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ABSTRACT

In this paper, we are interested in the recovery of an unknown
signal corrupted by a linear operator, a nonlinear function, and
an additive Gaussian noise. In addition, some of the observa-
tions contain outliers. Many robust data fit functions which al-
leviate sensitivity to outliers can be expressed as piecewise ra-
tional functions. Based on this fact, we reformulate the robust
inverse problem as a rational optimization problem. The con-
sidered framework allows us to incorporate nonconvex con-
straints such as unions of subsets. The rational problem is
then solved using recent optimization techniques which offer
guarantees for global optimality. Finally, experimental results
illustrate the validity of the recovered global solutions and the
good quality of the reconstructed signals despite the presence
of outliers.

Index Terms— polynomial optimization, global opti-
mization, robust estimation, union of subspaces/subsets, non-
convex constraints

1. INTRODUCTION

In order to reconstruct a signal from corrupted observations,
approaches based on the maximum likelihood estimator are
widely used. In many applications, the noise is modeled by a
zero-mean normal distribution which is added to the noiseless
signal. As a consequence, minimization of a mean square
error appears as a ubiquitous technique in signal processing.

However, in practice, it is common that outliers are
present in the observations, so altering the noise distribu-
tion. This results in poor performance of least squares based
estimators. Indeed, outliers produce large errors making their
corresponding weight prevalent in least squares fitting. Con-
sequently, even very few of them can significantly decrease
the performance of the estimator.

With the emergence of big data, manually discarding out-
liers is not a suitable solution. Moreover, it can be difficult
to decide which data are outliers, especially in high dimen-
sional problems. Hence, many robust fit functions have been
proposed in order to reduce the impact of outliers on the esti-
mate.
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A standard approach in robust estimation is to cap the /5
function in order to keep the least squares behavior for small
error values around zero and to apply a constant term in order
to penalize equally errors and outliers above a given thresh-
old [1]. However, the convexity of the fit function is lost
and the resulting optimization problem becomes intricate. A
convex surrogate is the ¢; norm, or a smoothed version of
it, which reduces the influence of the outliers as it gives a
steadily increasing weight to the errors [2]. Nonetheless, it
results in a shrinkage of low errors towards 0, which is not
desirable as it induces biased estimates. In order to keep ben-
efits both of least squares for low errors and of the least abso-
lute values for high errors, the Huber function has been pro-
posed [3]. The latter also has the advantage of being convex,
which is an enjoyable property for optimization. Smoother
version of Huber functions are also used such as the pseudo-
Huber function [4]. Other M-estimators have been proposed
such as Tukey’s function for instance [5]. Furthermore, trans-
positions of robust estimators for sparse signals estimation [6]
and for multivariate signals [5,7] have also been proposed.

Exploiting the properties of the original signal is an im-
portant feature in inverse problems, that can also contribute to
improve robustness. We here concentrate on an assumption
corresponding to a union of subsets model. Such a model
has been a topic of interest in signal processing, especially
when the subsets are affine spaces. For instance, it has ap-
peared in compressed sensing where one wants to reconstruct
a signal of size 7" having only k£ nonzero components from
linear observations [8]. Other examples that can be expressed
as union of subspaces include reconstruction of a stream of
Dirac impulses where both the location and the amplitude
are unknown, determination of overlapping echoes with un-
known delay and amplitude, or reconstruction of a signal
whose Fourier transform is known to be located in an union
of sub-bands [9]. Union of subspaces are also useful in ma-
trix completion to express nonlinear connections between
elements [10].

Working in a union of subsets often leads to a challeng-
ing problem as linearity and convexity are lost. By making
additional assumptions on the shapes of the subspaces or on
the model, some methods have been shown to be successful in



solving specific problems [8,11-13]. Nevertheless, more gen-
eral forms are still difficult to solve and the proposed methods
do no extend easily to the union of general subsets.

