
GRAPH-ADAPTIVE ACTIVATION FUNCTIONS FOR
GRAPH NEURAL NETWORKS





GRAPH-ADAPTIVE ACTIVATION FUNCTIONS FOR
GRAPH NEURAL NETWORKS

Thesis

to obtain the degree of Master in Computer Science with Specialization in Data Science
and Technology at Delft University of Technology,

to be publicly defended on Thursday, July 23rd 2020 at 15:00

by

Alina Bianca IANCU

Born in Ploiesti, Romania.

Multimedia Computing Group,
Faculty of Electrical Engineering, Mathematics and Computer Science (Faculteit

Elektrotechniek, Wiskunde en Informatica),
Delft University of Technology,

Delft, The Netherlands.

Thesis committee:

Chair: Dr. Odette Scharenborg, Faculty EEMCS, TU Delft
Daily Supervisor: Dr. Elvin Isufi, Faculty EEMCS, TU Delft
Committee Member: Dr. Riccardo Taormina, Faculty CEG, TU Delft

Keywords: Activation functions; graph neural networks; graph signal processing;
permutation equivariance.

Copyright © 2020 by A.B. Iancu

An electronic version of this dissertation is available at
http://repository.tudelft.nl/.

http://repository.tudelft.nl/




SUMMARY

Network data are essential in applications such as recommender systems, social net-
works, and sensor networks. A unique characteristic that these data encompass is the
coupling between the data values and the underlying network structure on which these
data are defined. Graph Neural Networks (GNNs) have been designed as tools to extend
the benefits of deep learning approaches to network data. One crucial component of
GNNs is the nonlinear component, also known as the activation function. The activation
function allows capturing the nonlinear relationships present in the input data. How-
ever, in the current literature, the essential data-network topology coupling is ignored in
the nonlinear component of the GNN. To address this limitation, we propose in this the-
sis a new family of activation functions for GNNs that account for the graph structure and
capture the data-network topology coupling, while also allowing for a distributed imple-
mentation. Specifically, we propose an initial diffusion of the data over the graph, prior
to the local nonlinearization operation. The nonlinearization is designed in a form akin
to graph convolutions. The latter leads to a graph-adaptive trainable nonlinear compo-
nent of the GNN that can be implemented directly or via kernel transformations, there-
fore, enriching the class of functions to represent the network data. Whether in the di-
rect or kernel form, we show the permutation equivariance property is always preserved.
This ensures the output of the GNN is independent of node labeling and that the GNN
exploits graph symmetries to generalize to different graphs sharing similar symmetries.
Numerical experiments with distributed source localization, finite-time consensus, and
distributed regression demonstrate the applicability of the proposed graph-adaptive ac-
tivation functions in distributed scenarios and show improved or comparable perfor-
mance to pointwise as well as state-of-the-art localized nonlinearities. Our findings also
suggest the benefits of the proposed activation functions in situations where the com-
munication resources in the network are limited.

v





ACKNOWLEDGEMENTS

I would like to thank the persons who made this journey an incredible one and were
there for me all along the way.

First, I would like to thank Elvin for his time, energy, and patience in supervising my
thesis. It has been a wonderful learning experience for me, and that would not have
been possible without your guidance and constructive feedback. Thank you for your
support, for all the insightful discussions that we had throughout these nine months, and
for all the things you taught me. Finally, I would like to thank you for all the constructive
comments regarding my technical writing, this thesis is definitely at a better quality due
to your feedback. I would also like to acknowledge Odette Scharenborg and Riccardo
Taormina for accepting to be part of my thesis committee.

Second, I would like to thank my friends Gabriele, Colm, Matteo, Panos, Rafal, Jody,
and Kyriakos. You made the last nine months a lot more fun, thank you for all the coffee
breaks and the good times we had together. Colm and Matteo, thank you for all the
virtual coffee breaks that we had during the pandemic as well, you really helped me stay
motivated. I would like to give special thanks to Gabriele, the last nine months would
have not been the same without you. Thank you for all the discussions and feedback
and for always being there for me and supporting me, whether it was for technical or
personal reasons. I would also like to thank Dusan for all the moral support and for
always encouraging me over the past nine months. Thank you for being part of my life,
for being there for me and for always making me believe in myself.

Finally, I would like to thank my family for all their support, love, and for always
believing in me. I would not be where I am today without you.

vii





CONTENTS

Summary v

Acknowledgements vii

1 Introduction 1

2 Background 7
2.1 Graphs and Graph Signals. . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Graph Shift Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Graph Convolutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Graph Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 Consensus as Graph Signal Filtering . . . . . . . . . . . . . . . . . . . . 12
2.6 Graph Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . 13
2.7 Activation Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.7.1 Conventional Pointwise Activation Functions . . . . . . . . . . . . 16
2.7.2 Kernel Activation Functions . . . . . . . . . . . . . . . . . . . . . 16
2.7.3 Localized Activation Functions . . . . . . . . . . . . . . . . . . . 18

2.8 Graph Convolutional Neural Networks Properties . . . . . . . . . . . . . 19
2.8.1 Learnable Parameters . . . . . . . . . . . . . . . . . . . . . . . . 19
2.8.2 Permutation Equivariance . . . . . . . . . . . . . . . . . . . . . . 19

2.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Literature Review 23
3.1 Graph Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1.1 Permutation Equivariance . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Activation Functions in Graph Neural Networks . . . . . . . . . . . . . . 26
3.3 Distributed Processing over Graphs . . . . . . . . . . . . . . . . . . . . . 27
3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 Graph-Adaptive Activation Functions 31
4.1 Graph-Adaptive Localized Activation Functions . . . . . . . . . . . . . . 32
4.2 Graph-Adaptive Kernel Activation Functions . . . . . . . . . . . . . . . . 33
4.3 Properties of Graph-Adaptive Activation Functions . . . . . . . . . . . . . 35

4.3.1 Learnable Parameters . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3.2 Permutation Equivariance . . . . . . . . . . . . . . . . . . . . . . 36

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5 Numerical Experiments 39
5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.1.1 Stochastic Block Model . . . . . . . . . . . . . . . . . . . . . . . 40

ix



x CONTENTS

5.2 Source Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.3 Distributed Finite-Time Consensus . . . . . . . . . . . . . . . . . . . . . 46
5.3.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.3.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.3.3 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.4 Distributed Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.4.1 Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.4.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.4.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.4.4 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6 Conclusion 55
6.1 Thesis Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.2 Answer to the posed research questions. . . . . . . . . . . . . . . . . . . 56
6.3 Future Work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

A Graph-Adaptive Kernel Activation Functions: Additional Kernel Functions 65

B Source Localization: Additional Results 67
B.1 Additional Results GCNN F = 5 features, K = 5 filter order, and SBM Prob-

abilities p = 0.8 and q = 0.2 . . . . . . . . . . . . . . . . . . . . . . . . . 68
B.2 Additional Results GCNN F = 5 features, K = 5 filter order, and SBM Prob-

abilities p = 0.7 and q = 0.1 . . . . . . . . . . . . . . . . . . . . . . . . . 69

C Distributed Regression: Weather Stations Information 73

D Distributed Regression: Additional Results 75
D.1 Additional Results for the GCNN with F = 1 Feature. . . . . . . . . . . . . 76
D.2 Additional Results for the GCNN with F = 2 Features . . . . . . . . . . . . 76



1
INTRODUCTION

1



1

2 1. INTRODUCTION

Network data have become increasingly important and are essential in applications
such as recommender systems, social, sensor, and biological networks [1, 2]. Differently
from time series and images, which are represented in a regular domain, network data
present an irregular structure, that is best encoded in graphs. For example, consider a
network of weather stations. A node in the graph represents each station, and each edge
incorporates the distance between two stations, as depicted in Figure 1.1. The data as-
sociated with this network is the temperature measurement recorded at each node (sta-
tion). We call these data a graph signal. A unique characteristic that network data en-
compass is the coupling between the data and the underlying graph structure on which
these data are defined. Concretely, the data and the graph topology are inherently cou-
pled, as the network structure implies the values of the data defined on top of it. That
is, considering the example in Figure 1.1, temperatures recorded at a certain node are
related to the values recorded at neighboring nodes. This relation is encoded in the dis-
tances associated with each edge between two nodes: the lower the distance between
the two stations, the higher the correlation between the temperatures recorded at those
two stations. Network data can be processed in both centralized and distributed com-
putation scenarios. However, a centralized computation might not always be feasible in
practical settings, when the graph becomes too large or when the network does not have
access to a centralized processing unit. Moreover, distributed computation facilitates
the scalability of computation and endows the system with robustness to failures of the
processing unit. The latter is fundamental in applications involving consensus, optimi-
sation, and control [3–5]. Hence, it is essential to define tools that can process network
data while capturing the essential data-network topology coupling and allowing for a
distributed implementation.

60

40

62
61

67

58 70

75
30

25

31.3

31.7

32.5

33.1

35.1
34.8

35.334.3

32.7

32.9

33.9

Figure 1.1: Example of graph encoding a network of weather stations. Each node represents a station. Each
edge has associated, in black, the distance between two stations in kilometers. Each node has associated, in
red, the temperature measured at the corresponding station in degrees Celsius.

In an effort to define tools that can process network data, a considerable amount of
research was steered towards designing deep learning models that can exploit the irreg-
ularities in these data. More specifically, efforts were focused on graph neural networks
(GNNs), and later on Graph Convolutional Neural Networks (GCNNs). These architec-



1

3

tures were designed to reproduce the effectiveness that convolutional neural networks
(CNNs) [6] proved to have in processing images and time series. Just as CNNs, GCNNs
are composed of a linear and nonlinear component. However, differently from CNNs,
GCNNs replace the traditional convolution performed using linear filters with the graph
convolution defined by means of graph convolutional filters [7]. One property GCNNs
inherit from graph filters is the distributed implementation [8–10].

The nonlinear component of GNNs is the essential element in learning nonlinear
representations. Several approaches have been proposed in the GNNs literature for im-
plementing this nonlinear component. First of all, traditional CNN activation functions,
such as Rectified Linear Unit (ReLU), sigmoid or hyperbolic tangent (tanh), have been
applied. Additionally, kernel activation functions (KAFs) have been recently introduced
[11], which improve on the aforementioned ones since they can adapt to the data. How-
ever, these different methods are limited in the sense that they are applied locally at each
node. In graphs, unlike in an image or time signal, the local neighborhoods vary, both
within a graph and between different graphs, as depicted in Figure 1.2. This motivated
the need to define an activation function that can adapt to the structure of the graph. To
this end, [12] proposed localized activation functions that account for the graph topol-
ogy by operating on node neighborhoods of different resolutions. However, the latter
incorporate only the graph and not the data-topology coupling, since they ignore the
edge weights and the data propagation between neighbors. Thus, when employing such
activation functions, learning lacks meaningfulness, as it fails to capture an essential re-
lation between the data and their underlying graph. Moreover, localized activation func-
tions are not distributable beyond the one-hop neighborhood, hence missing multi-hop
information between nodes in distributed scenarios.

(a) (b)

Figure 1.2: An illustration of a irregular and regular graph structure. (a) In a graph with irregular structure,
local neighborhoods can have varying structures, as depicted by the different colors. (b) In an image, when
represented as a graph (where each pixel is a node), the local neighborhoods have the same structure.

In the current literature, the data-graph coupling is only captured partially in the
linear component of GNNs. However, the nonlinear component is essential for the dis-
criminatory power of the network. Hence, to enhance the learning performance and
significance, it is important to ensure that the data-graph coupling is fully captured by
the GNN, not only in the linear component, but also in the nonlinear one. To address
this, we put forward a new family of activation functions that adapt to the data-topology



1

4 1. INTRODUCTION

coupling in the surrounding of a node. The main research questions we focus on in this
thesis are:

(RQ.1) How can we embed the data-graph topology coupling in the nonlinear component
of Graph Neural Networks?

(RQ.2) How can we develop activation functions that besides capturing the data-graph
topology coupling are also distributable?

To address these research questions, we propose activation functions in which the data
associated with each node, obtained from the linear graph filtering, are diffused over the
graph topology prior to the local nonlinear operation. The nonlinearization is performed
in a form similar to graph convolutions, thus embedding the data-graph topology cou-
pling. Since the diffusion process is performed before the nonlinear operation, the latter
can capture information from arbitrarily far away neighbors by only operating locally at
each node. Thus, our proposed activation functions lead to a distributed implementa-
tion. The resulting nonlinear features are subsequently combined with a set of trainable
parameters to weigh the information at different neighborhood resolutions accordingly.
This allows adapting the GNN’s nonlinear component to the task at hand. Besides be-
ing graph-adaptive and distributable, these activation functions preserve a property of
theoretical interest for GNNs, namely, permutation equivariance [13]. This implies the
output of a GNN is invariant to node relabeling and, more importantly, that GNNs ex-
ploit graph symmetries to generalize learned representations to different graph signals
that share some of these symmetries. Once we define the graph-adaptive, distributable
activation functions, we address the following research question:

(RQ.3) How can we employ our proposed graph-adaptive activation functions to address
distributed processing tasks?

To answer this research question, we analyze the performance of our proposed graph-
adaptive activation functions in several scenarios, using both real-world and simulated
data. First of all, we address the problem of distributed classification in the context of
the source localization problem. Additionally, we focus on distributed finite-time con-
sensus, a central problem in distributed and adaptive optimisation, signal processing,
and control [4, 5, 14–18]. Specifically, we address distributed finite-time consensus as
a learning problem on graphs. We employ a distributed GCNN to learn the consensus
function in a data-driven fashion. Lastly, we experiment with distributed regression in
the context of signal denoising. We employ a real-world dataset recording temperature
measurements across an area of France.

Concretely, the answers to these research questions lead to the following contribu-
tions:

1. We develop a new family of nonlinearities for GNNs that are graph-adaptive to
the surrounding of a node and distributable. The first class [Def. 5] nonlinearizes
shifted features in the surrounding of a node in their direct form. The second class
[Def. 8] transforms the shifted features with graph-adaptive kernels prior to non-
linearization.



1

5

2. We prove the proposed nonlinearities are permutation equivariant [Prop. 2], i.e.,
the output of the respective GNN architecture is agnostic to node labeling.

3. We propose distributed GNN tasks with graph-adaptive nonlinearities for source
localization, finite-time consensus, and signal denoising.

The findings of this research lead to two papers, which we attach to this document,
namely:

1. Bianca Iancu, Luana Ruiz, Alejandro Ribeiro, and Elvin Isufi, “Graph-Adaptive Ac-
tivation Functions for Graph Neural Networks”. IEEE International Workshop on
MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP 2020), IEEE, September
21-24, 2020. [19];

2. Bianca Iancu, and Elvin Isufi, “Towards Finite-Time Consensus with Graph Con-
volutional Neural Networks”. 28th European Signal Processing Conference (EU-
SIPCO 2020), IEEE, January 18-22, 2021. [20].

The content of these papers will be used throughout the upcoming chapters.
The remainder of this thesis proceeds as follows. Chapter 2 recalls the background

material necessary for the research carried out in this thesis. Chapter 3 discusses the
relevant literature for setting the context of our research. Chapter 4 defines the graph-
adaptive nonlinearities and derives their theoretical properties. Chapter 5 contains the
numerical experiments and Chapter 6 the conclusions.

Notation. Throughout this thesis the following notation is adopted. Scalars are de-
noted by plain letters (i.e., x, X ), vectors by lowercase boldface letters (i.e., x), matrices
by uppercase boldface letters (i.e., X), and sets by uppercase calligraphic letters (i.e., X ).
xi represents the i th entry of the vector x, whereas Xi j represents the entry at the posi-
tion (i , j ) of the matrix X. X> and X−1 denote the transpose and the inverse of the matrix
X, respectively.





2
BACKGROUND

Graph Signal Processing (GSP) extends the concepts and tools of traditional signal pro-
cessing to data residing in irregular domains, best encoded in graphs [21]. In this chap-
ter, we will introduce the background material necessary for the research carried out in
this thesis. We will start with some basic concepts from graph signal processing in Sec-
tion 2.1 and then introduce the graph shift operator in Section 2.2. We will then continue
in Section 2.3 with graph filters and discuss their role in graph convolution. In Section
2.4, we will introduce the Graph Fourier Transform, which we will employ next to ad-
dress the link between consensus and graph filtering in Section 2.5. In Section 2.6, we
will introduce Graph Convolutional Neural Networks (GCNNs). Subsequently, we will
present different activation functions employed in GCNNs in Section 2.7 and discuss the
properties of GCNNs in Section 2.8. These include an overview of the learnable parame-
ters in Section 2.8.1 and the permutation equivariance property in Section 2.8.2. Finally,
we will conclude this chapter in Section 2.9.

7



2

8 2. BACKGROUND

2.1. GRAPHS AND GRAPH SIGNALS
Ni = { j |(i , j ) ∈ E }

Consider a graph G = (V ,E ) with vertex set V of cardinality |V | = N and edge set
E ⊆ V × V of cardinality |E | = M . An edge is a tuple ei j = (i , j ) connecting nodes i and
j . Depending on their edge types, graphs can be undirected or directed, as shown in
Figure 2.1. In undirected graphs, edges do not present any orientation. That is, if node
i is connected to node j (i.e., (i , j ) ∈ E ), then also node j is connected to node i (i.e.,
( j , i ) ∈ E ). In the case of directed graphs, edges present an orientation. Specifically, node
i being connected to node j (i.e., (i , j ) ∈ E ), does not imply that also node j is connected
to node i (i.e., ( j , i ) ∈ E ). Moreover, we define the k-hop neighborhood of node i , N k

i , as
the set of nodes reachable from node i in at most k hopes. That is, the set of nodes that
are reachable by following a path starting in node i and consisting of at most k edges.
For simplicity of notation, throughout this thesis we denote the one-hop neighborhood
of node i simply as Ni .

1

2

4

3

(a)

1

2

4

3

(b)

Figure 2.1: An illustration of a directed and an undirected graph. (a) In an undirected graph the edges have no
orientation. (b) In a directed graph the edges present an orientation from one node to another.

On the vertices of G , we define a graph signal x = [x1, x2, ..., xN ]> ∈ RN , whose i th
component xi is the signal value of node i . An example of a graph signal is illustrated
in Figure 2.2. If an edge (i , j ) is present, it implies a relationship between the signal
components at the nodes i and j . A typical example of a graph signal is a sensor network.
The network topology encodes the pairwise relationships between the sensors, such as
their distance or communication pattern, whereas the graph signal represents the actual
measurements recorded at each sensor.

2.2. GRAPH SHIFT OPERATOR
Associated to G we have the graph shift operator (GSO) matrix S ∈RN×N , whose sparsity
pattern matches the graph structure. That is, entry (i , j ) satisfies [S]i j = si j 6= 0 only
if i = j or (i , j ) ∈ E . Commonly used GSOs include the adjacency matrix A, the graph
Laplacian L (for undirected graphs), and their normalized and translated forms, which
we detail next.

The graph adjacency matrix A ∈RN×N is a sparse matrix with entries

Ai j 6= 0 if (i , j ) ∈ E , and Ai j = 0 if (i , j ) ∉ E .



2.2. GRAPH SHIFT OPERATOR

2

9

x1

x4

x3

x2

Figure 2.2: Graph signal x = [3,2,1,2]> illustrated on top of the underlying graph, composed of four nodes.
Each node has a signal value associated. The signal values are represented with the red bars; the bar height
indicates the signal value.

