
2020 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, SEPT. 21–24, 2020, ESPOO, FINLAND

FAST VARIATIONAL LEARNING IN STATE-SPACE GAUSSIAN PROCESS MODELS

Paul E. Chang? William J. Wilkinson? Mohammad Emtiyaz Khan† Arno Solin?

? Aalto University, Espoo, Finland
† RIKEN Center for AI Project, Tokyo, Japan

ABSTRACT

Gaussian process (GP) regression with 1D inputs can often be
performed in linear time via a stochastic differential equation
formulation. However, for non-Gaussian likelihoods, this re-
quires application of approximate inference methods which
can make the implementation difficult, e.g., expectation prop-
agation can be numerically unstable and variational inference
can be computationally inefficient. In this paper, we pro-
pose a new method that removes such difficulties. Building
upon an existing method called conjugate-computation vari-
ational inference, our approach enables linear-time inference
via Kalman recursions while avoiding numerical instabilities
and convergence issues. We provide an efficient JAX im-
plementation which exploits just-in-time compilation and al-
lows for fast automatic differentiation through large for-loops.
Overall, our approach leads to fast and stable variational in-
ference in state-space GP models that can be scaled to time
series with millions of data points.

Index Terms— State-space models, variational inference,
Gaussian processes, automatic differentiation

1. INTRODUCTION

Gaussian process (GP, [1]) models are non-parametric proba-
bilistic tools shown to be effective in a variety of data analysis
tasks. Their main drawback is O(n3) computational cost of
inference, where n is the number of data examples. For a
non-Gaussian likelihood, this becomes even more challeng-
ing due to the lack of a closed-form expression for the poste-
rior. Developing low-cost algorithms is therefore essential to
facilitate application of GPs to real-world problems.

Formulating a GP as a state-space model is one way to
reduce the complexity of GP regression to O(n). For one-
dimensional inputs, we can do so by using an equivalent
stochastic differential equation (SDE) formulation [2] and
extend to non-Gaussian problems by using state-of-the-art
approximate inference methods [3], e.g., expectation prop-
agation (EP, [1]). Doing so allows us to employ Kalman
recursions which have O(n) computation and memory cost.
Unfortunately, EP can suffer from numerical instability and
convergence issues when the model exhibits highly nonlin-

1860 1880 1900 1920 1940 1960

0
2

4

Time, t

A
cc

id
en

ti
nt

en
si

ty

Posterior mean (SSVI)
95% confience (SSVI)
Full CVI reference result

Fig. 1: Log-Gaussian Cox process applied to coal mining ac-
cidents data. Our proposed method, SSVI, recovers the same
posterior with O(n) computation as the O(n3) CVI method.

ear behaviour. Variational inference (VI) is another popu-
lar choice which does not have such problems but it often
requires O(n2) memory and cannot be conveniently imple-
mented using Kalman recursions [4, 5]. Generally, even when
Kalman recursions are used for such approximate inference
methods, the practical implementation can be slow since it
involves large for-loops, preventing the application of modern
automatic differentiation techniques to optimise hyperparam-
eters. Our goal in this paper is to remove such difficulties and
enable fast learning.

We build upon a VI method called conjugate-computation
variational inference (CVI, [6]). CVI converts non-Gaussian
likelihoods to Gaussian ones, enabling the application of
Kalman smoothing to perform inference with O(n) mem-
ory and computation cost. To handle large for-loops during
hyperparameter learning, we provide an efficient JAX [7]
implementation which employs just-in-time compilation and
specifically avoids loop ‘unrolling’. The resulting method,
which we call State-Space VI (SSVI), enables fast learning on
data containing more than a million points (see Fig. 2a). The
updates of SSVI are identical to CVI (Fig. 1), and strikingly
similar to EP, but do not suffer from numerical instability or
convergence issues. Comparisons on real-world data demon-
strate the efficiency of our method.

978-1-7281-6662-9/20/$31.00 c©2020 IEEE

ar
X

iv
:2

00
7.