A key observation is that many unions of subsets, can be
expressed as polynomial constraints. Similarly, the capped ¢
function used for robustness is piecewise polynomial. The ap-
proach in this paper is grounded on the versatility of polyno-
mial modelling which emcompasses both contexts. We thus
address a problem of robust signal reconstruction on an union
of subsets. We add extra nonconvex constraints that force
the amplitude of the signal to be greater than a threshold or
identically zero. However, this constraint is difficult to han-
dle. We propose to reformulate this nonconvex problem on
an union of subsets as a rational optimization problem that is
solved by using recent tools from polynomial optimization.
The methodology was introduced in [14] but in a different
context. We adapt it here to robust estimation. Its main bene-
fit is to provide global optimization guarantees.

Our paper is organized as follows: Section 2 introduces
the model for the observed signal. Section 3 details the op-
timization methodology and the formulation of the optimiza-
tion approach we follow to reconstruct the initial signal. Sim-
ulation results are presented in Section 4, and Section 5 con-
cludes our work.

2. OUR MODEL

2.1. Observations model

We consider a degraded version y of an original signal X of
size T according to the following model

y =¢(HX)+w, ey

where H is a 7' x T matrix corresponding to a linear opera-
tor, w is a zero-mean white Gaussian noise, and ¢ is a rational
function, i.e. a ratio of two polynomials, that acts component-
wise. The latter function gives flexibility to our model: for
instance, ¢ can be used to model saturations of sensors. Note
that assuming a rational ¢ is not restrictive. Indeed, most non-
rational functions of practical interest can be closely approxi-
mated with rational or piecewise rational functions [15].

Moreover, some of the previous degraded samples are sig-
nificantly perturbed. This models for instance the possibility
of a sensor malfunction. It follows that the observation vec-
tor includes a certain number of outliers, i.e. values that differ
significantly from the others. Finally, the observation model
becomes

with probability 1 — 4,

Y, +n;  with probability J .

Y,

(Vte [L,T]) w= { !

In the above equation, y comes from Model (1), § is a small

real between 0 and 1, and n; is the realization of a noise with
high amplitude compared to values of y.

2.2. Modelling signal with a union of subsets

Similarly to many methods for inverse problem, ours relies
on both data fidelity and some assumptions about the original
signal X. We consider the following prior knowledge on X:
its components are either zero or have absolute value above a
given positive threshold ), i.e.

(Vt € [1,T]) z:=0 or |z]>A. (2

Constraints (2) imply that each sample of the signal X be-
longs to the union of three convex subsets, namely {0}U] —
00, —A] U [A, +00[. The benefit of such a model is to reduce
the space where we search for a solution. Let us emphasize
that the union we consider here is composed of subsets that
are not necessarily linear subspaces. Constraints (2) are non-
convex and thus result in a difficult optimization problem.
Our assumption on the signal model may be related to the
standard union of subspaces approach from compressed sens-
ing, where the dimension of the subspaces is low compared to
the underlying space dimension. This accounts for sparsity.
On the other hand, the union of subspaces model does not
necessarily restrict the number of non-zero components nor
impose sparsity on the components [16]. Hence, the method
we propose can be applied to recover sparse signals as well as
dense signals in the sense that only a few elements are null.

3. PROBLEM FORMULATION

3.1. Robust reconstruction criteria

To reconstruct the original signal X, we minimize a crite-
rion matching the data to the model. A classic approach for
dealing with Model (1) is to minimize the mean square error
ly — ¢(Hx)||* with respect to x. However, the presence of
outliers skews the solutions. To tackle this issue, several ro-
bust surrogates for the squared norm have been proposed. The
latter are all written under the form Zle Uy (ye —P((Hx),))
where the function ¥y : R — R may depend on a positive
real parameter . We obtain the following criteria, where 1 y
denotes the characteristic function of a set X:

» the previously mentioned /5 norm: Wy (z) = 22,

o the {1 norm: Wy (z) = |z|,

e Huber function [3]:

1
Vy(z) = §$21{\m|§0}($)

1
+0 (|x| - 29> 1{ja)>03 (),

* the pseudo-Huber function [4]: ¥y(z) = V22 + 62,

* and the capped /5 function:

Wo(2) = 1151/ vay (@) + 02711 105, (7).