That is, Ai j has non-zero values only for the entries associated to edges in the graph.
The entry Ai j captures the weight associated to the edge (i , j ), which can be interpreted
as the strength of the connection between nodes i and j . Depending on the values of
the edge weights, we can identify two types of graphs: weighted, with weights Ai j ∈ R,
and unweighted, in which case the weight of each edge is considered to be one. In the
particular case of an undirected graph, the adjacency matrix A is symmetric, i.e. A = A>,
i.e., Ai j = A j i .

The degree matrix D ∈ RN×N for undirected graphs is defined as the diagonal matrix
D with entries Di i = ∑N

j=1 Ai j and Di j = 0 for i 6= j . That is, the degree of a node i is
represented by the number of edges incident to i if the graph is unweighted, while it is
the sum of the weights corresponding to the edges incident to i if the graph is weighted.
By means of the degree matrix D, we can define the normalized adjacency matrix of G as
An = D−1/2AD−1/2.

Moreover, the graph Laplacian matrix L is defined as L = D−A. Thus, we can identify
two types of entries in L:

1. diagonal entries: Li i = Di i , i.e. the degree of each node i ;

2. off-diagonal entries: Li j =−Ai j where i 6= j .

The normalized Laplacian matrix Ln is defined as Ln = D−1/2LD−1/2.
The choice for the GSO varies depending on the application, and different choices

have different trade-offs. The adjacency matrix A can be defined for both undirected
and directed graphs, whereas the Laplacian matrix L only applies to undirected graphs.
Moreover, L is symmetric and positive semidefinite, which reduces the analytical and
numerical difficulties that arise when working with the adjacency matrix [21]. How-
ever, one should consider the different options and choose the matrix representation
that suits the best in the application of interest.



2

10 2. BACKGROUND

The main operation carried out by the GSO is the shifting of a graph signal x over
graph G , that is

x(1) = Sx (2.1)

where x(1) represents the graph signal shifted once by S. We can also define the initial
graph signal x as its zero-shifting by S, or more precisely as x(0) = S0x. More generally,
the kth shift of the graph signal x can be computed recursively as

x(k) = Sk x = S(Sk−1x) = Sx(k−1). (2.2)

By breaking down the computation of one entry of the kth shifted graph signal x(k), we
can highlight the locality property of the GSO S. For each node i , the kth shifted signal
is computed locally as a linear combination of the values of the (k−1)th shifted signal at
i and at its neighboring nodes j ∈Ni , as

x(k)
i = S1i x(k−1)

1 +S2i x(k−1)
2 + ...+SNi x(k−1)

N . (2.3)

An essential property of the GSO is its readily distributed implementation. By ex-
ploiting recursion (2.2), we observe that node i can compute the shifted signal x(k) by
exchanging previous shift information x(k−1) with its direct one-hop neighbors Ni , since
the shift operator is local [cf. (2.3)]. Shifting the the graph signal x once, as in (2.1),
amounts to a computational complexity of O (M), since the GSO is a sparse matrix with
non-zero elements only in the positions associated to an edge. Thus, the recursive im-
plementation introduced in (2.2) allows for a distributed communication and computa-
tional cost of order O (Mk) [10], as it requires applying k times the operation in (2.1).

2.3. GRAPH CONVOLUTIONS
A graph convolution is defined as a graph filter H(S) that can be written as a polynomial
of the GSO S as

H(S) =
K∑

k=0
hk Sk (2.4)

where h = [h0, . . . ,hK ]> is a vector of coefficients [7]. Since the GSO S is local, graph filters
benefit from a local implementation as well. For an input signal x and filter coefficients
h, the output y ∈RN of the graph convolutional filter is computed as

y = H(S)x =
K∑

k=0
hk Sk x. (2.5)

In other words, the output graph signal y of the graph convolution applied to the input
graph signal x is a linear combination of each kth shifted signal Sk x, where 0 ≤ k ≤ K .
Figure 2.3 illustrates this process.

As in traditional convolutions, the localization property is preserved in operation
(2.5). Each term hk Sk x is associated with a k localized neighborhood within the graph.
More specifically, the first polynomial S0x represents an operation at the level of the in-
dividual nodes; the second polynomial S1x represents an operation within the one-hop
neighborhood of each node; the last polynomial SK x represents an operation within the



2.4. GRAPH FOURIER TRANSFORM

2

11

…..S SS S

hKS
Kx

SKx

h0x h1Sx h2S
2x

x Sx S2x

h0 h2 hKh1

∑

y

H(S)x

Figure 2.3: The convolution operation of a graph signal. The graph shift operator S is applied K times to the
input signal x. Each kth shift is multiplied by its coefficient hk . All the terms are summed up to obtain the
output of the graph convolution.

S0x S1x S2x S3x

i iii

Figure 2.4: Illustration of the localized neighborhoods associated to each Sk x term in the graph convolution
operation (2.5). The neighborhoods (in red) of node i (in green) are up to four-hops. Term S0x represents
an operation at the level of i ; S1x represents an operation at the level of the one-hop neighborhood of i ; S2x
represents an operation at the level of the two-hop neighborhood of i ; S3x represents an operation at the level
of the three-hop neighborhood of i .

K -hop neighborhood of each node. This locality property is illustrated in Figure 2.4 for
a three-hop neighborhood.

Due to their locality property, graph convolutions can be run distributively. When
building the output y in (2.5), we need to compute the terms Sx, . . . ,SK x. As discussed in
Section 2.1, S is local and operation Sx requires one-hop node exchanges between each
node i and its one-hop neighbors. This implementation allows for distributed commu-
nications and computational cost of order O (MK ), while the parameters defining (2.5)
are of order O (K ) [7].

2.4. GRAPH FOURIER TRANSFORM
By exploiting the graph spectral domain, we can analyze the filtering behavior intro-
duced in (2.4) from a graph frequency perspective [22]. Specifically, consider the eigen-



2

12 2. BACKGROUND

decomposition S = UΛU−1 with eigenvectors U = [u1, . . . ,uN ] and eigenvaluesΛ= diag(λ1, . . . ,λN ).
The graph Fourier transform (GFT) of x is defined as x̂ = U−1x, where x̂i quantifies how
much eigenvector ui contributes to the variation of signal x over the graph [22]. The in-
verse GFT is x = Ux̂ and the eigenvalues Λ= diag(λ1, . . . ,λN ) are referred to as the graph
frequencies.

By exploiting the GFT, we can write the input-output graph filtering relation in (2.4)
as

ŷ = H(Λ)x̂ (2.6)

where the diagonal matrix H(Λ) = ∑K
k=0 hkΛ

k contains the filter frequency response on
the main diagonal. That is, graph convolutions are performed in the graph frequency do-
main as pointwise multiplications between the filter frequency response and the signal
GFT. This is equivalent to the operation of convolution in time and space, where the filter
temporal or spatial frequency response is pointwise multiplied with the signal discrete
Fourier transform. By applying the inverse GFT on both sides of (2.6) we can retrieve the
vertex domain filter output as

y = H(S)x

where H(S) = UH(Λ)U−1.

2.5. CONSENSUS AS GRAPH SIGNAL FILTERING
One of the numerical application considered in this thesis is finite-time consensus. It
is a fundamental problem in graph signal processing and it aims to achieve consensus
among all nodes in a graph in finite-time, by accessing only local information at each
node. The GFT introduced in Section 2.4 plays a role in approaching consensus from a
spectral perspective, as we will detail next.

Consider the signal x and the consensus version x̄ = x̄1, with x̄ being the mean of
x and 1 the vector of all ones. We can think of x̄ as a signal whose GFT coefficients ˆ̄x
are such that the combined eigenvectors yield the DC component. For the GSO being
the graph Laplacian S = L, this is straightforward since eigenvector u1 associated to the
smallest eigenvalue λ1 = 0 is constant, i.e., u1 = 1/

p
N 1. Only the first coefficient ˆ̄x1

is necessary to represent the consensus signal, while all other coefficients can be null,
ˆ̄x2 = . . . = ˆ̄xN = 0. For S being the adjacency matrix or any other graph representation
matrix that does not have a constant eigenvector, vector ˆ̄x will have more than one entry
(if not all) non-zero to represent the constant signal.

We can think of consensus as a graph filter, as introduced in (2.4) that takes an het-
erogeneous graph signal x and filters it to return the constant mean signal x̄ = x̄1 over
the nodes [3]. Exploiting the GFT, we can write the input-output graph filtering relation
as ŷ = H(Λ)x̂, where the diagonal matrix H(Λ) =∑K

k=0 hkΛ
k contains the filter frequency

response on the main diagonal. Reaching consensus with graph filters of the form in
(2.4) accounts for learning the filter parameters h such that the signal is low-pass filtered
to pass only the DC component. Another advantage of (2.4) is its readily distributed im-
plementation, as discussed in Section 2.3.

The main benefit of (2.4) is that, under appropriate conditions on the spectrum of
S [23], coefficients h can be designed to achieve exact finite-time consensus in at most
K = N iterations [3, 17]. However, their applicability is limited to simple (cyclic or star)



2.6. GRAPH CONVOLUTIONAL NEURAL NETWORKS

2

13

graphs, since these approaches require high numerical precision of the eigenvalues. An
approach to tackle the numerical issues is to consider a different graph filter in (2.4),
such as ARMA [9], node varying [10], or edge varying [22]. Of particular interest is the
so-called edge varying graph filter [22], which substitutes scalars hk with N ×N coeffi-
cient matrices Hk in which entry (i , j ) is the coefficient applied to edge ei j . In this case,
finite-time consensus can be approximated with higher accuracy compared with (2.4),
but the graph structure and its labeling should be fixed. The latter is also practically
non-transferable to a slightly different graph, such as a graph affected by link losses.

In this thesis, we employ a GCNN instead with filters of the form in (2.4). This does
not require the GSO eigendecomposition, fixed labeling, and it is better transferable to
unseen graphs than the linear graph filter [13]. We introduce GCNNs next.

2.6. GRAPH CONVOLUTIONAL NEURAL NETWORKS
Consider a training set T = {(x,y)} consisting of |T | tuples (x,y), representing input-
output pairs. Each input graph signal x is associated with an output y, which can be
represented by a class label in the case of a classification problem or another graph signal
in the case of regression. The goal of Graph Convolutional Neural Networks (GCNNs) is
to learn a representation based on these data to predict the output ỹ for a new, unseen
graph signal, outside of the training set T (i.e. x ∉T ).

Analogously to CNNs, GCNNs are composed of L convolutional layers. Each con-
volutional layer consists of two fundamental elements: a linear and a nonlinear com-
ponent. The linear component comprises a collection of graph filters to perform graph
convolutions [cf. 2.5]. This is followed by an activation function, which we will address
in Section 2.7.

At layer l , the GCNN takes as input Fl−1 features {xg
l−1}Fl−1

g=1 from layer (l −1) and pro-

duces Fl output features {x f
l }F

f =1l . Each input feature xg
l−1 is processed by a parallel bank

of Fl graph filters {H f g
l (S)} f . The filter outputs are aggregated over the input index g to

yield the f th convolved feature

z f
l =

Fl−1∑
g=1

H f g
l (S)xg

l−1=
Fl−1∑
g=1

K∑
k=0

h f g
kl Sk xg

l−1, for f = 1, . . . ,Fl . (2.7)

The convolved feature z f
l is a graph signal and it is subsequently passed through an ac-

tivation function σ(·) to obtain the f th convolutional layer output

x f
l =σ(z f

l ), for f = 1, . . . ,F. (2.8)

The resulting output of the l th layer, x1
l , . . . ,xFl

l , serves as the input to the next convolu-
tional layer. The steps in (2.7) and (2.8) are followed recursively until the last layer L of
the network. The output features of the last convolutional layer L, x1

L , . . . ,xFL
L , represent

the final convolutional features.
Each layer l of the GCNN is characterized by Fl−1×Fl coefficient vectors h f g

l = [h f g
0l , . . . ,h f g

K l ]>

of dimensions K + 1 defining the filters H f g
l (S) in (2.7). The total number of learnable

parameters for layer l is Fl−1Fl (K +1), which divides as: for each Fl−1 input feature xg
l−1



2

14 2. BACKGROUND

from layer (l − 1), there are Fl filters H f g (S) at layer l ; each of these filters consists of

(K +1) learnable coefficients h f g
l . The total computational cost of a convolutional layer

is O (M(K +1)Fl−1Fl ). This is because we perform Fl−1Fl convolution operations, each
of cost O (M(K +1)).

The output features of the last convolutional layer x1
L , . . . ,xFL

L can be interpreted as a
collection of FL graph signals, where on node i we have the FL ×1 feature vector χLi =
[x1

Li , . . . , xFL
Li ]>. These features can be further combined by means of a one-layer percep-

tron1 to obtain the final GCNN output. Based on how the perceptron is implemented,
we have two types of GCNNs:

1. Centralized GCNN. Such an architecture is depicted in Figure 2.5. The one layer
perceptron is defined for the whole graph features, such that it combines the fea-
tures concatenated from all the nodes into the FL×N feature vectorχL = [χ>

L1, . . . ,χ>
LN ]>

to obtain the GCNN output as
ỹ = HFCχL . (2.9)

Here, matrix HFC ∈ RFo×N FL maps the N FL convolutional features χL into the Fo

output features (e.g., the number of classes).

2. Distributed GCNN. Such an architecture is depicted in Figure 2.6. The one-layer
perceptron is defined per node, such that each node i locally combines the fea-
tures χLi to obtain the GCNN output as

ỹi = h>
FCχLi . (2.10)

Here, hFC = [h1, . . . ,hFL ]> is the FL ×1 vector of parameters in the local fully con-
nected layer. Vector hFC is shared among nodes to keep the number of trainable
parameters independent of the graph dimensions (i.e. N and M), but only depen-
dent on the filter order and the number of features and layers. Recall this archi-
tecture is distributable since the graph convolutional filters are distributable [cf.
Section 2.3] and if the activation functions are chosen accordingly.

x = [x1, …, xN]T

σ(·) … Lossσ(·)

Figure 2.5: Centralized GCNN architecture. The input is a graph signal x, which is filtered by a filter bank of
F graph filters [cf. (2.5)] and then passed through an activation function σ(·) (e.g., ReLU). This forms a graph
convolutional layer, which is cascaded L times. The final convolutional features are concatenated for all nodes
and passed to a fully connected layer to compute the final output. This output is used during training the
minimze the loss.

In this thesis, we will focus on the distributed GCNN. However, our findings apply
directly to the centralized GCNN, since only the final fully connected layer differs.

1A multi-layer perceptron can be employed as well.



2.6. GRAPH CONVOLUTIONAL NEURAL NETWORKS

2

15

x = [x1, …, xN]T

σ(·) …

Loss

σ(·)

Figure 2.6: Distributed GCNN architecture. The input is a graph signal x, which is filtered by a filter bank of
F graph filters [cf. (2.5)] and then passed through an activation function σ(·) (e.g., ReLU). This forms a graph
convolutional layer, which is cascaded L times. The final convolutional features are concatenated per node
and passed to a per-node fully connected layer to compute the final output. This output is used during training
the minimze the loss.

By grouping all learnable parameters in set H = {h f g
l ;hFC}l f g , we can consider the

GCNN as a mapΦ(·) that takes as input a graph signal x, a GSO S, and a set of parameters
H to produce the output

Φ(x;S;H ) := ỹ. (2.11)

The output in (2.11) is computed for the training set T . During training, the goal is to
learn representations y of input data x by minimizing the loss over the training set T

L =
|T |∑
r=1

J (yr , ỹ(xr )) (2.12)

where J (·) is the cost function. The generalization ability of the GCNN is tested by apply-
ing the model to unseen graph signals x ∉ T . The choice for the loss function depends
on the problem. For regression, we consider the mean squared error (MSE), whereas for
classification we employ the cross-entropy (CE). The Mean Square Error (MSE) is defined
as

L = 1

|T |
|T |∑

m=1
(ym − ỹ(xm))2. (2.13)

The cross-entropy (CE) for a data sample when considering a problem of C classes is
defined as

Lr =−
C∑

c=1
yr,c l og (pr,c ) (2.14)

where yr,c represents the groundtruth binary indicator of whether the data point xr be-
longs to class c or not, whereas pr,c is the predicted probability by the GCNN of the data
point xr belonging to class c. The cross entropy loss for the entire training set is the
average of the sample cross entropy

L = 1

|T |
|T |∑
r=0

Lr . (2.15)

The loss is minimized w.r.t. parameters H using standard backpropagation with
stochastic gradient descent or any other preferred descent method [24]. This is because
all operations are differentiable [25].



2

16 2. BACKGROUND

2.7. ACTIVATION FUNCTIONS
There are two main directions when it comes to activation functions employed with GC-
NNs: pointwise and localized approaches. In this section, we recall the most popular
nonlinearities used with GCNNs in the literature and discuss their limitations, which
also motivate the research in this thesis. These include the conventional pointwise acti-
vation functions, the pointwise kernel activation functions, and the localized activation
functions [12].

2.7.1. CONVENTIONAL POINTWISE ACTIVATION FUNCTIONS
Pointwise nonlinearities employed in GCNNs are those encountered also in traditional
CNNs, such as the rectified linear unit (ReLU), the Leaky ReLU, the sigmoid, or hyper-
bolic tangent (tanh), which we recall here.

• ReLU. The ReLU activation function, illustrated in Figure 2.7a, is defined as

ReLU(x) = max(0, x). (2.16)

• Leaky ReLU. Compared to ReLU, Leaky ReLU allows for a small, positive gradient
αwhen x < 0. It is shown in Figure 2.7b with slope 0.01. The Leaky ReLU is defined
as

Leaky_ReLU(x) =
{

x, if x > 0.

αx, otherwise, where α indicated the slope.
(2.17)

• Sigmoid. The sigmoid activation function, whose plot is shown in Figure 2.7c, is
defined as

sigmoid(x) = 1

1+e−x = ex

ex +1
. (2.18)

• Tanh. The tanh activation function, shown in Figure 2.7d, is defined as

tanh(x) = ex −e−x

ex +e−x . (2.19)

2.7.2. KERNEL ACTIVATION FUNCTIONS
One recently proposed pointwise activation function is the Kernel Activation Function
(KAF) [11]. The KAF is modeled in terms of a kernel expansion over D terms as

g (x) =
D∑

i=1
αi k(x,di ) (2.20)

where α1, . . . ,αD are the mixing coefficients and represent the linear coefficients of the
kernel expansion; d1, . . . ,dD represent the dictionary elements (i.e. the elements used
for computing the kernel values); k(·, ·) :R→R is an one-dimensional kernel.



2.7. ACTIVATION FUNCTIONS

2

17

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0

2

4

6

8

10

Re
LU

(a)

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0

2

4

6

8

10

Le
ak

y_
Re

LU
(x

)

(b)

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.0

0.2

0.4

0.6

0.8

1.0

sig
m

oi
d

(c)

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

ta
nh

(d)

Figure 2.7: Pointwise Activation Functions defined over the interval [−10,10]. (a) ReLU Activation Function.
(b) Leaky ReLU Activation Function. (c) Sigmoid Activation Function. (d) Tanh Activation Function.

The dictionary elements are fixed and only the mixing coefficients are adapted. More
specifically, the dictionary elements d1, . . . ,dD are obtained by sampling D values uni-
formly around zero, where D is a hyperparameter. Thus, D controls the method flexibil-
ity: the larger D , the higher the model flexibility at the cost of a larger number of param-
eters. Kernel k(·, ·) can be any generic kernel function that satisfies the semi-definiteness
property [26]. That is, for any choice of parameters α1, . . . ,αD and dictionary elements
d1, . . . ,dD , the following inequality needs to be satisfied

D∑
i=1

D∑
j=1

αiα j k(di ,d j ) ≥ 0. (2.21)

The main contribution that KAFs bring to GCNNs is the increased flexibility, as they
allow to model a larger class of shapes by adapting the activation functions themselves
from the training data. By properly choosing the elements of the kernel expansion, each
function can be represented with a small set of linear mixing coefficients, which are
trained together with the weights of the graph convolutional layers through standard
backpropagation.