04
73

1v
2

 [
cs

.L
G

]
 1

7
Ju

l 2
02

0

2. BACKGROUND

Gaussian processes form a non-parametric family of probabil-
ity distributions on function spaces, and are completely char-
acterized by a covariance function κ(t, t′) : R×R→ R and a
mean function which we assume to be zero. Let {(ti, yi)}ni=1

denote a set of n input–output pairs, then GP models typically
take the form

f(t) ∼ GP(0, κ(t, t′)), y | f ∼
n∏
i=1

p(yi | fi(ti)), (1)

which defines the prior for the latent function f : R → R
and the likelihood model for yi. For Gaussian likelihoods, the
posterior distribution p(f |y) is Gaussian and can be obtained
analytically, but this requires O(n3) computation in general.
For non-Gaussian likelihoods, the computational overhead is
even larger since the posterior is generally intractable and iter-
ative approximate inference must be applied. Development of
efficient, low-cost algorithms for GP models is an important
area of research.

Fortunately, as discussed in [2], it is often possible to
reformulate GP priors as state-space models which, for the
Gaussian likelihoods, reduces the computation cost to O(n).
Many widely used covariance functions admit this form ex-
actly or approximately (e.g., the Matérn class, polynomial,
noise, constant, squared-exponential, rational quadratic, peri-
odic, and sums/products thereof). The general approach is to
rewrite the GP as a linear time-invariant SDE, which has the
general continuous-discrete (see [2], p. 200) form:

df(t) = F f(t) dt+ Ldβ(t), (2)

yi ∼ p(yi | fi = h>f(ti)), (3)

where f(t) ∈ Rd is the state and yi is the measurement ob-
tained at time instant ti via the measurement vector h ∈ Rd.
F ∈ Rd×d is the feedback matrix, and L ∈ Rd×s is the dis-
persion matrix. β(t) ∈ Rs is the Brownian motion with dif-
fusion matrix Q ∈ Rs×s. For Gaussian likelihoods, inference
then can be performed in O(n) by using Kalman recursions
on the above model. This drastic reduction in computation
makes the SDE approach an attractive alternative for infer-
ence in state-space GP models.

2.1. Issues with Learning in State-Space GP Models

For non-Gaussian likelihoods, Kalman recursions cannot be
applied directly and an approximate inference method is re-
quired for tractability. Unfortunately, application of such
methods brings new challenges. Methods such as expectation
propagation (EP) provide a Gaussian approximation of the
non-Gaussian likelihoods, which can then be used in Eq. (3)
to perform inference with Kalman recursions [8]. Regret-
tably, EP suffers from numerical issues and is not guaranteed
to converge. Methods such as variational inference (VI) do

not have these issues, but standard VI does not provide an EP-
like Gaussian approximation of the non-Gaussian likelihood.
Instead, a full-Gaussian approximation over f(t) is sought
which requires storing a full n × n covariance matrix during
optimization of the variational objective. It is possible to
reparameterize the variational objective to reduce the number
of parameters to O(n) [4, 9], but still a Kalman recursion al-
gorithm cannot be directly applied to obtain a fast linear-time
implementation. In general, these two types of methods suffer
from different kinds of issues, making inference challenging.

A further issue is in the implementation of such meth-
ods. Despite the theoretical guarantee of linear time complex-
ity, Kalman recursions involve large for-loops, making imple-
mentation in automatic differentiation frameworks problem-
atic. Previous attempts to overcome this exploit the sparse
structure in the precision matrices [10] or inducing points
[11]. This typically requires a full reformulation of the model
which can be unstable and difficult to implement. In this pa-
per, we propose a new method that avoids these difficulties.

3. METHODS

We utilise conjugate-computation variational inference (CVI,
[6]), forming our approximate inference problem in the vari-
ational setting by choosing a Gaussian approximate posterior
q(f) = N(m,V) whose natural parameters are λ(1)=V−1m
and λ(2)=− 1

2V
−1. Variational inference aims to optimise λ

to maximise a lower bound of model evidence p(y):

log p(y) ≥ Eq(f)
[

log
p(y, f)

q(f)

]
:= L(λ). (4)

CVI performs natural gradient ascent on the above lower
bound. Natural gradients are a way of taking gradient steps
that accounts for the informational geometry of the opti-
misation problem. CVI utilises the result from [4], which
states that the variational posterior is a sum of the natural
parameters of the prior, λ