Figure 1 displays the considered robust fit functions ¥y. The
capped /> and Huber functions aim at reducing the impact of
the outliers by decreasing the penalization on the high errors
while preserving mean squares on the low errors. The param-
eter 0 represents here the threshold value on the error between
these two penalties. It must be set carefully depending on the
level of noise w and of the outliers.
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Fig. 1. Considered robust fit functions Wy (8 = 0.5 for the
capped /5 and Huber functions, 6 = 0.1 for the pseudo-Huber
function)

Considering the fit criterion to be minimized and Con-
straints (2) simultaneously, we finally obtain the following
optimization problem:

minimize

T
mi > Wy — ¢((Hx),))
pS =1

s.t. (;t € 1,7])

3

.I‘tZOOT |l‘t|2)\,

where (Hx), denotes the ¢-th component of the vector Hx.
Problem (3) is difficult since the constraints are nonconvex.
Moreover, the objective function is also nonconvex for the
capped /5 fit. We propose here a general methodology to
solve Problem (3) for any above choice of the function Wy.
We first reformulate the optimization problem as a rational
one, i.e. the minimization of a rational function under poly-
nomial inequalities, before solving it. We start with the refor-
mulation of the constraints.

3.2. Reformulation as a rational optimization problem
3.2.1. Constraints expressed as polynomial inequalities

The constraints in (3) can be expressed as polynomials ones
by introducing extra binary variables ¢; for all ¢ in [[1, 7. We
can indeed substitute the product (;x; for x; in (3) and, letting
(¢ = 0 account for vanishing x;, the constraints in (3) reduce
to the inequalities |z;| > A for all ¢ in [[1, T]. Finally, binary
values can be imposed by the polynomial constraints ¢; = ¢?

for all ¢ in [1,77]. We thus obtain the following polynomial
optimization problem

minimize
(x,¢)ERT xRT

T
S W(y — ((H(x 0 0)),))
t=1

s.t. (Vt e [1,T]) |o > A
(vt e [1,T]) ¢ =¢2,

“)

where the operator ® denotes the element-wise Hadamard
product. Note that the constraints |z;| > X are still nonconvex
and make Problem (4) difficult to solve with standard meth-
ods. However, under the transformation of the objective func-
tion from Section 3.2.2, it leads to the minimization of a poly-
nomial function subject to polynomial constraints. Therefore
it can be solved using polynomial optimization tools [17].

Nevertheless this formulation doubles the number of opti-
mization variables and Problem (4) cannot be solved by state-
of-the-art polynomial optimization solvers in a fair amount of
time, even for signals of small size 7. Instead, we suggest to
relax the equality constraints in (2) into an inequality and we
obtain the following constraints

(Vt e [1,T]) |ze <eor |ag| > A, (5)

where € < ) is a small positive real. Notice that this con-
straint can also be used to expressed signals that are in two
different bands as in [9] for instance. We now write the above
constraints as polynomial inequalities and we obtain

vVt e [1,T]) (e—r) (A=) >0
(Vt € [[17Tﬂ) TtQ Zl‘% , 12 0.

The absolute value in the constraints of (5) is handled by
adding the extra variable r = (rq, ..., rr) as detailed in [18].

3.2.2. Objective function expressed as a rational function

In the following, we study the reformulation for the capped
{5 function since it is the most challenging case. The method
can be easily adapted for other fit functions from Section 3.1.

As witnessed by the characteristic functions that appear in
the definition of the capped /5 function, the objective in (3) is
piecewise polynomial. Following [14], a characteristic func-
tion can be replaced by a binary variable z that takes identical
values. For instance, if Wy is the capped /5 function as de-
fined in Section 3.1, we introduce a binary variable z which
takes value 0 when || is smaller than 1/1/6, and 1 otherwise.
This can be written as

(2 = 1/2) (|2l - 1/V8) = 0. ©)

Substituting similarly the characteristic functions for all
t in [[1,T] and the original constraints in Problem (3), we



finally obtain the following rational optimization problem

T
minimize Z z + (1 — 2¢)0(ye — ¢((Hx)t))2

(x,r,v,z)€RAT et

st.(Vte [LLT]) (e—r)(A—r) >0

rf:x?,rtzo (7)

(2 —1/2) (vt - 1/\/5) >0

vi = (g — o((Hx),))*, v, >0

Zt = Zt2 s
where the extra variable v is used to handle the absolute value
in Constraint (6). The objective function is now a rational
function in x and z while the constraints are polynomial in-
equalities in x, r, v, and z.