2

18 2. BACKGROUND

2.7.3. LOCALIZED ACTIVATION FUNCTIONS
Localized activation functions are the first approach focusing on embedding the graph
topology in the nonlinear component of the GCNN [12]. These are implemented by
means of localized graph filters, as defined below.

To start, let us define the localized operator, which represents the building block of
the localized graph filters [12].

Definition 1 (Localized Operator). Let the localized operator f (S,x) be a non-parametric
function that performs a nonlinear aggregation within the neighborhood of each node i ,
induced by the GSO S in the graph G . When applied to a signal x, the output of a localized
operator is a signal z with i th entry

zi = [ f (S,x)]i = f (x j : j ∈Ni ). (2.22)

A localized operator accounts for the neighborhood topology within a graph. For
each node i the information captured by the graph signal x j within its neighborhood Ni

is aggregated by means of any nonlinear aggregation function f (·). Two examples of f (·)
are the median and max functions.

Based on the localized operator, we can define the localized graph filter as follows.

Definition 2 (Localized Graph Filter). Let S be a graph shift operator and consider the
parameter vector h = [h1, . . . ,hK ]> consisting of K elements. The output of the localized
graph filter applied to signal x is the signal

z =
K∑

k=1
hk f (Sk ,x). (2.23)

We can contrast Definition 2 with the graph convolution in (2.5). Contrary to the
graph convolution (2.5), the terms in (2.23) are aggregated nonlinearly by f (·). This func-
tion summarizes at each node the signal within the k-hop neighborhood induced by Sk .

Considering a localized graph filter according to (2.23), a scalar β, and a collection

of filter coefficients [h f
l1, . . . ,h f

lK ] for a layer l of a GCNN, we can replace the activation
function in (2.8) with a localized activation function to obtain the output

x f
l =βReLU(z f

l )+
K∑

k=1
hl k f (Sk ,z f

l ) (2.24)

where K is the maximum neighborhood resolution considered and z f
l are the convolved

features from the l th layer in the network. Localized activation functions can be trained
using backpropagation [12]. An example of how these activation functions operate is
shown in Figure 2.8 for a maximum neighborhood resolution of K = 3.

A limitation of the localized activation functions is that they cannot be implemented
in applications requiring distributed communication. At each node i , information from
the nodes of up to K -hops away is accessed, which is beyond the local accessibility of i .
Hence, in distributed settings, the order K in (2.24) is limited to one. Moreover, localized
activation functions do not account for the edge weights when aggregating the graph



2.8. GRAPH CONVOLUTIONAL NEURAL NETWORKS PROPERTIES

2

19

Figure 2.8: Localized activation functions [12] applied for a maximum neighborhood resolution of K = 3. The
nonlinearity is applied for the node initially highlighted in red. At each step, we show in red the neighborhood
resolution for which the signal is aggregated. Initially, the node’s signal is considered individually, followed
by sequentially accounting for the multiresolution neighborhoods. This is achieved by applying the nonlinear
aggregation in the one-hop, two-hops and, finally, three-hops neighborhoods.

signal within a neighborhood. When building x f
l , they directly access the signal infor-

mation at nodes up to K -hops away, without accounting at all for the signal propagation
along the edges, and, thus, for the contribution of the edge weights in the signals aggre-
gation. To address these limitations, we propose two new activation functions based on
local operators and kernel functions that not only account for the graph structure, but
also incorporate edge weights and can be run distributively.

2.8. GRAPH CONVOLUTIONAL NEURAL NETWORKS PROPERTIES

2.8.1. LEARNABLE PARAMETERS
Depending on the activation function employed, the total number of trainable parame-
ters defining the GCNN varies.

Conventional Pointwise Activation Functions. If conventional pointwise activation
functions are used, the total number of parameters of the GCNN is

∑l=L
l=2 Fl−1Fl (K +1)+

F1(K +1)+FL . This divides as: i ) F1(K +1) parameters for the F1 filters in the first graph
convolutional layer; i i )

∑l=L
l=2 Fl−1Fl (K +1) for the parameters of the Fl−1Fl filters in each

of the remaining L − 1 graph convolutional layers; and i i i ) FL parameters in the final
fully-connected layer.

Kernel Activation Functions. If the kernel activation function is employed, DL ex-
tra parameters are added compared to the conventional pointwise activation functions.
Thus, the total number of parameters of the GCNN is

∑l=L
l=2 Fl−1Fl (K +1)+F1(K +1)+FL+

DL.

Localized Activation Functions. If localized activation functions are employed, (K +
1)L extra parameters are added compared to the conventional pointwise activation func-
tions. Thus, the total number of parameters of the GCNN is

∑l=L
l=2 Fl−1Fl (K +1)+F1(K +

1)+FL + (K +1)L.

2.8.2. PERMUTATION EQUIVARIANCE
The coupling graph filter-activation function embodies the GCNN with the permutation
equivariance property. In simple words, permutation equivariance implies that process-
ing a graph signal with the GCNN is independent of the labeling [12].



2

20 2. BACKGROUND

5

8

6

2

7

1

34
(a)

5

8

6

2

7

1

34
(b)

3

2

4

8

1

7

56
(c)

Figure 2.9: Permutation equivariance property of GCNNs inspired by Proposition 1. Illustrated is a graph with
eight nodes and a signal defined on top of it, where different colors represent different signal values. Nodes
are labeled as integers from 1 to 8. The graph signals in (a) and (b) are different signals on the same graph, but
they are permutations of each other - interchange inner and outer squares in (b) and rotate the graph 180◦ [cf.
(c)]; we observe the same signal in (c) as in (a). The permutation equivariance property, stated in Proposition
1, implies that a GCNN would be capable of classifying the signal in (b) by only seeing examples as in (a).

To start, let us introduce the permutation matrix P. It is a square binary matrix with
exactly one non-zero entry in each row and column. When pre-multiplied with another
matrix it results in permuting the rows of that matrix, whereas post-multiplication per-
mutes the columns. The permutation matrix P is orthonormal, that is PP> = P>P = I.
This implies the inverse matrix exists and satisfies the equality P−1 = P>. Employing the
permutation matrix, we can now introduce next the permutation equivariance property.

Proposition 1 (Permutation Equivariance) Consider a graph signal x defined over the
graph G with associated graph shift operator S. Consider also the GCNN mappingΦ(x;S;H )
with coefficient set H . Given a permutation matrix P, then

Φ(P>x;P>SP;H ) = P>Φ(x;S;H ). (2.25)

That is, the output of the GCNN computed using the mappingΦ(x;S;H ) is equivariant to
permutations.

Proposition 1 shows the output of a GCNN is invariant to node relabeling and, more
importantly, GCNNs exploit graph symmetries to generalize learned representations to
different graph signals that share some of these symmetries. This is a beneficial aspect,
as multiple symmetric signals can be processed by only seeing one instance out of these
during training. An example is graphically depicted in Figure 2.9.

Permutation equivariance is an important aspect to account for when designing ac-
tivation functions for GCNNs and it restricts the family of activation functions that can
be employed. Pointwise activation functions are by definition permutation equivariant.
Thus, GCNNs employing pointwise nonlinearities (i.e., traditional CNNs nonlinearities
and KAFs) preserve the permutation equivariance property and are invariant to node
relabeling. The localized activation functions preserve this property as well, as proved
in [12]. In this thesis, we are concerned with activation functions that make the GCNN
equivariant. When designing the proposed graph-adaptive activation functions, we will
aim to maintain this property.



2.9. CONCLUSION

2

21

2.9. CONCLUSION
In this chapter, we discussed the background material necessary for the research carried
out in this thesis. We introduced basic concepts from graph signal processing, followed
by the graph shift operator, graph filters and their role in graph convolutions. We detailed
next the Graph Fourier Transform and discussed the link between consensus and graph
signal filtering, which we will further exploit in one of the numerical experiments carried
out in this research. Next, we presented GCNNs, as well as different activation functions
employed with GCNNs. Finally, we addressed GCNN properties, such as an overview of
the learnable parameters and the permutation equivariance property.





3
LITERATURE REVIEW

In this chapter, we will provide an overview of the relevant literature for the research car-
ried out in this thesis. We will start with a discussion on existing Graph Neural Network
approaches and their main properties in Section 3.1. In Section 3.2, we will present the
activation functions that have been employed in the literature and discuss their proper-
ties and limitations. Subsequently, in Section 3.3, we will review the relevant literature
regarding distributed signal processing over graphs, with a particular focus on the dis-
tributed finite-time consensus, which we will also address in this thesis.

23



3

24 3. LITERATURE REVIEW

3.1. GRAPH NEURAL NETWORKS

T HE development of neural network architectures that can work with irregular data
has seen an increased interest over the past years. Since these data are best encoded

in graphs, Graph Neural Networks (GNNs) were developed. GNNs were designed to re-
produce the effectiveness that Convolutional Neural Networks (CNNs) and Recurrent
Neural Networks (RNNs) proved to have in processing spatial and temporal data.

The effectiveness of GNNs was demonstrated for the first time in [27] and [28], where
GNNs were implemented as a recursive aggregation of labels over nodes’ neighbors,
combined with pointwise nonlinearities. Their convolutional counterparts, the Graph
Convolutional Neural Networks (GCNNs), consider exploiting graph convolutions [7] to
perform label aggregations and they extend CNNs [29] beyond Euclidean domains, to
the graph domain. We identify different research directions in the literature based on
the methods employed for aggregating the neighboring information. We will further de-
tail the proposed models for each of these categories.

FINITE IMPULSE RESPONSE (FIR) GRAPH FILTERS.
Works in this category use polynomial graph filters to aggregate incoming information
from neighbors. GCNNs were first introduced in [30], where, building on spectral graph
theory, graph convolutions were defined by multiplying feature representations in the
Laplacian eigenspace with trainable kernels. Subsequently, the work in [31] avoids the
cost and numerical instability of spectral decomposition by using FIR graph filters to
combine features in the vertex domain by means of a Chebyshev polynomial [32] on the
Laplacian matrix. The work in [33] follows the same idea but builds a polynomial filter
in any graph representation matrix (e.g., adjacency, Laplacian). The method proposed
in [34] is based on [31] and proposes an order one Chebyshev polynomial to aggregate
information. Specifically, a layer-wise propagation rule is introduced that operates di-
rectly on the graph structure encoded in the neural network model and aggregates the
nodes’ features with their neighbors’ features.

AUTOREGRESSIVE MOVING AVERAGE (ARMA) GRAPH FILTERS.
Works in this category use ARMA graph filters to aggregate neighboring information. The
work in [35] builds a GCNN with distributable ARMA graph filters [9], which capture
a broader family of functions at the expense of computation cost. The authors argue
that ARMA filters are more robust and have a more flexible graph frequency response
than polynomial filters. The work in [36] considers an ARMA GCNN as well, which gen-
eralizes rational functions based on Cayley polynomials [37]. These allow for efficient
computation of spectral filters on graphs [37].

NODE VARYING GRAPH FILTERS.
In this category, we consider the work in [38], which extends CNNs to graph signals by
employing node varying graph filters. To keep the number of parameters independent
of the data size, the authors also introduce hybrid node varying graph filters. These are
implemented by grouping the nodes and using the same filter coefficients for the nodes
belonging to the same group. The node varying graph filters can extract features from
different resolutions by only applying local exchanges at each node.



3.1. GRAPH NEURAL NETWORKS

3

25

ATTENTION MECHANISM.

Parallel to the previously discussed works, a more recent direction in the literature fo-
cuses on combining neighboring information through attention mechanisms. [39] pro-
poses Graph Attention Networks (GATs) that, by leveraging attention-like mechanisms,
address the limitations of priorly discussed methods based on graph convolutions and
their approximations. More specifically, they allow for implicitly assigning different weights
to different neighbors of a node by stacking multiple layers in which nodes can visit their
neighbors’ features. An extension of GATs is provided in [36], where the authors propose
Graph Convolutional Attention Networks (GCATs). Just as GCNNs, these employ convo-
lutional filters, but utilizing a layer-specific matrix that could differ from the graph shift
operator.

EDGE VARYING RECURSIONS AND HYBRID FILTERS.

The work in [36] employs edge varying recursions to propose a generic framework for
GNNs. The authors show that all the aforementioned architectures for GCNNs, as well
as GATs, are equivalent and can be encompassed under the same formulation. They ar-
gue these approaches can be seen as particular cases of edge varying GNNs (EdgeNets),
which are architectures that allow each node to assign different weights to information
coming from different direct neighbors. The authors also propose hybrid approaches
employed using hybrid filters. These are defined as a linear combination between con-
volutional and edge varying filters that only operate based on a subset of nodes.

It is important to highlight that the discussed works capture the data-graph topology
coupling only linearly through graph filters. They ignore the coupling in the nonlinear
pointwise component (e.g., ReLU). We will discuss this limitation in the following section
of this chapter, as well as throughout the research carried out in this thesis.

3.1.1. PERMUTATION EQUIVARIANCE

An essential property of GNNs is permutation equivariance [2, 13, 40]. Permutation
equivariance captures the fact that, as nodes in a graph are naturally unordered, the
GNN output should be unaffected by the ordering. That is, any change happening in the
node ordering should be accompanied by a corresponding reordering of the GNN out-
put. The permutation equivariance property guarantees GNNs’ independence of node
labeling. It also implies that GNNs are capable of exploiting the internal symmetries
present in the graph signals [2, 12]. This means that, by learning how to process a node
with a certain topological neighborhood, GNNs can further generalize to any other node
with the same topological neighborhood.

Depending on the implementation approach, GNNs can preserve or not permuta-
tion equivariance. As discussed in [2], any architecture employing graph convolutional
filters are permutation equivariant. From the GNN approaches discussed previously, the
node varying, edge varying, hybrid edge varying, and some of the architectures employ-
ing ARMA filters (for low Jacobi orders) do not preserve the permutation equivariance
property, as explained in [36].



3

26 3. LITERATURE REVIEW

3.2. ACTIVATION FUNCTIONS IN GRAPH NEURAL NETWORKS
The activation function is an essential component of GNNs and the way it is imple-
mented has an impact on the output. We identify two main research directions in the
literature based on the activation functions employed with GNNs:

1. GNNs with graph-independent pointwise activation functions;

2. GNNs with graph-based localized activation functions.

POINTWISE ACTIVATION FUNCTIONS

The common approach in the GNN literature is to apply traditional CNN pointwise ac-
tivation functions, such as the Rectified Linear Unit (ReLU) [41], the sigmoid [42], or
the hyperbolic tangent (tanh) [43]. In GNNs, these pointwise approaches are applied
locally at each node [31, 34]. Attempting to improve on these traditional pointwise ac-
tivation functions, the authors in [11] investigate more complex pointwise nonlineari-
ties for GCNN that can adapt to the training data. This work proposes kernel activa-
tion functions (KAFs), initially introduced in [26] for GNNs and further extended in [11]
for GCNNs. These are defined as activation functions modeled in terms of a kernel ex-
pansion over a dictionary. The dictionary elements are chosen ahead, such that each
function can be represented with only a set of linear coefficients. These coefficients are
adapted from the data together with the weights of the convolutional layers by means
of backpropagation. KAFs increase the flexibility of GCNNs, as they allow modeling a
larger class of functions by adapting the activation functions themselves from the train-
ing data. However, KAFs are limited when applied to GCNNs because they are applied
individually at each node. Therefore, they ignore the data-graph topology coupling.

While traditional pointwise activation functions and KAFs may be relevant to CNNs,
because in an image or time signal the neighborhoods are always the same, they ignore
that the neighbors and topology can vary significantly from graph to graph. Therefore,
it became essential to design activation functions that account for the underlying graph
topology in the learning process.

LOCALIZED ACTIVATION FUNCTIONS

Addressing the necessity of designing activation functions that can adapt to the graph,
the authors in [12] propose localized activation functions. Besides accounting for the
graph topology, these activation functions are also multiresolution and trainable. This
is achieved by aggregating information incoming from one-hop up to K -hop neighbor-
hoods and assigning different weights to different neighborhood resolutions. Specifi-
cally, the work in [12] introduced two localized activation functions by employing the
maximum and median graph filters [44, 45]. Since the maximum and median graph
filters perform a parametric nonlinear aggregation of the information coming from dif-
ferent neighborhood resolutions, they implicitly capture the graph structure and adapt
to the training data. This is achieved by assigning different weights to different neigh-
borhood resolutions. Moreover, the median and max localized nonlinearities enhance
GNNs by extracting nonlinear features within localized neighborhoods for each node,
extending the linear features extracted through graph convolutions. The localized ac-
tivation functions also preserve the permutation equivariance property of GNNs, pre-
viously discussed in Section 3.1.1. This is important because they preserve the GNNs’



3.3. DISTRIBUTED PROCESSING OVER GRAPHS

3

27

capability of learning features independently of the graph labeling and of exploiting in-
ternal signal symmetries.

While accounting for the graph structure, localized activation functions have two
main limitations. Firstly, when aggregating the graph signal within a neighborhood, they
do not account for the edge weights and treat all nodes equally. By only accounting for
the proximity between nodes, and not for the strength of the connection between them,
localized activation functions ignore the data-graph topology coupling. Secondly, in-
formation from multiresolution neighborhoods is aggregated by directly accessing the
signal value at the multi-hop neighbors. This means that when the neighborhood res-
olution is higher than one, each node in the graph accesses information that is not lo-
cally available. Thus, localized activation functions are not distributable beyond one-
hop neighborhoods. When employed in distributed applications, these miss relevant in-
formation from far away neighbors, which is essential in capturing both local and global
details during learning.

3.3. DISTRIBUTED PROCESSING OVER GRAPHS
Data generated by nodes in network applications such as robot swarms [46], sensor net-
works [47–49], or multi-agent control [14, 15, 18] need to be processed distributively, as
the nodes do not always have access to a central processing unit. This is due to different
limitations, such as privacy concerns or limited communication resources. Thus, these
data have to be processed locally in the network. Different approaches can be identi-
fied in the literature when addressing distributed processing over graphs dealing with
different applications. However, lately, graph signal processing (GSP) [7, 21] has become
a popular tool in addressing distributed processing over graphs, mainly through graph
filters. It is important to note that these are linear methods and, thus, they cannot cap-
ture the nonlinear relations in the data. Only recently, learning based methods have been
proposed. Next, we will review the works employing GSP in distributed applications over
graphs, based on graph filters, as well as recent works employing GNNs.

In [50], the authors study how graph filters can be used to implement network lin-
ear operations in a distributed fashion, such that each node in the network needs to
exchange a finite number of messages with its direct neighbors. The investigation is car-
ried out within the framework of shift-invariant graph filters. Their framework is applied
to the problem of finite-time consensus. Moreover, the work in [10] further studies the
optimal design of graph filters to implement arbitrary linear transformations between
graph signals. The authors argue that, since the graph filters capture the graph struc-
ture by employing the graph shift operator, they naturally give rise to distributed linear
network operators. The authors demonstrate the relevance of their research in the field
of distributed applications by addressing the finite-time consensus and analog network
coding problems. The work in [8] proposes a method for distributing the application
of unions of graph multiplier operators, which are linear operators for processing graph
signals. Specifically, the authors propose approximating the graph multipliers by using
shifted Chebyshev polynomials. They show that several distributed signal processing
tasks can be represented as distributed applications of unions of graph multiplier oper-
ators, such as semi-supervised learning, smoothing, denoising, or inverse filtering.