(1)
prior = 0 and λ

(2)
prior = 1

2K
−1

and the approximated likelihood terms. CVI finds Gaussian
approximations for the non-Gaussian likelihoods with natural
parameters λ̃ = {λ̃(1), λ̃(2)}. The likelihood distribution
becomes

p(yi | fi) ≈ N(ỹi | fi, σ̃2
i), (5)

where ỹi = λ̃
(1)
i /λ̃

(2)
i and σ̃2

i = −1/(2 λ̃
(2)
i). Under this

parametrisation, λ̃ are the free variational parameters to be
optimised. We can think of performing variational inference
in this setting as a series of GP regressions which provide the
following approximate posterior:

q(f)∝
[n∏
i=1

N
(
ỹi | fi, σ̃2

i

)]
N (f |0,K) . (6)

The likelihood parameters λ̃ are the local variational parame-
ters necessary to compute the global posterior parameters λ.

We summarise the distributions and parametrisations in the
following table.

Posterior approx Prior Likelihood approx

λ(1) = V−1m λ
(1)
prior = 0 λ̃

(1)
i = fi/σ̃2

i

λ(2) = −1/2V−1 λ
(2)
prior = −1/2K−1 λ̃

(2)
i = −1/2σ̃2

i

Key to the CVI method is that the natural gradient up-
date can be elegantly computed using the derivatives of the
expected log likelihood with respect to the mean parameters
µ = {m,V+mm>} [6]. The two stage update of λ is then:

λ̃k+1 = (1− ρk)λ̃k + ρk g(λk), (7)

λk+1 = λ̃k+1 + λprior, (8)

where g(λk) = ∇µEq [log p(y | f)] |µ=µ(λk), and ρk the step
size. Essentially we can update the variational parameters λ̃
using the derivatives of the likelihood terms with respect to
parameters of our posterior. Combining local parameter up-
dates and global conjugate regression steps avoid the need to
directly optimise Eq. (4), which alleviates the performance
issues with the optimal reduced parametrisation (cf. Sec. 2.1).

3.1. Evidence Lower Bound (ELBO) Derivation

Although the CVI method sidesteps direct computation of
the ELBO for the variational parameter updates, it is still re-
quired for hyperparameter learning (e.g., kernel length-scale
and magnitude). We simplify Eq. (4) by using Eq. (6) to give

L = Eq(f) log

[∏n
i=1 p (yi | fi)Z (GP) N (f | 0,K)∏n

i=1N
(
ỹi | fi, σ̃2

i

)
N(f |0,K)

]
, (9)

where the log marginal likelihood of the approximate conju-
gate model is

logZ (GP) = −1

2
log |Kỹ|−

1

2
ỹ>K−1ỹ ỹ−n

2
log(2π) (10)

for Kỹ := K+ diag(σ̃2). From Eq. (9), we get the complete
expression for the ELBO:

=

n∑
i=1

Eq(f) log p (yi | fi) + logZ (GP)

−
n∑
i=1

[
1

2
log

(
1

2πσ̃2
i

)
− 1

2σ̃2
i

((
ỹi −mi

)2
+ vi

)]
. (11)

3.2. Proposed Method

Updating our variational parameters λk+1 in Eq. (8) involves
solving a GP regression problem, which scales as O(n3). We
now show how we can perform the same calculations inO(n)
using the Kalman filter and smoother, as well as demonstrat-
ing how the CVI updates can be used in the forward filter to
initialise the variational parameters. We additionally discuss
how the marginal likelihood approximation can be computed
as an alternative to the ELBO for hyperparameter learning,
and outline our efficient implementation in JAX.

3.3. Sequential CVI by Filtering and Smoothing

Certain LTI SDEs of the form in Eq. (2) have discrete-time
solutions that can be computed in closed form and written:

fi = Ai−1fi−1 + qi, qi−1 ∼ N(0,Qi−1), (12)

where fi = f(ti) and Ai = exp(F∆ti) is the linear state
transition matrix, for time step size ∆ti = ti − ti−1. Qi is
the process noise covariance. For a Gaussian likelihood we
can write the measurement model as a linear transformation
of state vector with additive Gaussian noise:

yi = h>fi + εi, εi ∼ N(0, σ2
i). (13)

h ∈ Rd is the measurement vector such that f(ti) = h>fi,
which coincides with the GP model in Eq. (1). The exact
solution to the model outlined above can be computed via the
Kalman filter and Rauch–Tung–Striebel smoother (see [12]).
For our non-Gaussian likelihood model, we must adjust the
above to reflect our variational likelihood approximations,

ỹi = h>fi + εi, εi ∼ N(0, σ̃2
i). (14)

We now derive our adjusted filtering and smoothing algo-
rithms that explicitly incorporate the update steps of Eq. (7)
and Eq. (8), as well as computing all required elements of
Eq. (11): {mi, vi, Z (GP) , Eq(f) log p (yi | fi)}.

