are
typically transmitted using a low coding rate and a
limited constellation size (e.g., BPSK or QPSK) to guar-
antee their correct decoding at the BS. This highlights
the significance of reducing the required feedback bits,
which can be directly translated into channel resource
blocks [15]. We further observe from Fig. 4 that the
NMSE of DeepCMC drops quite rapidly with bit rate,
while CSINet has a much less significant reduction.
This implies that DeepCMC better exploits the limited
number of bits to capture the most essential information
in the CSI data.

These improvements are mainly due to the incorpora-
tion of the quantization layer into the training procedure,
the introduction of the entropy coder, and the improved
feature extraction architecture. The entropy coder with
the approximate probability model greatly reduces the
codeword lengths. Our experiments also reveal that the
introduction of the shortcut connection across two resid-
ual blocks also improves the performance of DeepCMC,
as well as using PRelu as the activation function.

We then test DeepCMC (trained with Nc = 256 and
Nt = 32) with different number of subcarriers, Nc. It is
important that the feedback scheme is flexible in terms
of the channel dimension, as the number of subcarriers
or transmit antennas available may change from system
to system, and even over time, e.g., different resources
may be allocated to different sectors in a cell at different
times. In our simulations, we keep the number of trans-
mit antennas as Nt = 32, and consider different number
of subcarriers, Nc = 128, 160, 192, 224, 256, each with
20000 test samples. We summarized the performance of
DeepCMC, trained with λ = 105, in Table II. We also
present the bit rate-NMSE trade-off in Fig. 5, which is

Fig. 5: Bit rate-NMSE trade-off for different number of
subcarriers in the test channel with Nt = 32.

obtained by testing the DeepCMC network trained for
different values of λ. Although the performance degrades
as the difference between the test channel dimension and
the training dimension increases; the degradation still
remains negligible even when the test CSI realizations
are only half of the size of the channel dimension
DeepCMC has been trained on. As we see in Fig. 5,
this holds for the whole range of bit rates, the loss due
to training and test channel dimension mismatch being
slightly larger at higher bit rates.

V. CONCLUSIONS

In this paper, we proposed a convolutional deep
learning architecture, called DeepCMC, for efficient
compression of the channel gain matrix to reduce the
significant CSI feedback load in massive MIMO systems.
DeepCMC is composed of fully convolutional layers
followed by quantization and entropy coding blocks, and
outperforms state of the art DL-based CSI compression
techniques, providing drastic improvements in CSI es-
timation quality at even extremely low feedback rates.
Another advantage of the DeepCMC architecture is its
flexibility in terms of the channel dimension; that is, the
same architecture can be used for CSI feedback over
channels with different numbers of transmit antennas or
subcarriers, significantly increasing its practical applica-
bility.
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