Another approach to distributed graph signal processing tasks is employing infinite



3

28 3. LITERATURE REVIEW

impulse response (IIR) graph spectral filters. In [49], the authors propose a family of IIR
graph filters and provide an approach for applying these distributively in the context of
wireless sensor networks. They demonstrate through numerical experiments that IIR
graph filters are more accurate when approximating ideal graph filters and more robust
against network changes than FIR graph filters. Additionally, in [51], the authors intro-
duce the autoregressive moving average (ARMA) graph filters and demonstrate their im-
plementation in a distributed fashion. The ARMA graph filters are further studied in [9]
in the context of distributed graph filtering problems. The authors design a collection of
ARMA recursions, which can approximate any graph frequency response and give exact
solutions in graph signal denoising and interpolation tasks.

To address the communication and computational complexity of distributed imple-
mentation of graph filters, edge-varying graph filters were proposed. Initially introduced
in [52], and later analyzed in [22], these are a generalization of state-of-the-art graph fil-
ters, in which every node in a network weights differently the signal coming from dif-
ferent neighbors. Through numerical experiments covering graph filter approximation,
distributed linear operator approximation, and denoising [22] confirm the benefits of
edge-varying graph filters over existing methods and show their potential for a broader
range of applications, beyond graph filtering. Moreover, the work in [53] introduces a
cascade implementation of the edge varying graph filters to address the numerical sta-
bility issues involved in their design. The authors also propose an algorithm for effi-
ciently learning the filter coefficients. They demonstrate the efficiency of their proposed
approach by experimenting with the distributed finite-time consensus task and achiev-
ing lower communication cost than the existing works in the literature.

More recently, learning based approaches have been proposed in the literature for
addressing distributed processing tasks over graphs. The work in [46] employs an ag-
gregation GNN, initially introduced in [33], for learning distributed controllers to coor-
dinate robot swarms with limited access to communication resources. The aggregation
GNN is extended to time-varying signals and graph topologies to deal with changes in
the robot network over time. Their numerical experiments confirm the importance of
incorporating information incoming from multi-hop neighbors in a distributed fashion
to ensure good performance and robustness. In [54], the authors propose a distributed
learning model that is robust to link losses in distributed settings. Specifically, they intro-
duce a stochastic GNN (SGNN) model in which the distributed graph convolutional op-
erator is implemented using random graph filters [55] and it accounts for link losses dur-
ing training. Their numerical results, addressing distributed source localization, show an
improved performance of the proposed SGNN compared to the traditional GNN model.
Moreover, [56] puts forward an architecture applicable to distributed online learning
scenarios, the Wide and Deep Graph Neural Network (WD-GNN), and implements a dis-
tributed online learning algorithm. The numerical experiments focus on learning a de-
centralized controller for robot swarm coordination. The results show the potential and
efficiency of the WD-GNN in distributed online learning. Additionally, the authors ana-
lyze the stability of the WD-GNN to changes in the graph topology and demonstrate the
transferability of this model to unseen testing setups in an online, distributed fashion.

As pointed out before and detailed throughout the discussion carried out in this sec-
tion, many approaches present in the literature address the distributed processing over



3.3. DISTRIBUTED PROCESSING OVER GRAPHS

3

29

graphs mostly through graph filters, which are linear methods. Only a few works recently
proposed learning based approaches using GCNNs, which can capture the nonlinear re-
lations in the data. These are, however, limited to a small number of applications. One
of our goals through the research carried out in this thesis is to introduce a nonlinear
data-driven distributed framework, employing graph-adaptive activation functions, to
extend the applicability of GCNNs to more distributed applications over graphs. One
of the tasks that we address is distributed finite-time consensus. We discuss next the
methods proposed in the literature for solving this task.

FINITE-TIME CONSENSUS

Distributed finite-time consensus is a fundamental problem in signal processing, sensor
networks, and multi-agent control [4, 5, 14–18]. This task aims to achieve average con-
sensus among all nodes in a network in finite-time, by accessing only local information
at each node.

A first approach to reach consensus is through distributed iterative solvers, such as
randomized gossip [57] or methods of multiplies [58]. These methods reach consensus
at steady-state, and their convergence rate is dominated by the network topology. A more
recent direction considers reaching consensus within a finite number of iterations and
frames this problem as a graph filtering operation [7].

The first work to formalize finite-time consensus through graph filters is [3]. This
work uses the FIR graph filters and designs the filter coefficients by relying on the spec-
trum of the graph Laplacian matrix. Conditions on when consensus is feasible over a
generic graph are analyzed in [10, 23]. The work in [10] focuses on the optimal design
of graph filters to implement arbitrary linear operators in the distributed setup of finite-
time consensus. The work in [23] analyzes the limits of distributed finite-time consen-
sus by means of graph filters and matrix function theory. The main limitation of these
theoretical contributions is that the filter coefficients depend on the specific eigenval-
ues of the graph Laplacian matrix. The cost of computing the eigendecomposition also
limits their applicability to graphs of small dimensions. The designed filters also suffer
from numerical issues due to the finite-precision of the eigenvalues. Besides the theo-
retical insights, the practical benefit of these works is to approximate better consensus
in a finite number of iterations compared with the other distributed solvers. The fastest
converging filter to reach consensus is the edge varying graph filter [22], which, differ-
ently from the FIRs, exploits also node’s locality and sparsity to enhance the degrees of
freedom. However, the edge varying graph filter requires all nodes to know the labeling
of the graph structure and this structure to be fixed; both assumptions that might be in-
feasible in practical deployments or when the topology changes slightly in distributed
settings (e.g., nodes and links that fall).

In this thesis, we propose a data-driven framework for addressing finite-time consen-
sus with GCNNs, by exploiting the link between consensus, graph convolutional filters,
and GCNNs. We propose a method that is readily distributable if the activation functions
employed allow for a distributed implementation.



3

30 3. LITERATURE REVIEW

3.4. DISCUSSION
In this chapter, we provided an overview of the relevant literature related to the topics
discussed in this thesis. In Section 3.1, we discussed the extension of neural network
models to data defined in irregular domains (graphs) and presented the different ap-
proaches for implementing GNNs and their convolutional counterparts. We also high-
lighted that all approaches discussed capture the coupling between the data and the
graph topology only in the linear component through the graph filters, while this cou-
pling is ignored in the nonlinear component. In Section 3.1.1, we discussed permuta-
tion equivariance, a property of GNNs that guarantees independence on node labeling
and allows GNNs to exploit internal graph symmetries. Subsequently, in Section 3.2, we
identified the two main directions for the activation functions employed in the existing
GNN literature, namely the pointwise approach and the localized approach. The point-
wise activation functions include the traditional ReLU, sigmoid, and tanh, as well as the
activation functions via kernel transforms. More recently, localized activation functions
have been proposed to account for the graph topology, which pointwise solutions ignore.
Finally, in Section 3.3, we provided an overview of the different approaches dealing with
distributed processing of graph signals. The majority of works in this area are based on
graph filtering approaches and only a few focus on applying GNNs to distributed graph
signal processing tasks. We further reviewed in Section 3.3 the literature dealing with
finite-time consensus, a central problem in distributed signal processing. Current works
propose a graph filtering based approach and, to the best of our knowledge, distributed
finite-time consensus is addressed from a GNN perspective in this thesis for the first
time.

In this thesis, we address the design of an activation function that is both graph-
adaptive and allows for a distributed implementation, while preserving the permutation
equivariance property of GNNs. The proposed method is different from pointwise ap-
proaches in the sense that it captures the graph topology in the nonlinear component
of the GNN, thus accounting for the variations in the neighborhood structures. The
proposed method also improves on localized activation functions by considering the
edge weights in the graph and implicitly accounting for the data-graph topology cou-
pling. Moreover, in designing the graph-adaptive activation functions, we will research
the possibilities of embedding the graph structure in the nonlinear component of GNNs
in a form akin to graph convolutions. This will allow the graph-adaptive nonlineari-
ties to operate only within one-hop neighborhoods. Thus, unlike localized activation
functions, the proposed method can be implemented distributively while capturing in-
formation from arbitrarily large neighborhoods. This allows us to further design a new
GNN framework that accounts for the data-graph coupling also in the nonlinear compo-
nent and that is distributable, so we can employ it in distributed graph processing tasks.
Thus, we can improve on the existing literature by tackling these tasks from a learning
perspective and capturing the nonlinear relations in the data.



4
GRAPH-ADAPTIVE ACTIVATION

FUNCTIONS

This chapter contains the core contribution of the thesis. In essence, we propose a new
family of nonlinearities that account for the data-graph topology coupling in a form akin
to graph convolutions. This allows for capturing information incoming from arbitrarily
large neighborhood resolutions, while applying the nonlinear operator only in the one-
hop neighborhood of a node. These nonlinear features are subsequently combined with
a set of trainable parameters to weight the information at different neighborhood res-
olutions accordingly. The resolution radius is a design parameter and allows adapting
the GNN nonlinear component to the task at hand. First, in Section 4.1 we define the
graph-adaptive localized activation functions, which are based on arbitrary nonlinear
operators. Then, in Section 4.2, we define the graph-adaptive kernel activation func-
tions. Finally, in Section 4.3 we discuss properties of the proposed graph-adaptive acti-
vation functions and prove these are permutation equivariant.

31



4

32 4. GRAPH-ADAPTIVE ACTIVATION FUNCTIONS

4.1. GRAPH-ADAPTIVE LOCALIZED ACTIVATION FUNCTIONS
To start, let us first define the basic building block for graph-adaptive activation func-
tions: the shifted localized operator (SLO).

Definition 3 (Shifted Localized Operator) Let G be an N -node graph with shift opera-
tor S, x a signal, and Sk x the kth shifted signal. Consider an arbitrary nonlinear local-
ized function f (·,Ni ) :RN →RN , which at node i computes the local nonlinear operation
[ f (x,Ni )]i = f ({x j } j∈Ni ) w.r.t its neighbors Ni . The k-hop shifted localized operator maps
input x to output z ∈RN as

zi = [ f (Sk x,Ni )]i = f ({[Sk x] j : j ∈Ni }), for i = 1, . . . , N . (4.1)

That is, the SLO shifts the signal k times to obtain Sk x, and then replaces the value of this
signal at each node i by a nonlinear aggregation f (·,Ni ) of the signal values within the
one-hop neighborhood of i , Ni . The SLO utilizes information locally available at each
node to account for the signal-topology coupling for nodes that are k-hops away. For the
choice of f (·,Ni ) any nonlinear aggregation function can be applied. In this thesis, we
employ the max and median operators, defined next.

Shifted Localized Max Operator. Let G be an N -node graph with shift operator S, x a
signal, and Sk x the kth shifted signal. Consider also the one-hop neighborhood of a
node i , Ni , for 1 ≤ i ≤ N . The k-hop shifted localized max operator maps input x to
output z ∈RN as

zi = [max(Sk x,Ni )]i = max({[Sk x] j : j ∈Ni }), for i = 1, . . . , N . (4.2)

Shifted Localized Median Operator. Let G be an N -node graph with shift operator S, x
a signal, and Sk x the kth shifted signal. Consider also the one-hop neighborhood of a
node i , Ni , for 1 ≤ i ≤ N . The k-hop shifted localized median operator maps input x to
output z ∈RN as

zi = [median(Sk x,Ni )]i = median({[Sk x] j : j ∈Ni }), for i = 1, . . . , N . (4.3)

Figure 4.1 illustrates the application of the shifted localized max and median opera-
tors. These are employed to aggregate a kth shifted signal within the one-hop neighbor-
hood of a node.

Based on the SLO, we can now define shifted localized graph filters as follows.

Definition 4 (Shifted Localized Graph Filter) Consider the shifted localized operator in-
duced by an arbitrary nonlinear localized function f (·,Ni ) [cf. Def. 3], and let hσ =
[hσ1, . . . ,hσK ]> be a vector of parameters. The output of the shifted localized graph filter
applied to signal x, w.r.t. the shift operator S, is the signal z ∈RN with i th entry

zi =
K∑

k=1
hσk [ f (Sk x,Ni )]i , for i = 1, . . . , N . (4.4)



4.2. GRAPH-ADAPTIVE KERNEL ACTIVATION FUNCTIONS

4

33

i

1

2

1

5

4

2 i

5
max(·)

(a)

i

1

2

1

5

4

2 i

2
median(·)

(b)

Figure 4.1: Illustration of applying the shifted localized max operator [cf. (4.2)] and shifted localized median
operator [cf. (4.3)]. Both operators are applied for node i (highlighted in red) to aggregate the kth shifted signal
values within its one-hop neighborhood (highlighted in light red). (a) Aggregation of the one-hop neighbor-
hood signal of node i by employing the shifted localized max operator [cf. (4.2)]. (b) Aggregation of the one-hop
neighborhood signal of node i by employing the shifted localized median operator [cf. (4.3)].

Definition 4 implies the output of a shifted localized graph filter is a linear combi-
nation of the SLOs f (·,Ni ) at different resolutions. Hence, shifted localized graph filters
inherit the localization property of SLOs, as they incorporate the graph structure up to
K -hops away accessing only neighboring information. These nonlinear filters can be
employed to define graph-adaptive localized activation functions.

Definition 5 (Graph-Adaptive Localized Activation Function) Consider a scalar β and

vector hσ = [h f
σl1, . . . ,h f

σlK ]> of learnable parameters. At layer l , the graph-adaptive lo-

calized activation function maps the linear features z f
l [cf. 2.7] to the output features x f

l
following the recursion

[x f
l ]i =βReLU([z f

l ]i )+
K∑

k=1
h f
σl k [ f (Sk z f

l ,Ni )]i , for i = 1, . . . , N . (4.5)

Definition 5 combines the pointwise ReLU nonlinearity and the shifted localized
graph filters [cf. Def. 4] into a single graph-adaptive localized nonlinearity for GNNs. The
latter is distributable and localized because, even though the resolution —given by the
shift order K— can be arbitrarily large, the SLO f (·,Ni ) [cf. Def. 3] operates only in the
one-hop neighborhood. In Chapter 4, we evaluate this activation function for f (·,Ni )
being the max and median, leading to the graph-adaptive max activation function and
graph-adaptive median activation function, respectively.

4.2. GRAPH-ADAPTIVE KERNEL ACTIVATION FUNCTIONS
The graph-adaptive kernel activation functions replace the localized nonlinear function
f (·,Ni ) by a localized kernel to increase the flexibility of the graph-adaptive nonlineari-
ties and enrich their representation power.

Let x(k)
i ∈ R|Ni | denote the vector containing |Ni | copies of the kth shifted signal at

node i , [Sk x]i , i.e. x(k)
i = 1|Ni | ⊗ [Sk x]i where 1|Ni | is the vector of ones of dimension

|Ni | and ⊗ the Kronecker operator. Consider also the vector containing the values at



4

34 4. GRAPH-ADAPTIVE ACTIVATION FUNCTIONS

neighbors j ∈ Ni of the kth shifted signal Sk x, i.e. x(k)
j∈Ni

= [Sk x] j∈Ni . With this notation

in place, we define a graph kernel operator as follows.

Definition 6 (Kernel Operator) Let G be an N -node graph with shift operator S, x a sig-
nal, and Sk x the kth shifted signal. Consider an arbitrary kernel function g (·,Ni ) :R|Ni | →
R|Ni |, which at node i computes the nonlinear local operation [g (x,Ni )]i = g (x̃i ,x j∈Ni ),
where x̃i = 1|Ni | ⊗ [x]i is a vector of dimensionality |Ni | containing copies of signal x at
node i . The k-hop shifted kernel operator mapping from x to z ∈RN has the entries

zi = [g (Sk x,Ni )]i := g (x(k)
i ,x(k)

j∈Ni
), for i = 1, . . . , N . (4.6)

Definition 6 shows the kernel operator first shifts the input signal x as Sk x and then re-
places the signal value at each i by the kernel value g (·,Ni ) in the one-hop neighbor-
hood of i . Thus, the kernel operator employs only local information at each node to
account for the signal-topology coupling up to k-hops away from a node. For the choice
of g (·,Ni ) any generic kernel function can be applied. In this thesis, we will employ the
Gaussian kernel, defined as

g (x,y) = exp
(−||x−y||2/2γ2) (4.7)

where scalar γ is tunable. For more possibilities to implement the kernel function, we
refer the reader to Appendix A.

Based on the kernel operator, we can now define kernel graph filters as follows.

Definition 7 (Kernel Graph Filter) Consider a kernel operator [cf. 6] with kernel func-
tion g (·,Ni ) and let hσ = [hσ1, . . . ,hσK ]> be a vector of parameters. The output of the
kernel graph filter applied to signal x, w.r.t. the shift operator S, is the signal z ∈ RN with
i th entry

zi =
K∑

k=1
hσk [g (Sk x,Ni )]i , for i = 1, . . . , N . (4.8)

Definition 7 implies the output of the kernel graph filter is a linear combination of the
kernel operator g (·,Ni ) applied to different resolutions. Kernel graph filters thus pre-
serve the localization properties of kernel operators, i.e., they account for the topology
of the graph up to K -hops away accessing only information in the one-hop neighbor-
hood. These kernel graph filters can be further employed to define the graph-adaptive
kernel activation function as follows.

Definition 8 (Graph-Adaptive Kernel Activation Function) Consider a scalarβ and vec-

tor hσ=[h f
σl1, ...,h f

σlK ]> of learnable parameters. At layer l , the graph-adaptive kernel ac-

tivation function maps the linear features z f
l [cf. (2.7)] to the output features x f

l following
the recursion

[x f
l ]i =βReLU([z f

l ]i )+
K∑

k=1
h f
σlk [g (Sk z f

l ,Ni )]i , for i = 1, . . . , N . (4.9)

Definition 8 combines the pointwise ReLU and kernel graph filters [cf. Def. 7] into a sin-
gle graph-adaptive kernel activation function. This activation function is distributable
and localized because, even though the resolution —given by the shift order K — can be
arbitrarily large, the kernel g (·,Ni ) operates only in the one-hop neighborhood.



4.3. PROPERTIES OF GRAPH-ADAPTIVE ACTIVATION FUNCTIONS

4

35

In the proposed graph-adaptive localized and kernel activation functions, coeffi-
cients {β,hσ} are trainable, meaning these nonlinearities adapt the multi-hop resolu-
tion weights to the task at hand. Because these coefficients are shared among nodes,
the number of parameters to learn for a graph-adaptive activation function is indepen-
dent of the graph size. This allows GCNNs to scale. Note that even though the nonlinear
functions f (·,Ni ) or the kernel functions g (·,Ni ) act only on the one-hop neighborhood,
they are applied to the shifted signals Sk x. Therefore, they account for the feature-graph
coupling (up to K -hops away) in a nonlinear fashion. This is an advantage over tradi-
tional GCNNs with pointwise nonlinearities, in which the graph topology is only incor-
porated through linear encodings generated by graph convolutions. Moreover, since the
graph-adaptive nonlinearities only operate on the one-hop neighborhood, they allow
for a distributed implementation, unlike the localized nonlinearities proposed in [12].
An example of how the graph-adaptive activation functions operate is shown in Figure
4.2. We use a maximum neighborhood resolution of three-hops to highlight the differ-
ence with the localized nonlinearities illustrated before in Figure 2.8.