The filtering distribution, p(fi |y1:i) = N(fi |mf
i,P

f
i), is

computed in two stages. Firstly, the prediction step,

mp
i = Aim

f
i−1, Pp

i = AiP
f
i−1A

>
i + Qi, (15)

followed by the update step, in which we first compute the
innovation mean (ηi) and variance (si),

ηi = ỹi − h>mp
i , si = h>Pp

i h + σ̃2
i . (16)

The log marginal likelihood of the Gaussian model, as re-
quired in Eq. (11), can now be evaluated from the above quan-
tities: logZi (GP) =

∑n
i

1
2 (log 2πsi + η2i /si). The updated

filter mean and covariance are then

ki = Pp
i h/si,

mf
i = mp

i + kiηi, Pf
i = Pp

i − kih
>Pp

i . (17)

The marginal smoothing distribution is notated p(fi |y1:n) =
N(fi |ms

i ,P
s
i), and is computed through backward recursion

of the following equations:

ms
i = mf

i + Gi

(
mi+1 −mp

i+1

)
, (18)

Ps
i = Pf

i + Gi(Pi+1 −Pp
i+1)G>i , (19)

where Gi=Pf
iA
>
i+1[Pp

i+1]−1 is the smoother gain. The
smoothing distribution gives the GP marginal posterior
q(f(ti))=N(f(ti) |mi, vi) wheremi=h>ms

i and vi=h>Ps
ih.

3.4. Variational Parameter Updates in the Filter/Smoother

The final required term in order to update λ̃ and compute the
ELBO is the variational expectations, Eq(f) log p (yi | fi), and
their derivatives. Given we have just computed mi and vi,
it is natural to perform this calculation in the smoother step.
The derivatives with respect to the mean parameters µi =
{mi, vi +m2

i } directly provide the natural parameter update.
Using the chain rule, we write down the following update rule
at step k as a function of the source parameters mi, vi:

Ji = EN(fi |mi,vi) [log p(yi | fi)] , (20)

λ̃
(1)
i,k+1 = (1− ρk)λ̃

(1)
i,k + ρk

(
∂Ji
∂mi

− 2
∂Ji
∂vi

mi

)
, (21)

λ̃
(2)
i,k+1 = (1− ρk)λ̃

(2)
i,k + ρk

∂Ji
∂vi

. (22)

In the general case Ji is intractable, and we employ Gauss–
Hermite quadrature to compute this quantity and its deriva-
tives numerically. Crucially, these parameter updates are not
specific to the smoother, and can also be used in the first
forward filtering pass as a novel way to initialise the varia-
tional parameters. Initialising the variational distribution to
N(0,∞) is standard practice, but by letting mi = h>mf

i and
vi = h>Pf

ih, i.e. using the marginal filtering distribution, and
setting ρk = 1, we can utilise Eq. (20)–Eq. (22) to provide a
much improved initialisation. In Sec. 4 we show how doing
so results in superior convergence rates in practice.

This interpretation also shows that our CVI scheme can
be seen as a new, general purpose nonlinear Kalman filter,
whose nonlinear updates equate to a full natural gradient step
in the evidence lower bound, and which reduces to the linear
Kalman filter when the observation model is Gaussian.

3.5. Similarity to Expectation Propagation

It is worth noting that the parameter updates in Sec. 3.4 bear
striking resemblance to the analogous updates used in filter-
smoother version of expectation propagation [8], which can
be written with Zi = logEN(fi |mi,vi) [p(yi | fi)] as

λ̃
(2)
i,new=

1

2

(
vi +

∂Zi
∂vi

−1)−1
, (23)

λ̃
(1)
i,k+1=(1−ρk)λ̃

(1)
i,k+ρkλ̃

(2)
i,new

(
2
∂Zi
∂vi

∂Zi
∂vi

−1
−2mi

)
, (24)

λ̃
(2)
i,k+1=(1−ρk)λ̃

(2)
i,k + ρkλ̃

(2)
i,new, (25)

where mi, vi are now the parameters of the so called cav-
ity distribution obtained by removing the likelihood from the
marginal posterior: vi = ((h>Ps

ih)−1 − λ̃(2)i)−1 and mi =

vi((h
>Ps

ih)−1h>ms
i − λ̃

(1)
i).