Note that the radical in the pseudo-Huber function can be
handled similarly to the absolute value. Indeed, we can re-
place Va2 + 62 by an additional variable v and add the poly-
nomial constraints

e S Ry
u>0.

3.3. Solving rational optimization problem

Problem (7) is a rational optimization problem and can be
solved with a hierarchy of convex Semi-Definite Program-
ming (SDP) problems known as Lasserre’s hierarchy [17].
Solving the successive relaxations yields an increasing se-
quence of lower bounds converging to the optimal objective
value of the polynomial optimization problem. Furthermore
the convergence occurs at a finite order of relaxation generi-
cally [19], i.e. with probability one when the polynomial co-
efficients are drawn randomly from a continuous probability
density law. Note that, as it is required by the method, we
consider with no loss of generality that all optimization vari-
ables are bounded; in our case, their absolute value is smaller
than one. A sufficient condition using the rank of the solu-
tion to the SDP [17] can be used to detect convergence in
the hierarchy. In this situation, the minimizers of the poly-
nomial objective function can be extracted from the solution
of the SDP problem [20]. However, even when the sufficient
condition for ensuring convergence in the hierarchy does not
hold, one can compare the lower bound with the value of the
criterion at the extracted minimizers. A small gap between
both values is an indication of convergence. Therefore, this
method guarantees that we find all global minimizers and the
global optimal value of a polynomial optimization problem.
Note that the dimensions of the SDP problems also in-
crease quickly with the order of the hierarchy. In practice,
we start at a low order and increase it gradually until con-
vergence is reached. For many applications, the convergence
fortunately occurs during the first relaxation orders.

4. NUMERICAL RESULTS

For each test, we generate an initial signal X of size 1" = 50
satisfying Constraints (2): a given percentage of elements of
X, called the degree of sparsity, chosen randomly are set to
0 while the others are set to have their absolute value uni-
formly selected between A = 0.7 and 1. We choose H as
a convolution matrix associated to a finite impulse response
filter h of length 3 whose elements are drawn uniformly in
[0,1], i.e. H is Toeplitz-band with h defining the elements
on the band. The white noise w has a standard deviation of
0.15. The vector y contains 1% of outliers and their location
have been drawn randomly with equal probability among the
T samples. The impulse noise n has a fixed amplitude set to
twice the maximum of y and a random sign with equal prob-
ability. The parameter € is set to 10~2 and the value of @ for
the capped {5 and Huber functions is tuned to 0.4. The non-
linearity ¢ is chosen as a saturation expressed by the rational

function
T

T 03+ 2|

We use GloptiPoly [21] together with the SDP solver
SDPT3 [22] to solve the rational problem. In all our simula-
tions, we compute the order 3 SDP relaxation of Lasserre’s
hierarchy. The problem is formulated using the approach
of [18] in order to use the structure of H and reduce the com-
putational burden. All the simulations have been run on an
Intel i7 CPU running at 1.90 GHz with 16 GB of RAM.

We compare our approach for the different fit functions
listed in Section 3.1. We run 50 simulations and compare
the different relative errors ||X — || / ||X|| between the initial
signal X and the signal X estimated with our method.

(Vz e R) o(x)

4.1. Convergence of the SDP hierarchy

We first look at the convergence of Lasserre’s hierarchy. For
the /o, the capped /5, and Huber functions, the convergence
has occurred at relaxation order 3. This is certified by a suf-
ficient rank condition implemented in GloptiPoly, which ad-
ditionally certifies that the optimal point is unique. This is an
important feature since, in contrast to many nonconvex opti-
mization methods, we have the theoretical guarantee that the
obtained solutions are exactly the global minimizers of Prob-
lem (7).