Figure 4.2: Graph-adaptive activation functions applied for a maximum neighborhood resolution of three-
hops. The nonlinearity is applied for the node initially highlighted in red. The signal-graph topology coupling
within multiresolution neighborhoods is captured by diffusing the graph signal (illustrated with the red arrows)
prior to the nonlinear aggregation. The latter is only applied in the one-hop neighborhood (illustrated in red),
while also incorporating information from further away neighbors (illustrated in pink).

Definitions 5 and 8 implement fully graph-adaptive GCNNs that, at each layer, apply
a graph convolution followed by a graph-adaptive activation function. The distributed
GCNN is given by the map

Φ(x;S,H ,W ) := ỹ (4.10)

which depends on both the coefficients H [cf. (2.11)] and on the activation function

coefficients W = {h f
σl }l f ∪ {β}.

4.3. PROPERTIES OF GRAPH-ADAPTIVE ACTIVATION FUNCTIONS

4.3.1. LEARNABLE PARAMETERS

If graph-adaptive activation functions are employed, (K +1)L extra parameters are added
compared to the conventional pointwise activation functions, discussed in Section 2.8.1.
This divides as: i ) parameter β; i i ) K parameters in vector hσ. Thus, the total number of
parameters of the GCNN employing graph-adaptive activation functions is

∑l=L
l=2 Fl−1Fl (K+

1)+F1(K +1)+FL + (K +1)L.



4

36 4. GRAPH-ADAPTIVE ACTIVATION FUNCTIONS

4.3.2. PERMUTATION EQUIVARIANCE
A key property GCNNs with pointwise activation functions inherit from graph convolu-
tions is permutation equivariance [12]. The output of a GCNN is invariant to node re-
labeling and, more importantly, GCNNs exploit graph symmetries to generalize learned
representations to different graph signals that share some of these symmetries. Herein,
we show that permutation equivariance also holds for graph-adaptive nonlinearities.

Permutation equivariance. Consider the graph convolutional filter H(S) [cf. (2.5)] and
let P be an N ×N permutation matrix satisfying P>P = PP> = I. If we permute the GSO
S and input x respectively as S′ = P>SP and x′ = P>x, we get the corresponding graph
convolution output

y′ = H(S′)x′ = H(P>SP)P>x = P>H(S)PP>x = P>y . (4.11)

Because pointwise activation functions are scalar and by definition permutation equiv-
ariant, (4.11) implies GCNNs with pointwise nonlinearities are invariant to node relabel-
ings. For GCNNs with graph-adaptive activation functions, it is then desirable to retain
this property. This is guaranteed by the following proposition.

Proposition 2 (Permutation equivariance) Consider a graph signal x defined on an N -
node graph G with GSO S . Let Φ(x;S,H ,W ) be the output of a GCNN with graph-
adaptive activation functions [cf. (4.10)] and let P be an N ×N permutation matrix. The
GCNNΦ(x;S,H ,W ) satisfies

Φ(P>x;P>SP,H ,W ) = P>Φ(x;S,H ,W ) (4.12)

i.e., GCNNs with graph-adaptive activation functions are permutation equivariant.

Next, we will prove the permutation equivariance property of GCNNs employing our
proposed graph-adaptive activation functions.

Proof of Prop. 2.
Let S′ = P>SP be the permuted shift operator and x′ = P>x the permuted graph sig-

nal. From (4.11), the output of the graph convolution is equivariant to the action of P.
Hence, we only need to prove permutation equivariance of the graph-adaptive activa-
tion functions in (4.5) and (4.9). We write their output as the signal z with entries

zi =βReLU([x]i )+
K∑

k=1
hσk [g (Sk x,Ni )]i (4.13)

where g (·,Ni ) denotes either a shifted localized operator [cf. Def 3] or a kernel operator
[cf. Def. 6]. Applying the activation functions in (4.13) to the permuted signal x′, we
obtain

z′i =βReLU([P>x]i )+
K∑

k=1
hσk [g ((P>SP)k P>x,Ni )]i . (4.14)

Since the ReLU activation function is pointwise, it is permutation equivariant, i.e. ReLU(P>x) =
P>ReLU(x). We then focus on the second term of the sum, where we observe that

(P>SP)k = P>SPP>SP...P>SP = P>Sk P.



4.4. CONCLUSION

4

37

This implies
(P>SP)k P>x = P>Sk x.

We can rewrite z′ as

z′i =β[P>ReLU(x)]i +
K∑

k=1
hσk [g (P>Sk x,Ni )]i . (4.15)

Because function g (·,Ni ) is localized, it acts on the one-hop neighborhoods of each
node, which are preserved under node relabelings. Therefore, g (·,Ni ) is permutation
equivariant and (4.15) becomes

z′i =β[P>ReLU(x)]i +
K∑

k=1
hσk [P>g (Sk x,Ni )]i

= [P>βReLU(x)]i +
[

P> K∑
k=1

hσk g (Sk x,Ni )
]

i
.

Therefore z′ = P>z and, hence, GCNNs with graph-adaptive activation functions are per-
mutation equivariant. ä

4.4. CONCLUSION
To summarize, we proposed a new family of graph-adaptive activation functions that
can be implemented distributively and are defined in terms of nonlinear operators or
kernel functions. When the nonlinear operator is employed, the signal value at each
node is replaced by a nonlinear aggregation of the signal values within that node’s one-
hop neighborhood. In the case of the kernel operator, a kernel function is applied within
the one-hop neighborhood of each node. These graph-adaptive activation functions in-
corporate the signal-graph topology coupling into all the GCNNs components. The latter
is achieved by combining the aggregated nodal features with a set of trainable parame-
ters in a form akin to convolutions in the GCNN nonlinear component. We also proved
that whether in the direct or kernel form, these graph-adaptive activation functions al-
ways preserve the permutation equivariance property of GCNNs. Next, we will assess
and compare our proposed activation functions with established state-of-the-art GCNN
nonlinearities.





5
NUMERICAL EXPERIMENTS

In this chapter, we will describe the numerical experiments and results carried out for
evaluating the performance of our proposed graph-adaptive activation functions. More
specifically, we consider three experimental tasks: source localization in Section 5.2,
where the task is to identify the source community of a graph diffusion process after
an unknown number of timestamps; distributed finite-time consensus in Section 5.3,
which consists in employing a GCNN to achieve consensus among all nodes in a graph
in finite-time; distributed regression in Section 5.4, where GCNNs are applied for dis-
tributed signal denoising. We conclude this chapter with a discussion in Section 5.5.

39



5

40 5. NUMERICAL EXPERIMENTS

5.1. OVERVIEW
We evaluate the performance of six activation functions that include: ReLU, localized
activation functions (max and median) [12], and our proposed graph-adaptive localized
(max and median) and graph-adaptive kernel activation functions. Our goal is to high-
light the benefits and limitations of the different nonlinearities in applications requiring
distributed computations with synthetic and real data. The synthetic data employed in
our numerical experiments are generated using a Stochastic Block Model (SBM) graph,
which we introduce next.

5.1.1. STOCHASTIC BLOCK MODEL
SBM is a random graph characterized by some community structure. A community is
a clustered set of nodes that share some degree of similarity. Communities are built
by assigning a higher probability to edges drawn within each community rather than
between communities. An SBM graph is, thus, defined by the following parameters:

• Number of nodes N ;

• The community sets of nodes C1, . . . ,CR , where R denotes the total number of
communities;

• Probability of randomly drawing an edge within a community p;

• Probability of randomly drawing an edge between communities q .

Based on these parameters, each edge is sampled randomly to generate an instance
of the SBM graph. A realization of an SBM graph is shown in Figure 5.1 composed of
three communities. Throughout our experiments, we vary the SBM parameters to test
the generalization ability of our activation functions.

Figure 5.1: Stochastic Block Model (SBM) graph with three communities, each consisting of ten nodes. Each
community is depicted in a different color. The inter-community edges are shown in gray.



5.2. SOURCE LOCALIZATION

5

41

5.2. SOURCE LOCALIZATION

5.2.1. PROBLEM DEFINITION

Source localization is a classification problem aiming at identifying the source com-
munity of a graph diffusion process after an unknown number of timestamps. For-
mally, consider an SBM graph G = (V ,E ) with R communities C1, . . . ,CR , as discussed
in Section 5.1.1. At timestamp t = 0 the graph signal x(0) is a Kronecker delta signal
x(0) = δi ∈ RN centered at a source node i . That is, x(0) has a non-zero value only at
node i belonging to community C j , where 1 ≤ j ≤ R. As the timestamp t increases up
to tmax, x(t ) is diffused over the graph by successive application of the GSO S, that is,
x(t ) = Sx(t−1). The GSO S is the adjacency matrix A normalized by the highest eigenvalue
λmax to avoid numerical instabilities, i.e., S = A

λmax
. Given the graph signal x(t ) at an un-

known diffusion timestamp t , we aim to identify the community C j containing the node
i that originated the initial graph signal x(0). This task is illustrated in Figure 5.2.

S S
. . . 

t

C3

C2

C1
C1

C2

C3

Figure 5.2: Example of the source localization problem. The initial signal x(0) is denoted in the left SBM graph,
where the node in red denotes a signal value of one. The rest of the signal values are zero. After applying the
GSO S for an unknown number of timestamps t , we observe the graph signal x(t ) denoted on the SBM graph
on the right. Different colors denote different graph signal values. The goal of the source localization problem
is to identify the community that generated the signal observed in the right. In this example, the community
is C3.

Formally, we define the source localization problem as follows

x(t ) Φ(·),G−−−−→C j .

That is, we want to learn Φ(·) that maps a graph signal x(t ) observed at an unknown
timestamp t to the community that originated it, C j , by exploiting the structure of the
graph G .

We considered the source localization problem both in a distributed and centralized
scenario. In a distributed scenario, localized activation functions [12] are limited to a
filter order of one. Thus, we employed the centralized scenario to compare the perfor-
mance of our proposed graph-adaptive activation functions with the localized ones up
to higher filter orders. More specifically, our research questions for this experiment were:



5

42 5. NUMERICAL EXPERIMENTS

RQ.1 How do the graph-adaptive activation functions compare with the localized acti-
vation functions in a centralized scenario for different filter orders K ?

RQ.2 How do the graph-adaptive activation functions perform when we consider the
source localization problem in a distributed scenario for different filter orders K ?

5.2.2. EXPERIMENTAL SETUP
We employ a different experimental setup for the two scenarios, namely the centralized
and distributed classification. This is because, for each experiment, we considered the
experimental scenarios introduced by other works in the literature. We will detail the
setup for each of the experiments below. For both scenarios, we employed the classifi-
cation accuracy as the evaluation metric. Additionally, to train the parameters, we con-
sidered the ADAM optimiser with learning rate 10−3 and forgetting factors β1 = 0.9 and
β2 = 0.999.

CENTRALIZED SOURCE LOCALIZATION

For this experiment, we employed the experimental scenario in [33]. Specifically, we
considered a diffusion process over an SBM graph of N = 100 nodes divided into R = 5
communities. The results we report correspond to intra-community probability p = 0.8
and inter-community probability q = 0.1 for the SBM graph. For additional results cor-
responding to (p, q) ∈ {(0.8,0.2), (0.7,0,1)}, we refer the reader to Appendix B. We varied
the graph connectivities because we wanted to compare the performance of our pro-
posed graph-adaptive activation functions to pointwise and localized activation func-
tions for different graph structures. That is, graphs in which the nodes within the same
community are more connected or less connected and in which different communities
are more clearly or less clearly separated. The graph signals were defined as Kronecker
deltas δi ∈ RN centered at a source node i and diffused at a timestamp t ∈ [0,30], i.e.
x(t ) = Stδi . We chose as source node each of the 100 nodes, generating a data set con-
sisting of 3000 graph signals. We split these samples into training, validation, and test
set respectively as 80%, 10%, and 10%. We simulated 10 different graphs and generated
10 different splits per graph to account for the stochasticity in the setup. We consid-
ered a two layer centralized GCNN, as shown in Figure 2.5, with F = 5 features per layer
and filters of order K = 5. Training was performed for 800 epochs with a batch size of
100 samples. For the localized nonlinearities in [12] and our proposed graph-adaptive
nonlinearities, we evaluated resolutions K ∈ {1,2,3}.

DISTRIBUTED SOURCE LOCALIZATION

For this experiment, we employed the experimental scenario in [54]. We considered a
diffusion process over an SBM graph of N = 50 nodes divided into R = 5 communities.
The goal is to determine the source community of a given diffused signal locally at a se-
lected node; hence, the distributed implementation is essential. The intra-community
and inter-community probabilities for the SBM graph are p = 0.8 and q = 0.1, respec-
tively. The graph signals were defined as Kronecker deltas δi ∈ RN centered at a source
node i and diffused at a timestamp t ∈ [0,30], i.e. x(t ) = Stδi . We chose as source node
each of the 50 nodes, thus generating a data set consisting of 1500 graph signals. We split
these samples into training, validation, and test set respectively as 80%, 10%, and 10%.



5.2. SOURCE LOCALIZATION

5

43

We simulated 10 different graphs and generated 10 different splits per graph, to account
for the stochasticity involved in generating the graph. The training and testing were per-
formed for the highest connected node for each community, resulting in five nodes. We
considered a two layer distributed GCNN, as shown in Figure 2.6, with a varying number
of features per layer, F ∈ {2,4,8}, followed by a per-node fully connected layer. Training
was performed for 800 epochs with a batch size of 100 samples. For the localized non-
linearities, we considered K = 1, while for the graph-adaptive nonlinearities, we carried
out the experiments with resolutions K = 1 and K = 2.

5.2.3. RESULTS

CENTRALIZED SOURCE LOCALIZATION

In this section, we present the results for the centralized source localization experiments.
Only the results for the best performing experimental scenario are discussed. These
are achieved when the communities are highly intra-connected and clearly separated,
specifically for p = 0.8 and q = 0.1. Additional results are provided in Appendix B.

Table 5.1 shows the accuracies averaged across 100 runs (10 graphs with 10 splits
each), together with their associated standard deviations. In Figure 5.3, we show the
respective performances with a boxplot.

Table 5.1: Centralized Source Localization Test Accuracy. Graph generated with 0.8 intra-community and 0.1
inter-community edge probabilities. L.: localized nonlinearities [cf. (2.24)]; G.A.: graph-adaptive nonlineari-
ties [cf. (4.5) and (4.9)]. Between brackets the filter order K is specified. In boldface we show the best perfor-
mance for each family of nonlinearities.

Activation Function Average Accuracy Standard Deviation
ReLU 68.9% 14.6
Max L. (1) 82.1 % 4.9
Max L. (2) 81.3 % 4.8
Max L. (3) 82.0 % 3.8
Max G.A. (1) 80.8 % 3.8
Max G.A. (2) 79.5% 4.4
Max G.A. (3) 79.8% 4.5
Median L. (1) 82.0% 4.8
Median L. (2) 82.2% 4.7
Median L. (3) 82.6% 4.1
Median G.A. (1) 81.5% 4.3
Median G.A. (2) 80.9% 4.0
Median G.A. (3) 81.9% 3.8
Kernel G.A. (1) 77.5% 3.7
Kernel G.A. (2) 76.4% 4.2
Kernel G.A. (3) 76.6% 4.2

As we can observe both in Table 5.1 and in Figure 5.3, all the activation functions
except ReLU have similar performances. They show an increase in the classification ac-
curacy of at least 7% over ReLU. The lower test accuracy of ReLU, as well as the much



5

44 5. NUMERICAL EXPERIMENTS

ReLU
Max L. (1)

Max G.A. (1)
Median L. (3)

Median G.A. (3)

Kernel G.A. (1)

Activation Function

20

30

40

50

60

70

80

90

Ac
ur

ac
y

Figure 5.3: Boxplots illustrating the test accuracy of the different activation functions for the centralized source
localization problem. For our proposed graph-adaptive and for the localized activation functions only the best
performing order is shown. L.: localized nonlinearities [cf. (2.24)]; G.A.: graph-adaptive nonlinearities [cf. (4.5)
and (4.9)]. Between brackets the filter order K is specified.

higher standard deviation (as seen in Table 5.1), results from the two instances when
ReLU fails to learn, as illustrated in Figure 5.3. However, even when not considering
these two occurrences, the performance of the ReLU GCNN is still lower than the GCNN
employing localized and graph-adaptive activation functions. This could be explained
by the fact that ReLU is applied pointwise, failing to account for the underlying graph
topology. Since the graph has clearly separated communities, the neighbors of a node
play an important role in propagating the signal. Therefore, it is essential for the acti-
vation function to capture the signal-graph topology coupling within each node’s neigh-
borhood. These results highlight the importance of accounting for the graph structure
when classifying the different observed graph signals.

Moreover, when comparing the graph-adaptive localized activation functions with
their localized alternatives, we can observe that the order K of applying the shift operator
does not have a significant impact on the performance. These results are shown in in
Figures B.5a and B.5b. When the value of K increases, the performance stagnates or
even decreases. We attribute the latter to the high connectivity within each community,
which could result in further away neighborhoods becoming redundant.

When comparing the maximum and median localized operators, we observe the per-
formance for the maximum activation functions always decreases when K grows larger
than one, compared with K = 1. This could be explained by the fact that the maximum
function is more sensitive than the median to the possible redundancies induced by



5.2. SOURCE LOCALIZATION

5

45

larger neighborhoods. These results are also in line with the findings in [12].

Max L. (1)
Max L. (2)

Max L. (3)
Max G.A. (1)

Max G.A. (2)
Max G.A. (3)

Activation Function

70

75

80

85

90

Ac
ur

ac
y

(a)

Median L. (1)
Median L.(2)

Median L. (3)

Median G.A. (1)

Median G.A. (2)

Median G.A. (3)

Activation Function

70

75

80

85

90

95

Ac
ur

ac
y

(b)

Figure 5.4: Performances of the max activation functions [in (a)] and median activation functions [in (b)] for
the centralized source localization problem. L.: localized nonlinearities [cf. (2.24)]; G.A.: graph-adaptive non-
linearities [cf. (4.5) and (4.9)]. Between brackets the filter order K is specified.

While preserving the performance of localized activation functions, the proposed
graph-adaptive activation functions also bring computational advantages. First, they
can be run distributively, which increases scalability. Additionally, as shown in Figure
5.5, when K grows larger, their computation is faster than in the case of the localized
activation functions. This is because there is no necessity to compute the K -hop neigh-
borhood of each node every time the activation function is applied, as in the case of the
localized activation functions [12]. These findings are also supported by the results in
the additional experiments, shown in Appendix B.

To summarize, the results for the centralized source localization scenario show that
the proposed graph-adaptive activation functions preserve the benefits of the localized
activation functions [12] and significantly outperform pointwise approaches, while bring-
ing computational advantages. Next, we will take full advantage of their implementation
and employ them in a distributed scenario.