3.6. Direct Marginal Likelihood Computation

In sequential models we also have available the marginal like-
lihood as an alternative to the ELBO as an optimisation ob-
jective for hyperparameter learning. The marginal likelihood
can be written as a product of conditional terms,

p(y) = p(y1) p(y2 | y1) p(y3 |y1:2)

n∏
i=4

p(yi |y1:i−1). (26)

Each term can be computed via numerical integration during
the Kalman filter by noticing that,

p(yi |y1:i−1) =

∫
p(yi | fi,y1:i−1)p(fi |y1:i−1) dfi

=

∫
p(yi | fi = h>fi)p(fi |y1:i−1) dfi. (27)

The first component in the integral is the likelihood, and the
second term is the filter prediction calculated in Eq. (15).

3.7. Efficient Hyperparameter Learning with JAX

The sequential formulation of GP models is an extremely ef-
ficient approach to inference. However, a problem arises in
the machine learning context, where it is desirable to opti-
mise the model hyperparameters via gradient-based methods
using automatic differentiation. Most automatic differentia-
tion libraries work by ‘tracing’ a computational graph. This
involves passing arbitrary values through the supplied func-
tions and constructing a list of the necessary operations and
their derivatives. Functions involving large for-loops (such as
a Kalman filter) result in massive computational graphs that
involve large compilation overheads, memory usage and run-
time. For this reason, most machine learning approaches to
temporal GPs either use finite differences [3], which are slow
when the number of parameters is large, or reformulate the
model entirely to exploit linear algebra tricks applicable to
sparse precision matrices [10].

We utilise the following novel capabilities of the increas-
ingly popular differential programming Python framework,
JAX [7]: (i) we avoid ‘unrolling’ of for-loops, i.e. instead of
building a large graph of repeated operations, a smaller graph
is recursively called, reducing the compilation overhead and
memory. (ii) we just-in-time (JIT) compile the for-loops, to
avoid the cost of graph retracing. This results in an over-
head setup cost on the first function call (this effect is seen in
Fig. 2a), but means that every subsequent call only involves
reuse of the static graph, which is very efficient. (iii) JAX
also allows for the use of accelerated linear algebra (XLA) to
speed up the underlying filtering/smoothing operations. Com-
bined, the above implementation details result in an extremely
fast method that scales to millions of data points. Fig. 2a
shows that one training iteration for a one-dimensional GP
with one million data points takes approximately 20 s.

102 103 104 105 106

1
0
0

1
0
1

1
0
2

1
0
3

Number of training data, n

W
al

l-
cl

oc
k

tim
e

(s
ec

on
ds

)

CVI
SSVI

(a) Number of data vs. wall-clock time

1920 1930 1940 1950 1960 1970 1980 1990 2000 2010

0
1
0

2
0

3
0

Time, t

A
cc

id
en

ti
nt

en
si

ty

Observations
Posterior mean
95% confidence

(b) Airline accidents (n ≈ 40 k)

Fig. 2: (a) Empirical wall-clock times (averages over 5 runs) for taking ten variational steps and evaluating the ELBO and its
gradient for hyperparameter learning in a simulated GP classification task. CVI is implemented in GPflow 2 and shows cubic
computational cost in n. SSVI delivers the same result in linear time. The set-up cost (∼6 s) in SSVI is dominating up to 105,
whereafter the scaling is linear (subsequent iteration steps do not suffer from the setup time). (b) The posterior for the airline
accidents intensity modelling task with a slow trend and multiple periodic kernels for day-of-week and time-of-year effects.