On the other hand, for the ¢; and the pseudo-Huber func-
tions, the convergence does not always occur at order 3. This
is shown for the ¢; function in Figure 2 where we draw for
the 50 tests, the obtained lower bound in plain blue and the
value of the criterion at the computed solution in dotted red.
We observe a gap between the two curves that shows that a
higher relaxation order would be required for convergence of
the hierarchy. Moreover, a consequence for these two fit func-
tions is that the imposed constraints are not always satisfied
by the candidate approximate optimal point.
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Fig. 2. Convergence study of the Lasserre’s hierarchy for the
£, fit function on 50 tests: In plain blue the value of the lower
bound, in dotted red the value of the criterion at the solution.
For the sake of clarity, the results are ordered according to the
values of the lower bound.

The convergence at a low relaxation order is important for
the global minimum guarantee as well as for the applicability
of the method by limiting the SDP to a fair size. Therefore in
the following section, we focus our attention on the capped /5
and Huber functions against the /5 fit.

4.2. Comparison of the robust approach with least squares

We compare here the {5 with the capped ¢5 and Huber fit
functions for three different degrees of sparsity of the orig-
inal signal X. Table 1 shows the relative error for the different
fit functions. We observe that both robust fit functions yield
a smaller error than least squares but the capped /- gives the
smallest error. This confirms the interest of our methodol-
ogy, which is able to deal with nonconvex penalty functions.
Furthermore, similar results are observed for both sparse and
dense signals. Table 2 shows both the true positive rate (TPR)

Table 1. Statistics on the relative error between X and X with
different degrees of sparsity for 50 tests.

Degree of sparsity 80% 50% 30%

, Average 0.87 0.66 0.54
2 Median 0.85 0.66 0.55
Average 0.65 048 035

Huber /e dian 0.60 047 033
Average 043 036 0.30

Capped &5 \1e dian 034 034 028

and the false positive rate (FPR) for both ¢ and the capped
{5 functions. We use a threshold value of 0.1 for the peak
detection. Note that since Constraints (2) are enforced when
solving (7), the threshold value can be taken in e, A[ indiffer-
ently. We notice that for the capped /5 fit, the average TPR

is close to 1, which means that almost all the peaks are well
detected, and the FPR is close to zero, i.e. we do not detect
peaks at samples originally equal to zero. This is in contrast
with the results for the ¢5 fit.

Table 2. Statistics on the TPR and FPR of peak detection
between X and X with different degrees of sparsity for 50 tests.

Fit function Capped /o 2
Degree of sparsity  80% 50% 30% 80% 50% 30%
Average 096 094 094 084 081 0.82
TPR  Median  1.00 093 095 083 080 0.83
Average 0.0l 0.10 009 0.5 022 022
FPR " Median 004 007 010 0.12 020 020

The poor results above for the /5 fit are due to the out-
liers together with the convolution matrix H which makes the
estimation inaccurate in the neighborhood of the outliers as il-
lustrated in Figure 3. The latter shows a comparison between
a robust and a least squares recovery on a single test. The
red curve represents the initial signal X and the blue and the
green curves are the estimated signal using respectively the
capped /5 and the ¢5 functions. For the capped ¢ function,
we observe that the locations of the non-zero samples are well
recovered and the amplitudes are close to the ones of X. At lo-
cations far from any outliers, comparable results are observed
for both the capped ¢ and ¢ fit functions. However, close to
an outlier value, the estimated signal is prone to many errors
using /o in contrast with its robust counterpart. This illus-
trates the benefit of the capped /- for robust reconstruction.

5. CONCLUSION

We tackle the issue of robust estimation for an inverse prob-
lem that involves both nonconvex constraints and objective
function. We show that the resulting optimization problem
can be reformulated into a polynomial optimization problem
using additional variables. Moreover, our method extends
without extra effort nor extra computational cost to a nonlin-
ear model. This problem is then globally solved using recent
polynomial optimization techniques that guarantee the global
optimality of the solution. Finally, our simulations show the
good quality of the signal reconstructed through our method.
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