DISTRIBUTED SOURCE LOCALIZATION

In this section, we present the results for the distributed source localization experiments.
Table 5.2 shows the classification accuracy for different numbers of features, F ∈ {2,4,8}.
For the graph-adaptive nonlinearities, we carried out the experiments with resolutions
K = 1 and K = 2. Figure 5.6 shows the results for the best performing number of fea-
tures F for each of the nonlinearities. We observe both the localized nonlinearities and
the proposed graph-adaptive nonlinearities significantly outperform ReLU, with a dif-
ference in classification accuracy of at least 8%. As in the centralized source localization
scenario, the lower test accuracy of ReLU and much higher standard deviation (as seen
in Table 5.2), results from the instances when the ReLU GCNN fails to learn, as illustrated



5

46 5. NUMERICAL EXPERIMENTS

M
ax

 L
. (

1)

M
ax

 G
.A

. (
1)

M
ax

 L
. (

2)

M
ax

 G
.A

. (
2)

M
ax

 L
. (

3)

M
ax

 G
.A

. (
3)

M
ed

 L
. (

1)

M
ed

 G
.A

. (
1)

M
ed

 L
. (

2)

M
ed

 G
.A

. (
2)

M
ed

 L
. (

3)

M
ed

 G
.A

. (
3)

Activation Function

0

10

20

30

40

50

60

Ru
nt

im
e 

Pr
op

or
tio

na
l t

o 
Re

LU
 R

un
tim

e

Figure 5.5: Bar plots illustrating the runtime of the max and median graph-adaptive activation functions com-
pared to the max and median localized activation functions for the centralized source localization problem.
The runtimes are raported to ReLU runtime. L.: localized nonlinearities [cf. (2.24)]; G.A.: graph-adaptive non-
linearities [cf. (4.5) and (4.9)]. Between brackets the filter order K is specified.

in Figure 5.6. This could be explained by the fact that, compared to the other nonlinear-
ities, ReLU is applied pointwise, failing to account for the underlying graph topology.
This result highlights the benefits of accounting for the graph topology during classi-
fication. The graph-adaptive max and median activation functions outperform their
localized versions for K = 2, confirming the advantage of accounting for further away
signal-graph topology coupling. The max nonlinearities achieve higher accuracy than
medians in both the localized and graph-adaptive localized nonlinearities. This result
could be caused by the fact that the median will overall smooth the signal, hence under-
mining some local variations important for classification. Additionally, this could also
explain the lower performance of the graph-adaptive kernel nonlinearities compared to
the localized nonlinearities, which may be affected by the possible redundancies in the
extra information coming from neighbors. We also observe that the best performance is
achieved across all activation functions for F = 8 features. This result can be explained
by the increased expressivity power of the GCNN when the number of features increases.

5.3. DISTRIBUTED FINITE-TIME CONSENSUS

5.3.1. PROBLEM DEFINITION
Distributed finite-time consensus aims to achieve consensus among all nodes in finite-
time, by accessing only local information at each node. We formulated distributed finite-
time consensus as a learning problem on graphs. We employed a distributed GCNN with
different activation functions [cf.Figure 2.6] to learn the consensus function in a data-
driven fashion. We compared the GCNNs performance with an FIR filter. Our goal was



5.3. DISTRIBUTED FINITE-TIME CONSENSUS

5

47

Table 5.2: Distributed Source Localization Test Accuracy. L.: localized nonlinearities [cf. (2.24)]; G.A.: graph-
adaptive nonlinearities [cf. (4.5) and (4.9)]. Between brackets the filter order K is specified. In boldface we
show the best performance for each family of nonlinearities.

Nonlinearity/ F 2 4 8
ReLU 46.7(±11.5)% 44.6(±14.7)% 47.1(±13.9)%
Max L. 65.4(±7.7)% 68.5(±7.3)% 71.5(±6.2)%
Max G.A. (1) 65.1(±8.0)% 68.2(±6.5)% 71.2(±5.7)%
Max G.A. (2) 66.9(±8.3)% 69.2(±6.5)% 72.2(±5.8)%
Median L. 62.2(±6.2)% 65.3(±7.5)% 69.6(±7.0)%
Median G.A. (1) 63.5(±7.2)% 66.0(±7.2)% 68.9(±7.4)%
Median G.A. (2) 66.4(±7.6)% 66.7(±7.2)% 71.0(±6.8)%
Kernel G.A. (1) 57.9(±4.5)% 59.1(±6.4)% 60.4(±6.5)%
Kernel G.A. (2) 55.9(±5.1)% 58.4(±6.4)% 58.6(±7.0)%

ReLU
Max L. (1)

Max G.A. (2)
Median L. (1)

Median G.A. (2)

Kernel G.A. (1)

Activation Function

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
ur

ac
y

Figure 5.6: Boxplots illustrating the test accuracy of the different activation functions for the distributed source
localization problem. Only the results for the best performing number of features F is shown. For our proposed
graph-adaptive activation functions only the best performing order is shown. L.: localized nonlinearities [cf.
(2.24)]; G.A.: graph-adaptive nonlinearities [cf. (4.5) and (4.9)]. Between brackets the filter order K is specified.

to highlight the benefits and limitations of the different activation functions and provide
preliminary insights on the GCNN behavior when employed for distributed consensus.
Moreover, we considered the transference of the GCNN to unseen graphs to be essential
for distributed consensus since, in practical scenarios, communication links are prone
to perturbations. Transference properties of the graph filters and the GCNN [cf. (2.11)]
are recently linked with their ability to be robust to perturbations [13, 59]. Therefore,



5

48 5. NUMERICAL EXPERIMENTS

we also focused on investigating this property for consensus. Specifically, the research
questions we aimed to answer are:

RQ.1 What is the impact of the activation function and filter order on the GCNN perfor-
mance?

RQ.2 What is the impact of the graph connectivity when learning the GCNN consensus
function?

RQ.3 What role do the activation functions play when deploying the GCNN on different
graphs?

5.3.2. EXPERIMENTAL SETUP
We considered an undirected stochastic block model (SBM) graph of N = 100 nodes di-
vided into R = 5 communities with intra- and inter-community probabilities p = 0.8
and q = 0.1, respectively. The graph signals were generated from a normal distribution
N (0,I). We generated 2500 samples and split them into 80%, 10%, 10% training, valida-
tion and test sets, respectively. We averaged the performance across 10 different graph
realizations and 10 different data splits for each graph. The GSO was the normalized
adjacency matrix S = A/λmax(A), where λmax(A) is the maximum eigenvalue of the adja-
cency matrix1. The considered architecture was a two layer GCNN with F = 32 features
per layer followed by a per-node fully connected layer. To train the parameters, we em-
ployed the ADAM optimiser with learning rate 0.001 and forgetting factors β1 = 0.9 and
β2 = 0.999 for 400 epochs and batch size of 100 samples. For this task, we also employed
the pointwise kernel activation function in [11], for which we considered the same pa-
rameters as in the original paper. We considered RMSE as the evaluation metric.

5.3.3. NUMERICAL RESULTS

NON-LINEARITY AND FILTER ORDER

We analyzed the different activation functions considering convolution filters of orders
K ∈ {20,25,30,35,40}. Since for consensus we want the filters to approximate a strongly
low-pass transfer function, low filter orders (e.g., K = 1, . . . ,5 as used for classification)
significantly affect the performance. In Figure 5.7, we show the RMSE as a function of
the filter order for the different nonlinearities. All GCNNs achieve a significantly lower
RMSE compared with the FIR graph filter, with the GCNN employing the graph-adaptive
kernel activation function performing the best across all filter orders. For the lowest
order K = 20, ReLU yields a worse RMSE than the localized and graph-adaptive non-
linearities. Once the filter order increases, and thus the degrees of freedom, adding a
parametric nonlinearity seems to be less beneficial because the network has enough de-
grees of freedom in the filter to model the consensus function. These observations sug-
gest that parametric activation functions should be preferred when a GCNN architecture
with non-parametric nonlinearity has low discriminatory power or when the communi-
cation cost is limited.

1We also experimented with the Laplacian as GSO but its performance was consistently worse compared with
the normalized adjacency matrix.



5.3. DISTRIBUTED FINITE-TIME CONSENSUS

5

49

20 25 30 35
Filter Order

10 2

10 3

RM
SE

FIR
ReLU
L. Max
L. Med
G.A. Max K=2
G.A. Med K=2
G.A. Kernel K=2

Figure 5.7: Root mean square error (RMSE) of the GCNNs and FIR graph filters for distributed finite-time con-
sensus as a function of filter order. L.: localized nonlinearities [cf. (2.24)]; G.A.: graph-adaptive nonlinearities
[cf. (4.5) and (4.9)]. K denotes the filter order.

GRAPH CONNECTIVITY

To analyze the impact of the graph connectivity when learning the consensus function,
we evaluated the inter-community edge formation probability in the interval q ∈ [0.05,0.25].
For this experiment, we only considered the best performing architecture from the pre-
vious experiment for each of the different families of activation functions. That is: i )
the max localized activation with a convolutional filter order of 25; i i ) the max graph-
adaptive activation function with filter order K = 2 and convolutional filter order of 30;
i i i ) the kernel graph-adaptive activation function with filter order K = 2 and convolu-
tional filter order of 30. Figure 5.8 shows the results in comparison with the FIR graph
filter and the GCNN with the ReLU nonlinearity for K = 25. For all methods, we ob-
serve a lower RMSE when the communities are better connected. This finding is intu-
itively satisfying for distributed consensus, as the better connected the communities,
the easier nodes get information from further away neighbors. We also see a more sta-
ble trend in the case of the graph-adaptive and localized nonlinearities when compared
to ReLU. This is a sensible finding, as the graph-adaptive and localized activation func-
tions account for the graph structure. Thus, the changes in the graph connectivity reflect
more clearly in their performances. It is also important to note that the graph-adaptive
nonlinearities outperform the other approaches across all the different graph connec-
tivities. This supports the importance of accounting for further away neighborhoods in
distributed scenarios.

ROBUSTNESS

In this last experiment, we analyze the robustness of the different models to link losses by
removing edges with different probabilities, following the random edge sampling model
in [55]. For each method, we considered the best performing order. From the trained
graph G , we randomly removed edges with probabilities in the interval [0.025,0.15]. Fig-



5

50 5. NUMERICAL EXPERIMENTS

0.05 0.10 0.15 0.20 0.25
SBM: inter-community probability

10 2

10 3

RM
SE

FIR
ReLU
L. Max
G.A. Max K=2
G.A. Kernel K=2

Figure 5.8: Root mean square error (RMSE) of the GCNNs and FIR graph filters for distributed finite-time con-
sensus as a function of graph connectivity. L.: localized nonlinearities [cf. (2.24)]; G.A.: graph-adaptive non-
linearities [cf. (4.5) and (4.9)]. K denotes the filter order.

ure 5.9 illustrates the performance averaged over 10 additional realizations. All GCNN
models outperform the FIR. We observe, however, the FIR seems to be less sensitive to
the link losses. The graph-adaptive nonlinearities seem to handle the stochasticity better
than the localized ones, constantly retaining a performance that is equally good or even
better than the localized nonlinearities. The graph-adaptive kernel nonlinearity seems
to be the most sensitive as its performance reaches those of the other graph-adaptive
alternatives, while initially having a significantly lower RMSE.

5.4. DISTRIBUTED REGRESSION

5.4.1. DATA PREPROCESSING
We used the Molene dataset [60], which is an open access dataset published by the
French national meteorological service. The dataset contains hourly temperature mea-
surements across several stations recorded in January 2014 in the area of Brest (France)
for T = 744 hours. The measurements are available for 55 stations, however, the geo-
graphical coordinates are only provided for 46 stations. Since we built the underlying
graph based on the stations’ location, as we will discuss next, we removed from the data
the measurements for the six stations with an unidentified location. For the remaining
46 stations, we checked the number of hours for which the measurements have been
taken. We found out that for 10 stations the temperatures have not been measured for
all the 744 hours (i.e., the total occurrences in the dataset associated with each of those
10 station identifiers was less than 744). To ensure a balanced dataset, we removed the
occurrences of these 10 stations from the data. Finally, four of the remaining stations did
not have the actual value of the measurement recorded. That is, those four stations had
744 entries associated with them in the data, but the actual field containing the mea-
sured temperature was empty. We further removed these stations from the data. After



5.4. DISTRIBUTED REGRESSION

5

51

0.000 0.025 0.050 0.075 0.100 0.125 0.150
Probability of edge removal

10 2

10 3

RM
SE FIR

ReLU
L. Max
L. Med
G.A. Max K=2
G.A. Med K=2
G.A. Kernel K=2

Figure 5.9: Robustness of the GCNNs and FIR graph filters for distributed finite-time consensus as a function
of link-loss probabilities. L.: localized nonlinearities [cf. (2.24)]; G.A.: graph-adaptive nonlinearities [cf. (4.5)
and (4.9)]. K denotes the filter order.

these preprocessing steps, the final dataset consisted of 32 unique stations, each having
temperature measurements across 744 hours. The in-sample mean was subtracted from
the raw data for each station. That is, the mean per station from the data constituting the
train and validation sets, also referred to as ’in-sample’ data. The names and locations
of the stations considered are included in Appendix C.

5.4.2. PROBLEM DEFINITION
We performed distributed regression using the Molene dataset. More specifically, we
added noise to the temperature measurements and our goal was to recover the clean
measurements distributively at each station in the network. Formally, our research ques-
tions were:

RQ.1 What is the impact of the activation function and filter order on the GCNN perfor-
mance when learning the denoising function?

RQ.2 How do different noise levels impact the GCNN performance when employing dif-
ferent activation functions?

5.4.3. EXPERIMENTAL SETUP
Using the node (station) coordinates, we generated a weighted geometric graph as in
[61], using a nearest neighbor (NN) approach. More specifically, the graph followed a
10-NN construction and the weight wi j of each edge (i , j ) was calculated from Gaussian
kernel as

wi j = exp(−d(i , j )/d)

where d(i , j ) represents the Euclidean distance between the locations of stations i and
j and d is the average Euclidean distance between all locations. The graph was built by



5

52 5. NUMERICAL EXPERIMENTS

employing the GSPBox framework proposed in [62].
We considered as graph signals the measurements taken at different timestamps

t ∈ T . Thus, our data set comprised 744 graph signals. On top of the original signals, we
added zero-mean noise with a signal-to-noise ratio (SNR) of SNR = 3 dB for the first set
of experiments, while for the second set we varied the SNR in the interval [−5 dB,5 dB].
These noisy signals were split into 80%, 10%, 10% training, validation, and test sets, re-
spectively. Our goal was to train a GCNN for removing the noise distributively. We em-
ployed a distributed GCNN [cf. Figure 2.6] with one layer and a varying number of fea-
tures F ∈ {1,2,4} and orders K ∈ {1,2,4,8}. We trained for 500 epochs with a batch size of
100 samples. We employed RMSE as the evaluation metric and averaged the final results
across 20 different splits of the dataset.

5.4.4. NUMERICAL RESULTS
For both experiments, in the case of the graph-adaptive activation functions we present
the results for the best performing filter order K = 2. This highlights the benefit of ac-
counting for further away neighborhoods in tasks requiring distributed computations.

1 2 4 8
Filter Order

1.2

1.4

1.6

1.8

2.0

2.2

2.4

RM
SE

FIR
ReLU
L. Max
L. Med
G.A. Max K=2
G.A. Med K=2
G.A. Kernel K=2

Figure 5.10: Root mean square error (RMSE) of the GCNNs and FIR graph filters for distributed regression as
a function of filter order. L.: localized nonlinearities [cf. (2.24)]; G.A.: graph-adaptive nonlinearities [cf. (4.5)
and (4.9)]. K denotes the filter order.

NON-LINEARITY AND FILTER ORDER

Figure 5.10 shows the RSME as a function of the filter order for the different nonlinear-
ities. Across all GCNNs, the best performance was achieved for the highest number of
features, F = 4, so we only report these results for this setup. In the other setups, the
performances were comparable. Those additional results can be found in Appendix D.
All GCNNs perform better than the FIR, but the difference is more significant for the
lowest filter order K = 1. This is especially the case for the graph-adaptive localized non-
linearities, which significantly outperform other nonlinearities when a filter order K = 1



5.5. CONCLUSION

5

53

is considered. This finding suggests the applicability of graph-adaptive nonlinearities
in situations where the communication resources are limited. To further address this
hypothesis, we experimented with different levels of noise added to the data.

5 3 0 3 5
SNR

1.25

1.50

1.75

2.00

2.25

2.50

2.75

RM
SE FIR

ReLU
L. Max
L. Med
G.A. Max K=2
G.A. Med K=2
G.A. Kernel K=2

Figure 5.11: Robustness of the GCNNs and FIR graph filters for distributed regression as a function of the SNR.
L.: localized nonlinearities [cf. (2.24)]; G.A.: graph-adaptive nonlinearities [cf. (4.5) and (4.9)]. K denotes the
filter order.

NOISE LEVEL

For each method, we considered the setup with the lowest filter order K = 1, thus, sim-
ulating a scenario when the communication resources are limited. The results in Figure
5.11 show the graph-adaptive and localized nonlinearities outperform or achieve com-
parable results to ReLU. The general trend shows an increase in performance when the
SNR becomes larger, with a more significant increase for the graph-adaptive localized
nonlinearities. The performance of the graph-adaptive kernel nonlinearity suffers in this
scenario, as it requires higher filter orders compared to the rest. We suggest using higher
orders in the latter case to fully exploit the kernel power.

5.5. CONCLUSION
In this chapter, we presented the numerical experiments carried out in this thesis and
discussed the main findings.

In Section 5.2, we experimented with the source localization problem in both central-
ized and distributed scenarios. In the centralized setting, we saw our proposed graph-
adaptive activation functions significantly outperform pointwise nonlinearities and pre-
serve the benefits of localized activation functions, while bringing computational ad-
vantages. In the distributed scenario, we identified the max and median graph-adaptive
activation functions outperform their localized counterparts, by being able to account
for higher resolution neighborhoods.



5

54 5. NUMERICAL EXPERIMENTS

In Section 5.3, we proposed a data-driven framework for addressing finite-time con-
sensus with GCNNs. We exploited the link between consensus, graph convolutional fil-
ters, and GCNNs to propose a method that is readily distributable if the activation func-
tions are properly chosen. Our results suggest: i ) parametric activation functions should
be employed when the distributed graph filters embedded into a non-parametric non-
linearity have limited discriminatory power – the latter is often linked to communica-
tion complexity (i.e., filter order); i i ) better connected graphs facilitate learning the con-
sensus function – our rationale is that the improved performance is because each node
gets easier the information from all other nodes; i i i ) GCNNs generalize better to unseen
graphs compared with FIR graph filters. These observations show the potential of GC-
NNs for finite-time consensus and demonstrate that GCNNs overcome by a margin FIR
graph filters without requiring all nodes to know the entire graph structure.

In Section 5.4, we experimented with distributed regression. Our results highlight
the benefits of graph-adaptive activation functions in distributed regression tasks, espe-
cially when the communication resources are restricted. We saw more significant perfor-
mance increases in the case of the graph-adaptive nonlinearities when the noise levels
decreased. Finally, we concluded that kernel graph-adaptive activation functions require
higher filter orders than the rest. We suggested employing it in scenarios when this re-
quirement can be met to take full advantage of the kernel power.

Overall, these numerical experiments support the importance of incorporating the
signal-graph topology coupling into all the GCNN components. These findings also cor-
roborate the benefits of accounting for this coupling within neighborhoods beyond one-
hop when dealing with distributed processing tasks. Moreover, the results demonstrate
the applicability of the proposed graph-adaptive activation functions in scenarios when
the communication resources are limited. However, we have also seen their limitation in
scenarios when the GCNN with a non-parametric nonlinearity, such as ReLU, has a high
discriminatory power. While further analysis can shed more light on the performance
of the proposed graph-adaptive nonlinearities when dealing with large-scale networks,
these results, nevertheless, show the potential and benefits of exploiting the graph also
in the nonlinear GCNN component.



6
CONCLUSION

In this chapter, we conclude the research carried out in this thesis and provide possible
future work directions. Section 6.1 provides a summary of our research, while in Section
6.2 we answer the research questions posed in Chapter 1. Finally, in Section 6.3, we
address possible future work directions that arise from the research presented in this
thesis.