4. EXPERIMENTS

Initial experiments show that SSVI is an efficient inference
method for fitting large non-Gaussian time series models. We
show that the SSVI posterior is equal to CVI one, as expected.
Furthermore, on large datasets our method performs compa-
rably to EP in terms of test performance and convergence
speed. In addition to choosing the ELBO as a training ob-
jective we also use the marginal likelihood and compare their
performance. The practical computational complexity is also
shown, by running a wall-clock test on a simple GP classifica-
tion task. All experiments were performed using a MacBook
pro with a 2.4 GHz Intel core i5 processor and 16 Gb RAM.

4.1. Comparison to Full-CVI

Fig. 2a shows the computation times for CVI (implemented
in GPflow 2) vs. SSVI on a GP classification example where
both return the same solution. The data were simulated from
yi ∼ Bern(fi), where f(t) = 6 sin(πt10)/π t

10 + 1 and a
Matérn-5/2 GP prior was used. The number of observations
n was varied from 100 data points to one million. The chart
shows the linear computational complexity in n of SSVI ver-
sus the cubic complexity for CVI, noting that SSVI’s setup
cost dominates until around n = 1, 000. It should be noted
that subsequent iterations do not include the setup cost, mak-
ing optimisation very fast.

The experiment in Fig. 1 uses the coal mining disaster
dataset [8] that contains dates for 191 explosions that killed
ten or more men in Britain between 1851–1962. We use a
log-Gaussian Cox process, which is an inhomogeneous Pois-
son process (approximated with a Poisson likelihood for 200
equal-time interval bins). We use a Matérn-5/2 GP prior with

likelihood model p(y | f) ≈
∏n
i=1 Poisson(yi | exp(f(t̂i))),

where t̂i is the bin coordinate and yi the number of disasters
in the bin. Given a small data size we can use CVI and SSVI
and compare the posterior mean and variances for both meth-
ods after training for 500 iterations using the Adam optimizer.
The plot shows negligible difference between the methods.

4.2. Large-scale log-Gaussian Cox Process Modelling

We now examine the efficacy of the presented SSVI method
as a practical machine learning algorithm on a large time se-
ries dataset consisting of 1210 dates of commercial airline ac-
cidents between 1919–2017 [3]. In applying a log-Gaussian
Cox process it is necessary to use a bin-width of one day in
order to capture the fast varying behaviour (weekly, monthly,
and yearly trends), which results in n = 35,959 observations.

The GP prior contains two components representing
long and medium term trends and two representing quasi-
periodic behaviour: κ(t, t′) = κ(t, t′)long

Mat.5/2 +κ(t, t′)med.
Mat.5/2 +

κ(t, t′)3 months
Cos κ(t, t′)Mat.5/2 + κ(t, t′)1 week

Cos κ(t, t′)Mat.5/2. We
approximate the process with a Poisson likelihood, as above.

Fig. 3 shows a comparison of the training objective and
test performance for various algorithmic choices. The nat-
ural gradient parameter updates ensure that SSVI converges
almost as quickly as EP (which is usually posed as a fast-
converging alternative to VI). Fig. 3b suggests that using the
ELBO as a training objective can result in slower convergence
than the marginal likelihood, in terms of test performance.

As discussed in Sec. 3.4, the interpretation of SSVI as a
general nonlinear Kalman filter enables us to treat the first
filtering pass as an opportunity to initialise the variational pa-
rameters. Doing so provides a much improved starting point

0 10 20 30 40 50

1
0
0
0
0

2
0
0
0
0

3
0
0
0
0

4
0
0
0
0

Iteration step, k

O
bj

ec
tiv

e

SSVI (neg. ELBO)
SSVI (neg. log marg. lik.)
EP (neg. log marg. lik.)
Filter init.

(a) Training objective

0 10 20 30 40 50

4600

4800

5000

5200

0 10 20 30 40 50

0
.2

0
.3

0
.4

Iteration step, k

N
or

m
al

is
ed

te
st

N
L

PD

SSVI (ELBO)
SSVI (marg. lik.)
EP
Filter init.

(b) Test negative log predictive density (NLPD)

0 10 20 30 40 50

0.16

0.16

0.17

Fig. 3: Training objective and test performance for various algorithmic choices in the airline accidents modelling task, using
10-fold cross validation (mean values shown). The natural gradient parameter updates ensure that SSVI/CVI converges almost
as quickly as EP, and convergence can be further sped up by using the filtering (forward) pass for initialization (dashed lines).

for the optimisation, and results in far superior convergence,
as shown by the dashed lines in Fig. 3.