55



6

56 6. CONCLUSION

6.1. THESIS SUMMARY
In this thesis, we proposed a new family of graph-adaptive activation functions for GNNs
that capture the graph topology while being distributable.

In Chapter 1, we motivated our research, introduced the research questions, and set
the context for the subsequent chapters. In Chapter 2, we introduced the background
material necessary for the research carried out in this thesis. We started with basic con-
cepts from graph signal processing, followed by graph filters and their role in graph
convolutions and GCNNs. Finally, we discussed the permutation equivariance prop-
erty of GNCCs and defined different activation functions employed within the GCNNs.
In Chapter 3, we provided an overview of the relevant literature for our research, cover-
ing GCNNs and their properties, activation functions, as well as the field of distributed
signal processing over graphs.

Chapter 4 discussed our main contribution, the graph-adaptive activation functions,
implemented by means of nonlinear operators or kernel functions. These activation
functions incorporate the signal-graph topology coupling into all the GCNN compo-
nents by combining nonlinearized features from neighboring nodes with a set of train-
able parameters. These parameters adapt the information coming from neighborhoods
of different resolutions to the task at hand, hence aiding learning. We also showed the
proposed graph-adaptive activation functions preserve permutation equivariance.

In Chapter 5, we compared the graph-adaptive nonlinearities with GCNNs employ-
ing localized and pointwise nonlinearities in three different problems, based on both
synthetic and real-world data: distributed classification in the context of source local-
ization, distributed finite-time consensus, and distributed regression for signal denois-
ing. Our proposed nonlinearities showed a comparable or even better performance than
pointwise and other state-of-the-art localized nonlinearities.

6.2. ANSWER TO THE POSED RESEARCH QUESTIONS
In this section, we address the research questions posed in Chapter 1 and provide an-
swers to them based on the research carried out in this thesis.

(RQ.1) How can we embed the data-graph topology coupling in the nonlinear component
of Graph Neural Networks?

(RQ.2) How can we develop activation functions that besides capturing the data-graph
topology coupling are also distributable?

To address these two research questions, we introduced in Chapter 4 the graph-adaptive
localized activation functions. More specifically, we defined two types of activation func-
tions: graph-adaptive localized activation functions, which are based on arbitrary non-
linear operators acting on the one-hop neighborhood of a node (Section 4.1) and graph-
adaptive kernel activation functions (Section 4.2), which employ an arbitrary kernel func-
tion operating within the one-hop neighborhood of a node. As we discussed in Chap-
ter 4, these proposed activation functions embed the data-graph topology coupling by
shifting the nodal features obtained from graph filtering before local-nonlinearization



6.3. FUTURE WORK

6

57

in a form akin to graph convolutions. These nonlinear features are subsequently com-
bined with a set of trainable parameters to weigh the information accordingly at differ-
ent neighborhood resolutions. The resolution radius is a design parameter and allows
adapting the GCNN nonlinear component to the task at hand. Moreover, addressing
the second research question, we showed that even though the resolution —given by
the shift order— can be arbitrarily large, the graph-adaptive activation functions oper-
ate only in the one-hop neighborhood of each node. Thus, they operate only on locally
available information at each node and, therefore, lead to a localized and distributed
implementation.

(RQ.3) How can we employ our proposed graph-adaptive activation functions to address
distributed processing tasks?

To address this research question, we experimented in Chapter 5 with three different
problems using both real-world and synthetic data. Concretely, we applied a GCNN
with our proposed graph-adaptive activation functions for distributed classification in
the context of source localization, distributed finite-time consensus, and distributed re-
gression for signal denoising. We compared the performance with GCNNs employing
pointwise and state-of-the-art localized nonlinearities. For source localization, our re-
sults highlighted the benefits of accounting for the graph topology during classification.
Moreover, in the distributed scenario, the graph-adaptive max and median activation
functions outperformed their localized versions, confirming the advantage of account-
ing for the signal-graph topology coupling within higher resolution neighborhoods. For
the second numerical experiment, we proposed a data-driven framework for address-
ing finite-time consensus with GCNNs. We exploited the link between consensus, graph
convolutional filters, and GCNNs to propose a method that is readily distributable. Our
results demonstrated the potential of GCNNs for finite-time consensus and showed that
GCNNs overcome by a margin FIR graph filters without requiring all nodes to know the
entire graph structure. Furthermore, when experimenting with distributed regression
in Section 5.4, our findings suggested the applicability of the proposed graph-adaptive
localized activation functions in situations where the communication resources are lim-
ited. We also identified a better generalization ability in the case of graph-adaptive lo-
calized nonlinearities. Interestingly, the performance of the graph-adaptive kernel non-
linearity, contrary to the localized ones, suffered in the limited communication scenario,
as it required higher filter orders than the rest. Thus, we suggested using higher orders
in the latter case to fully exploit the power of the kernel.

6.3. FUTURE WORK
To conclude the research carried out in this thesis, we discuss possible future research
directions. Concretely, future work can be carried out in three different directions: i )
characterizing the stability of the proposed activation functions to perturbations in the
input and topology; i i ) performing learning distributively; i i i ) carrying out further anal-
ysis and identifying new interesting applications to further evaluate our proposed graph-
adaptive activation functions.



6

58 6. CONCLUSION

TOPOLOGY PERTURBATIONS
The first possible future direction is to analyze the stability of our proposed graph-adaptive
activation functions to input perturbations. This could be achieved through theoretical
analysis or through extensive numerical experiments. Concretely, after training a GCNN
model employing graph-adaptive activation functions, we would test it on data that has
has been altered by the addition of different levels of noise. Thus, we would understand
the stability and behavior of our approach when applied to data that has been modified
since training. Moreover, we could analyze the stability of our proposed nonlinearities to
topology perturbations. This scenario is similar to the former, but instead of modifying
the data, we would modify the network topology. We briefly experimented with this sce-
nario for the finite-time consensus problem in Section 5.3, but it would be, nevertheless,
interesting to more thoroughly analyze this in a real-world dataset.

DISTRIBUTIVE LEARNING
A second interesting future work direction is performing the learning distributively to
address the constantly increasing size of real-world networks. Since graph filters em-
ployed in graph convolutions, as well as our proposed graph-adaptive activation func-
tions are distributive, we can deploy a fully graph-adaptive and distributive GCNN. Thus,
instead of performing the learning by centrally storing the network, which might be in-
feasible when dealing with large real-world datasets, we can distribute parts of the net-
work (such as, each node and its one-hop neighbors) over a large number of clients.
Each client can independently compute an update to the model based on the nodes that
it stores. Subsequently, each independent client’s updates will be propagated to a cen-
tral server that will aggregate them into a global model update. This technique is already
employed in the literature under the name of federated learning [63–65].

EXPERIMENTAL FUTURE WORK
For the distributed finite-time consensus problem, additional future research directions
can be identified. First, theoretical research can be carried out to investigate the limits
of GCNN for finite-time consensus and link them with the graph spectrum. Second, it is
worth investigating an asynchronous implementation since the latter has often shown
superior performance compared with the synchronous one.

An interesting future application for the proposed graph-adaptive activation func-
tions is the field of robot swarms. The work in [46] already focuses on learning de-
centralized controllers for the coordination of robot swarms employing GNNs. The au-
thors envision the use of large-scale drone swarms in applications such as environmen-
tal surveillance or mapping. These are scenarios in which the communication resource
are limited. The work in [46] points out the importance of incorporating information
incoming from further away neighbors in the swarm, despite the local communication
constraints. This scenario is ideal for the applicability of the proposed graph-adaptive
activation function and our findings already highlight their benefits in situations with
scarce communication resources.



REFERENCES

6

59

REFERENCES
[1] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu

Philip. A comprehensive survey on graph neural networks. IEEE Transactions on
Neural Networks and Learning Systems, 2020.

[2] Fernando Gama, Elvin Isufi, Geert Leus, and Alejandro Ribeiro. Graphs, convolu-
tions, and neural networks. arXiv preprint arXiv:2003.03777, 2020.

[3] Aliaksei Sandryhaila, Soummya Kar, and José MF Moura. Finite-time distributed
consensus through graph filters. In Acoustics, Speech and Signal Processing
(ICASSP), 2014 IEEE International Conference on, pages 1080–1084. IEEE, 2014.

[4] John Tsitsiklis, Dimitri Bertsekas, and Michael Athans. Distributed asynchronous
deterministic and stochastic gradient optimization algorithms. IEEE transactions
on automatic control, 31(9):803–812, 1986.

[5] Ali Jadbabaie, Jie Lin, and A Stephen Morse. Coordination of groups of mobile au-
tonomous agents using nearest neighbor rules. IEEE Transactions on automatic
control, 48(6):988–1001, 2003.

[6] Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner, et al. Gradient-based
learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–
2324, 1998.

[7] David I Shuman, Sunil K. Narang, Pascal Frossard, Antonio Ortega, and Pierre Van-
dergheynst.

[8] David I Shuman, Pierre Vandergheynst, Daniel Kressner, and Pascal Frossard. Dis-
tributed signal processing via chebyshev polynomial approximation. IEEE Transac-
tions on Signal and Information Processing over Networks, 4(4):736–751, 2018.

[9] Elvin Isufi, Andreas Loukas, Andrea Simonetto, and Geert Leus. Autoregressive
moving average graph filtering. IEEE Transactions on Signal Processing, 65(2):274–
288, 2016.

[10] Santiago Segarra, Antonio G Marques, and Alejandro Ribeiro. Optimal graph-filter
design and applications to distributed linear network operators. IEEE Transactions
on Signal Processing, 65(15):4117–4131, 2017.

[11] Simone Scardapane, Steven Van Vaerenbergh, Danilo Comminiello, and Aurelio
Uncini. Improving graph convolutional networks with non-parametric activation
functions. In 2018 26th European Signal Processing Conference (EUSIPCO), pages
872–876. IEEE, 2018.

[12] Luana Ruiz, Fernando Gama, Antonio García Marques, and Alejandro Ribeiro.
Invariance-preserving localized activation functions for graph neural networks.
IEEE Transactions on Signal Processing, 68:127–141, 2019.



6

60 REFERENCES

[13] Fernando Gama, Alejandro Ribeiro, and Joan Bruna. Stability of graph scattering
transforms. In Advances in Neural Information Processing Systems, pages 8036–
8046, 2019.

[14] Morris H DeGroot. Reaching a consensus. Journal of the American Statistical Asso-
ciation, 69(345):118–121, 1974.

[15] Reza Olfati-Saber, J Alex Fax, and Richard M Murray. Consensus and cooperation in
networked multi-agent systems. Proceedings of the IEEE, 95(1):215–233, 2007.

[16] Lin Xiao and Stephen Boyd. Fast linear iterations for distributed averaging. Systems
& Control Letters, 53(1):65–78, 2004.

[17] Shreyas Sundaram and Christoforos N Hadjicostis. Distributed function calculation
and consensus using linear iterative strategies. IEEE journal on selected areas in
communications, 26(4):650–660, 2008.

[18] Sérgio Pequito, Stephen Kruzick, Soummya Kar, José MF Moura, and Pedro A
Aguiar. Optimal design of distributed sensor networks for field reconstruction. In
21st European Signal Processing Conference (EUSIPCO 2013), pages 1–5. IEEE, 2013.

[19] IEEE International Workshop on MACHINE LEARNING FOR SIGNAL PROCESSING
(MLSP). https://ieeemlsp.cc/, 2020. Accessed 10.06.2020.

[20] EUSIPCO 2020. https://eusipco2020.org/, 2020. Accessed 10.06.2020.

[21] Antonio Ortega, Pascal Frossard, Jelena Kovačević, José MF Moura, and Pierre Van-
dergheynst. Graph signal processing: Overview, challenges, and applications. Pro-
ceedings of the IEEE, 106(5):808–828, 2018.

[22] Mario Coutino, Elvin Isufi, and Geert Leus. Advances in distributed graph filtering.
IEEE Transactions on Signal Processing, 67(9):2320–2333, 2019.

[23] Mario Coutino, Elvin Isufi, Takanori Maehara, and Geert Leus. On the limits of
finite-time distributed consensus through successive local linear operations. In
2018 52nd Asilomar Conference on Signals, Systems, and Computers, pages 993–997.
IEEE, 2018.

[24] Robert Hecht-Nielsen. Theory of the backpropagation neural network. In Neural
networks for perception, pages 65–93. Elsevier, 1992.

[25] Yves Chauvin and David E Rumelhart. Backpropagation: theory, architectures, and
applications. Psychology press, 2013.

[26] Simone Scardapane, Steven Van Vaerenbergh, Simone Totaro, and Aurelio Uncini.
Kafnets: kernel-based non-parametric activation functions for neural networks.
arXiv preprint arXiv:1707.04035, 2017.

https://ieeemlsp.cc/
https://eusipco2020.org/


REFERENCES

6

61

[27] Franco Scarselli, Sweah Liang Yong, Marco Gori, Markus Hagenbuchner, Ah Chung
Tsoi, and Marco Maggini. Graph neural networks for ranking web pages. In The
2005 IEEE/WIC/ACM International Conference on Web Intelligence (WI’05), pages
666–672. IEEE, 2005.

[28] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele
Monfardini. The graph neural network model. IEEE Transactions on Neural Net-
works, 20(1):61–80, 2008.

[29] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. In Advances in neural information processing
systems, pages 1097–1105, 2012.

[30] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks
and deep locally connected networks on graphs. In ICLR, pages 1–14, Banff, AB,
14-16 April 2014. Assoc. Comput. Linguistics.

[31] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neu-
ral networks on graphs with fast localized spectral filtering. In 30th NeurIPS, pages
3844–3858, Barcelona, Spain, 5-10 December 2016. Neural Inf. Process. Syst. Foun-
dation.

[32] David K Hammond, Pierre Vandergheynst, and Rémi Gribonval. Wavelets on
graphs via spectral graph theory. Applied and Computational Harmonic Analysis,
30(2):129–150, 2011.

[33] Fernando Gama, Antonio G. Marques, Geert Leus, and Alejandro Ribeiro. Convolu-
tional neural network architectures for signals supported on graphs. IEEE Transac-
tions on Signal Processing, 67(4):1034–1049, February 2019.

[34] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convo-
lutional networks. arXiv preprint arXiv:1609.02907, 2016.

[35] Filippo Maria Bianchi, Daniele Grattarola, Cesare Alippi, and Lorenzo Livi. Graph
neural networks with convolutional ARMA filters. arXiv:1901.01343 [cs.LG], 2019.

[36] Elvin Isufi, Fernando Gama, and Alejandro Ribeiro. EdgeNets: Edge varying graph
neural networks. arXiv:2001.07620v1 [cs.LG], 21 January 2020.

[37] Ron Levie, Federico Monti, Xavier Bresson, and Michael M Bronstein. Cayleynets:
Graph convolutional neural networks with complex rational spectral filters. IEEE
Transactions on Signal Processing, 67(1):97–109, 2018.

[38] Fernando Gama, Geert Leus, Antonio G Marques, and Alejandro Ribeiro. Convo-
lutional neural networks via node-varying graph filters. In 2018 IEEE Data Science
Workshop (DSW), pages 1–5. IEEE, 2018.

[39] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò,
and Yoshua Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903,
2017.



6

62 REFERENCES

[40] Dongmian Zou and Gilad Lerman. Graph convolutional neural networks via scat-
tering. Applied and Computational Harmonic Analysis, 2019.

[41] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rec-
tifiers: Surpassing human-level performance on imagenet classification. In Pro-
ceedings of the IEEE international conference on computer vision, pages 1026–1034,
2015.

[42] Pravin Chandra and Yogesh Singh. An activation function adapting training algo-
rithm for sigmoidal feedforward networks. Neurocomputing, 61:429–437, 2004.

[43] Babak Zamanlooy and Mitra Mirhassani. Efficient vlsi implementation of neural
networks with hyperbolic tangent activation function. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, 22(1):39–48, 2013.

[44] Santiago Segarra, Antonio G Marques, Gonzalo R Arce, and Alejandro Ribeiro.
Center-weighted median graph filters. In 2016 IEEE Global Conference on Signal
and Information Processing (GlobalSIP), pages 336–340. IEEE, 2016.

[45] Santiago Segarra, Antonio G Marques, Gonzalo R Arce, and Alejandro Ribeiro. De-
sign of weighted median graph filters. In 2017 IEEE 7th International Workshop
on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), pages
1–5. IEEE, 2017.

[46] Ekaterina Tolstaya, Fernando Gama, James Paulos, George Pappas, Vijay Kumar,
and Alejandro Ribeiro. Learning decentralized controllers for robot swarms with
graph neural networks. In Conference on Robot Learning, pages 671–682, 2020.

[47] Raymond Wagner, Véronique Delouille, and Richard Baraniuk. Distributed wavelet
de-noising for sensor networks. In Proceedings of the 45th IEEE Conference on De-
cision and Control, pages 373–379. IEEE, 2006.

[48] Carlos Guestrin, Peter Bodik, Romain Thibaux, Mark Paskin, and Samuel Madden.
Distributed regression: an efficient framework for modeling sensor network data.
In Proceedings of the 3rd international symposium on Information processing in sen-
sor networks, pages 1–10, 2004.

[49] Xuesong Shi, Hui Feng, Muyuan Zhai, Tao Yang, and Bo Hu. Infinite impulse re-
sponse graph filters in wireless sensor networks. IEEE Signal Processing Letters,
22(8):1113–1117, 2015.

[50] Santiago Segarra, Antonio G Marques, and Alejandro Ribeiro. Distributed imple-
mentation of linear network operators using graph filters. In 2015 53rd Annual
Allerton Conference on Communication, Control, and Computing (Allerton), pages
1406–1413. IEEE, 2015.

[51] Andreas Loukas, Andrea Simonetto, and Geert Leus. Distributed autoregressive
moving average graph filters. IEEE Signal Processing Letters, 22(11):1931–1935,
2015.



REFERENCES

6

63

[52] Mario Contino, Elvin Isufi, and Geert Leus. Distributed edge-variant graph filters. In
2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor
Adaptive Processing (CAMSAP), pages 1–5. IEEE, 2017.

[53] Mario Coutino and Geert Leus. On distributed consensus by a cascade of general-
ized graph filters. In 2019 53rd Asilomar Conference on Signals, Systems, and Com-
puters, pages 46–50. IEEE, 2019.

[54] Zhan Gao, Elvin Isufi, and Alejandro Ribeiro. Stochastic graph neural networks. In
ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 9080–9084. IEEE, 2020.

[55] Elvin Isufi, Andreas Loukas, Andrea Simonetto, and Geert Leus. Filtering random
graph processes over random time-varying graphs. IEEE Transactions on Signal
Processing, 65(16):4406–4421, 2017.

[56] Zhan Gao, Fernando Gama, and Alejandro Ribeiro. Wide and deep graph neural
networks with distributed online learning. arXiv preprint arXiv:2006.06376, 2020.

[57] Stephen Boyd, Arpita Ghosh, Balaji Prabhakar, and Devavrat Shah. Randomized
gossip algorithms. IEEE/ACM Transactions on Networking (TON), 14(SI):2508–2530,
2006.

[58] Thomas Sherson, Richard Heusdens, and W Bastiaan Kleijn. On the distributed
method of multipliers for separable convex optimization problems. IEEE Transac-
tions on Signal and Information Processing over Networks, 5(3):495–510, 2019.