5. CONCLUSION

We have shown how to efficiently employ variational infer-
ence in temporal GP models with non-conjugate likelihood
models. The method SSVI is a linear-time algorithm that
builds on CVI, and is also applicable to more general discrete
and continuous-discrete state-space models. We derive the
closed-form expressions for efficient evaluation of the vari-
ational update step and evidence lower bound (ELBO) by
Kalman filtering and smoothing. Furthermore, we proposed
an initialization technique for the variational parameters that
leverage the forward filter, which showed clear practical ben-
efits. We also demonstrated how to efficiently learn the model
hyperparameters using JAX, which allows for automatic dif-
ferentiation through the state-space model—something that
has previously been difficult in major ML frameworks.

In our experimental validation, we empirically recovered
a posterior that matches standard CVI, and demonstrated the
benefits of linear-time inference on a large benchmarking
problem with around 40 thousand data points. We conclude
that JAX shows promise in making auto-differentiation part
of the ML toolchain even in sequential models. Codes for this
paper are available at http://github.com/AaltoML/kalman-jax.

Author contributions PEC and AS had the original idea af-
ter discussions with MEK. WJW and PEC implemented the
method and ran the experiments. PEC wrote the first draft of
the paper, after which all authors contributed to writing.

Acknowledgements This research was supported by grants
from the Academy of Finland (grant numbers 308640 and
324345). We acknowledge the computational resources pro-
vided by the Aalto Science-IT project.

6. REFERENCES

[1] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes
for Machine Learning, MIT Press, 2006.

[2] S. Särkkä and A. Solin, Applied Stochastic Differential Equa-
tions, Cambridge University Press, 2019.

[3] H. Nickisch, A. Solin, and A. Grigorevskiy, “State space Gaus-
sian processes with non-Gaussian likelihood,” in ICML, 2018.

[4] M. Opper and C. Archambeau, “The variational Gaussian ap-
proximation revisited,” Neural Computation, vol. 21, no. 3, pp.
786–792, 2009.

[5] J. Hensman, A. Matthews, and Z. Ghahramani, “Scalable vari-
ational Gaussian process classification,” in AISTATS, 2015.

[6] M. Khan and W. Lin, “Conjugate-computation variational
inference: Converting variational inference in non-conjugate
models to inferences in conjugate models,” in AISTATS, 2017.

[7] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary,
D. Maclaurin, and S. Wanderman-Milne, “JAX: Composable
transformations of Python+NumPy programs,” 2018, http://
github.com/google/jax.

[8] W. J. Wilkinson, P. E. Chang, M. R. Andersen, and A.
Solin, “State space expectation propagation: Efficient infer-
ence schemes for temporal Gaussian processes,” in ICML,
2020.

[9] H. Nickisch and C. E. Rasmussen, “Approximations for binary
Gaussian process classification,” JMLR, vol. 9, no. Oct, pp.
2035–2078, 2008.

[10] N. Durrande, V. Adam, L. Bordeaux, S. Eleftheriadis, and J.
Hensman, “Banded matrix operators for Gaussian Markov
models in the automatic differentiation era,” in AISTATS, 2019.

[11] V. Adam, S. Eleftheriadis, A. Artemev, N. Durrande, and J.
Hensman, “Doubly sparse variational Gaussian processes,” in
AISTATS, 2020.

[12] S. Särkkä, Bayesian Filtering and Smoothing, Cambridge Uni-
versity Press, 2013.

http://github.com/AaltoML/kalman-jax
http://github.com/google/jax
http://github.com/google/jax

	1 Introduction
	2 Background
	2.1 Issues with Learning in State-Space GP Models

	3 Methods
	3.1 Evidence Lower Bound (ELBO) Derivation
	3.2 Proposed Method
	3.3 Sequential CVI by Filtering and Smoothing
	3.4 Variational Parameter Updates in the Filter/Smoother
	3.5 Similarity to Expectation Propagation
	3.6 Direct Marginal Likelihood Computation
	3.7 Efficient Hyperparameter Learning with JAX

	4 Experiments
	4.1 Comparison to Full-CVI
	4.2 Large-scale log-Gaussian Cox Process Modelling

	5 Conclusion
	6 References