[59] Ron Levie, Elvin Isufi, and Gitta Kutyniok. On the transferability of spectral graph
filters. In 13th International Conference on Sampling Theory and Applications,
pages 1–5, Bordeaux, France, 8-12 July 2019. IEEE.

[60] Météo-France. Données horaires des 55 stations terrestres de la zone Large Molène
sur un mois. https://www.data.gouv.fr/, 2014. Accessed 10.03.2020.

[61] Elvin Isufi, Andreas Loukas, Nathanael Perraudin, and Geert Leus. Forecasting
time series with varma recursions on graphs. IEEE Transactions on Sig. Proc.,
67(18):4870–4885, 2019.

[62] Nathanaël Perraudin, Johan Paratte, David Shuman, Lionel Martin, Vassilis Kalofo-
lias, Pierre Vandergheynst, and David K Hammond. Gspbox: A toolbox for signal
processing on graphs. arXiv preprint arXiv:1408.5781, 2014.

[63] Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik, Ananda Theertha
Suresh, and Dave Bacon. Federated learning: Strategies for improving communi-
cation efficiency. arXiv preprint arXiv:1610.05492, 2016.

[64] Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. Federated machine learn-
ing: Concept and applications. ACM Transactions on Intelligent Systems and Tech-
nology (TIST), 10(2):1–19, 2019.

https://www.data.gouv.fr/


64 REFERENCES

[65] Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex Inger-
man, Vladimir Ivanov, Chloe Kiddon, Jakub Konečnỳ, Stefano Mazzocchi, H Bren-
dan McMahan, et al. Towards federated learning at scale: System design. arXiv
preprint arXiv:1902.01046, 2019.



A
GRAPH-ADAPTIVE KERNEL

ACTIVATION FUNCTIONS:
ADDITIONAL KERNEL FUNCTIONS

65



A

66
A. GRAPH-ADAPTIVE KERNEL ACTIVATION FUNCTIONS: ADDITIONAL KERNEL

FUNCTIONS

Possible additional options for employing the kernel function g (·,Ni ) for the pro-
posed graph-adaptive kernel activation functions [cf. (4.9)] are the following:

• Linear Kernel Function
k(x,y) = x>y+ c (A.1)

where c is an optional constant.

• Polynomial Kernel Function

k(x,y) = (αx>y+ c)d (A.2)

where the adjustable parameters are the slope α, the constant c and the degree of
the polynomial d .

• Exponential Kernel Function

k(x,y) = exp(−||x−y||
2σ2 ) (A.3)

where σ is an adjustable parameter.



B
SOURCE LOCALIZATION:

ADDITIONAL RESULTS

67



B

68 B. SOURCE LOCALIZATION: ADDITIONAL RESULTS

Regarding the different probabilities for generating the SBM graph, the best results
are achieved when the communities are highly intra-connected and clearly separated,
which is the case of 0.8 intra-community probability and 0.1 inter-community proba-
bility. These results were reported in the main body of this thesis. We can observe a
decrease in performance both when the connectivity within communities is lower, with
a probability of 0.7, and when the communities become less clearly separated and the
connectivity between them is higher, with a probability of 0.2. We report next these ad-
ditional results.

B.1. ADDITIONAL RESULTS GCNN F = 5 FEATURES, K = 5 FIL-
TER ORDER, AND SBM PROBABILITIES p = 0.8 AND q =
0.2

The results for the GCNN model consisting of two layers with F = 5 features per layer and
filters of order K = 5 applied on the SBM graph generated using p = 0.8 intra-community
and q = 0.2 inter-community probabilities are reported in Table B.1 and Figures B.1, B.2
and B.3.

Table B.1: Centralized Source Localization Test Accuracy. L.: localized nonlinearities [cf. (2.24)]; G.A.: graph-
adaptive nonlinearities [cf. (4.5) and (4.9)]. Between brackets the filter order K is specified.

Activation Function Average Accuracy Standard Deviation
ReLU 51.6% 9.3
Max L. (1) 59.1% 3.7
Max L. (2) 59.4% 3.7
Max L. (3) 58.7% 4.4
Max G.A (1) 58.6% 5.3
Max G.A (2) 59.5% 4.4
Max G.A (3) 58.8% 3.7
Median L. (1) 60.1% 4.2
Median L. (2) 62.1% 4.2
Median L. (3) 60.5% 3.7
Median G.A (1) 60.1% 3.4
Median G.A (2) 60.3% 3.2
Median G.A (3) 60.1% 4.1
Kernel G.A. (1) 56.5% 5.2
Kernel G.A. (2) 58.0% 4.4
Kernel G.A. (3) 57.6% 3.9



B.2. ADDITIONAL RESULTS GCNN F = 5 FEATURES, K = 5 FILTER ORDER, AND SBM
PROBABILITIES p = 0.7 AND q = 0.1

B

69

ReLU
Max L. (2)

Max G.A. (2)
Median L. (2)

Median G.A. (2)

Kernel G.A. (2)

Activation Function

20

30

40

50

60

70

Ac
ur

ac
y

Figure B.1: Boxplots illustrating the performances of the different activation functions for the centralized
source localization problem. For our proposed graph-adaptive and for the localized activation functions only
the best performing order is shown. L.: localized nonlinearities [cf. (2.24)]; G.A.: graph-adaptive nonlinearities
[cf. (4.5) and (4.9)]. Between brackets the filter order K is specified.

Max L. (1)
Max L. (2)

Max L. (3)
Max G.A. (1)

Max G.A. (2)
Max G.A. (3)

Activation Function

45

50

55

60

65

70

Ac
ur

ac
y

(a)

Median L. (1)
Median L.(2)

Median L. (3)

Median G.A. (1)

Median G.A. (2)

Median G.A. (3)

Activation Function

50

55

60

65

70

Ac
ur

ac
y

(b)

Figure B.2: Performances of the max activation functions [in (a)] and median activation functions [in (b)] for
the centralized source localization problem. L.: localized nonlinearities [cf. (2.24)]; G.A.: graph-adaptive non-
linearities [cf. (4.5) and (4.9)]. Between brackets the filter order K is specified.

B.2. ADDITIONAL RESULTS GCNN F = 5 FEATURES, K = 5 FIL-
TER ORDER, AND SBM PROBABILITIES p = 0.7 AND q =
0.1

The results for the GCNN model consisting of two layers with F = 5 features per layer and
filter order of K = 5 applied on the SBM graph generated using p = 0.7 intra-community



B

70 B. SOURCE LOCALIZATION: ADDITIONAL RESULTS

M
ax

 L
. (

1)

M
ax

 G
.A

. (
1)

M
ax

 L
. (

2)

M
ax

 G
.A

. (
2)

M
ax

 L
. (

3)

M
ax

 G
.A

. (
3)

M
ed

 L
. (

1)

M
ed

 G
.A

. (
1)

M
ed

 L
. (

2)

M
ed

 G
.A

. (
2)

M
ed

 L
. (

3)

M
ed

 G
.A

. (
3)

Activation Function

0

10

20

30

40

50

60

Ru
nt

im
e 

Pr
op

or
tio

na
l t

o 
Re

LU
 R

un
tim

e

Figure B.3: Bar plots illustrating the runtime of the max and median graph-adaptive activation functions com-
pared to the max and median localized activation functions for the centralized source localization problem.
The runtimes are raported to ReLU runtime. L.: localized nonlinearities [cf. (2.24)]; G.A.: graph-adaptive non-
linearities [cf. (4.5) and (4.9)]. Between brackets the filter order K is specified.

and q = 0.1 inter-community probabilities are reported in Table B.2 and Figures B.4, B.5
and B.6.

Table B.2: Centralized Source Localization Test Accuracy. L.: localized nonlinearities [cf. (2.24)]; G.A.: graph-
adaptive nonlinearities [cf. (4.5) and (4.9)]. Between brackets the filter order K is specified.

Activation Function Average Accuracy Standard Deviation
ReLU 65.5% 9.6
Max L. (1) 74.5% 4.5
Max L. (2) 73.7% 4.3
Max L. (3) 73.8% 4.3
Max G.A (1) 73.6% 3.8
Max G.A (2) 73.6% 3.1
Max G.A (3) 72.9% 4.1
Median L. (1) 75.5% 3.2
Median L. (2) 76.0% 3.1
Median L. (3) 75.9% 3.7
Median G.A (1) 75.9% 3.0
Median G.A (2) 75.1% 3.6
Median G.A (3) 75.4% 4.3
Kernel G.A. (1) 69.9% 4.7
Kernel G.A. (2) 71.6% 3.4
Kernel G.A. (3) 71.4% 3.5



B.2. ADDITIONAL RESULTS GCNN F = 5 FEATURES, K = 5 FILTER ORDER, AND SBM
PROBABILITIES p = 0.7 AND q = 0.1

B

71

ReLU
Max L. (1)

Max G.A. (1)
Median L. (2)

Median G.A. (1)

Kernel G.A. (2)

Activation Function

20

30

40

50

60

70

80

Ac
ur

ac
y

Figure B.4: Boxplots illustrating the test accuracy of the different activation functions for the centralized source
localization problem. For our proposed graph-adaptive and for the localized activation functions only the best
performing order is shown. L.: localized nonlinearities [cf. (2.24)]; G.A.: graph-adaptive nonlinearities [cf. (4.5)
and (4.9)]. Between brackets the filter order K is specified.

Max L. (1)
Max L. (2)

Max L. (3)
Max G.A. (1)

Max G.A. (2)
Max G.A. (3)

Activation Function

65

70

75

80

85

Ac
ur

ac
y

(a)

Median L. (1)
Median L.(2)

Median L. (3)

Median G.A. (1)

Median G.A. (2)

Median G.A. (3)

Activation Function

65.0

67.5

70.0

72.5

75.0

77.5

80.0

82.5

Ac
ur

ac
y

(b)

Figure B.5: Performances of the max activation functions [in (a)] and median activation functions [in (b)] for
the centralized source localization problem. L.: localized nonlinearities [cf. (2.24)]; G.A.: graph-adaptive non-
linearities [cf. (4.5) and (4.9)]. Between brackets the filter order K is specified.



B

72 B. SOURCE LOCALIZATION: ADDITIONAL RESULTS

M
ax

 L
. (

1)

M
ax

 G
.A

. (
1)

M
ax

 L
. (

2)

M
ax

 G
.A

. (
2)

M
ax

 L
. (

3)

M
ax

 G
.A

. (
3)

M
ed

 L
. (

1)

M
ed

 G
.A

. (
1)

M
ed

 L
. (

2)

M
ed

 G
.A

. (
2)

M
ed

 L
. (

3)

M
ed

 G
.A

. (
3)

Activation Function

0

10

20

30

40

50

60

Ru
nt

im
e 

Pr
op

or
tio

na
l t

o 
Re

LU
 R

un
tim

e

Figure B.6: Bar plots illustrating the runtime of the max and median graph-adaptive activation functions com-
pared to the max and median localized activation functions for the centralized source localization problem.
The runtimes are raported to ReLU runtime. L.: localized nonlinearities [cf. (2.24)]; G.A.: graph-adaptive non-
linearities [cf. (4.5) and (4.9)]. Between brackets the filter order K is specified.



C
DISTRIBUTED REGRESSION:

WEATHER STATIONS INFORMATION

73



C

74 C. DISTRIBUTED REGRESSION: WEATHER STATIONS INFORMATION

Table C.1: Geographical coordinates of the weather stations considered in the distributed regression numerical
experiments.

Station Name Latitude Longitude
ILE-DE-BREHAT 48°51’18N 3°00’12W
KERPERT 48°24’12N 3°08’48W
LOUARGAT 48°33’06N 3°22’36W
MERDRIGNAC 48°10’54N 2°24’36W
PLOUMANAC’H 48°49’30N 3°28’18W
PLOUGUENAST 48°15’54N 2°44’54W
POMMERIT-JAUDY 48°44’30N 3°15’00W
QUINTENIC 48°31’06N 2°25’12W
ROSTRENEN 48°13’48N 3°18’24W
SAINT-CAST-LE-G 48°38’36N 2°14’48W
ST BRIEUC 48°32’00N 2°51’06W
PTE DE PENMARCH 47°47’48N 4°22’24W
PLEYBER-CHRIST SA 48°30’00N 3°51’12W
PTE DU RAZ 48°02’18N 4°43’54W
ST-SEGAL S A 48°13’36N 4°05’48W
SIBIRIL S A 48°39’36N 4°04’36W
SPEZET 48°10’24N 3°43’42W
DINARD 48°35’18N 2°04’30W
GUERANDE 47°17’30N 2°25’48W
PTE DE CHEMOULIN 47°14’00N 2°17’54W
AURAY 47°39’30N 2°58’12W
BELLE ILE-LE TALUT 47°17’36N 3°13’06W
BIGNAN 47°53’00N 2°43’42W
ILE DE GROIX 47°39’06N 3°30’06W
PLEUCADEUC 47°45’54N 2°23’12W
PLOERMEL 47°57’00N 2°23’48W
PONTIVY 48°03’48N 2°56’42W
LORIENT-LANN BIHOUE 47°45’42N 3°26’06W
SARZEAU SA 47°30’42N 2°47’48W
VANNES-SENE 47°36’12N 2°42’48W
THEIX 47°38’24N 2°37’12W
NOIRMOUTIER EN 47°00’12N 2°15’24W



D
DISTRIBUTED REGRESSION:

ADDITIONAL RESULTS

75



D

76 D. DISTRIBUTED REGRESSION: ADDITIONAL RESULTS

D.1. ADDITIONAL RESULTS FOR THE GCNN WITH F = 1 FEA-
TURE

1 2 4 8
Filter Order

1.2

1.4

1.6

1.8

2.0

2.2

2.4

RM
SE

FIR
ReLU
L. Max
L. Med
G.A. Max K=2
G.A. Med K=2
G.A. Kernel K=2

Figure D.1: Robustness of the GCNNs and FIR graph filters for distributed regression as a function of the SNR.
L.: localized nonlinearities [cf. (2.24)]; G.A.: graph-adaptive nonlinearities [cf. (4.5) and (4.9)]. K denotes the
filter order.

D.2. ADDITIONAL RESULTS FOR THE GCNN WITH F = 2 FEA-
TURES

1 2 4 8
Filter Order

1.2

1.4

1.6

1.8

2.0

2.2

2.4

RM
SE

FIR
ReLU
L. Max
L. Med
G.A. Max K=2
G.A. Med K=2
G.A. Kernel K=2

Figure D.2: Robustness of the GCNNs and FIR graph filters for distributed regression as a function of the SNR.
L.: localized nonlinearities [cf. (2.24)]; G.A.: graph-adaptive nonlinearities [cf. (4.5) and (4.9)]. K denotes the
filter order.



GRAPH-ADAPTIVE ACTIVATION FUNCTIONS FOR GRAPH NEURAL NETWORKS

Bianca Iancu∗, Luana Ruiz†, Alejandro Ribeiro† and Elvin Isufi∗

∗ Intelligent Systems Department, Delft University of Technology, Delft, The Netherlands
† Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, USA

ABSTRACT

Activation functions are crucial in graph neural networks (GNNs) as
they allow defining a nonlinear family of functions to capture the re-
lationship between the input graph data and their representations. This
paper proposes activation functions for GNNs that not only adapt to the
graph into the nonlinearity, but are also distributable. To incorporate the
feature-topology coupling into all GNN components, nodal features are
nonlinearized and combined with a set of trainable parameters in a form
akin to graph convolutions. The latter leads to a graph-adaptive train-
able nonlinear component of the GNN that can be implemented directly
or via kernel transformations, therefore, enriching the class of functions
to represent the network data. Whether in the direct or kernel form,
we show permutation equivariance is always preserved. We also prove
the subclass of graph-adaptive max activation functions are Lipschitz
stable to input perturbations. Numerical experiments with distributed
source localization, finite-time consensus, distributed regression, and
recommender systems corroborate our findings and show improved per-
formance compared with pointwise as well as state-of-the-art localized
nonlinearities.

Index Terms— Activation functions; graph neural networks; graph
signal processing; Lipschitz stability; permutation equivariance.

1. INTRODUCTION
Graph neural networks (GNNs) are parametric architectures suitable for
learning a nonlinear mapping for data defined over graphs such as social,
sensor, and biological network data [1, 2]. By interweaving graph filters
with pointwise nonlinearities, GNNs express the function map in a lay-
ered form and learn compositions of features that account for the data-
topology coupling [3, 4]. Another property GNNs inherit from graph
filters is the distributed implementation [5–7]. Distributed computation
facilitates scalability of computation and endows the system with ro-
bustness to failures of the processing unit. The latter is fundamental in
applications involving consensus, optimization, and control [8–10].

Building on spectral graph theory, [11] defined graph convolutional
neural networks by multiplying feature representations in the Laplacian
eigenspace with trainable kernels. Subsequently, [3] used finite impulse
response (FIR) graph filters to combine features in the vertex domain by
means of a polynomial in the Laplacian matrix. The work in [4] fol-
lows the same idea but builds a polynomial filter in any graph represen-
tation matrix (e.g., adjacency, Laplacian). Differently from [11], [3, 4]
are also readily distributable architectures with appropriate choices of
graph pooling (i.e., not altering the graph structure; e.g., zero-padding)
and with pointwise activation functions. On the other hand, [12] builds a
GNN with distributable autoregressive moving average graph filters [6],
which capture a broader family of functions at the expense of compu-
tation cost. Parallel to these efforts, [13] proposes attention-like mech-
anisms to adapt the edge weights to the task at hand. More recently,
the work in [14] showed all the above architectures are equivalent and
fall under the framework of edge varying GNN (EdgeNet). Altogether,
these works capture the data-graph coupling only linearly through graph
filters, while they ignore the coupling in the nonlinear pointwise compo-
nent (e.g., ReLU). To improve the representation power of GNNs, [15]
proposed localized activation functions that account for the graph topol-
ogy by operating on node neighborhoods of different resolutions. How-
ever, the latter accounts only for the graph and not the data-topology cou-

pling, since it ignores the edge weights and the data propagation between
neighbors. Localized activation functions are also not distributable be-
yond the one-hop neighborhood, hence missing multi-hop information
between nodes.

To address these limitations, we put forward a new family of ac-
tivation functions that adapt to the data-topology coupling in the sur-
rounding of a node. The nodal features obtained from graph filtering are
shifted prior to local-nonlinearization in a form akin to graph convolu-
tions. These nonlinear features are subsequently combined with a set of
trainable parameters to accordingly weight the information at different
neighborhood resolutions. The resolution radius is a design parameter
and allows adapting the GNN nonlinear component to the task at hand.
Besides being graph-adaptive and distributable, these activation func-
tions preserve two properties of theoretical interest for GNNs, namely
permutation equivariance and Lipschitz stability to perturbations [16].
Concretely, our contribution is threefold.

1. We develop a new family of nonlinearities for GNNs that are
graph-adaptive to the surrounding of a node and distributable.
The first class [Def. 3] nonlinearizes shifted features in the sur-
rounding of a node in their direct form. The second class [Def. 6]
transforms the shifted features with graph-adaptive kernels prior
to nonlinearization.

2. We prove that: (a) the proposed nonlinearities are permutation
equivariant [Prop. 1], i.e. the output of the respective GNN archi-
tecture is agnostic to node labeling; (b) the max graph-adaptive
nonlinearity is Lipschitz stable to input perturbations [Prop. 2].

3. We propose distributed GNN tasks with graph-adaptive nonlin-
earities for source localization, finite-time consensus, signal de-
noising, and rating prediction in recommender systems.

2. GRAPH NEURAL NETWORKS
Consider a graph G = (V, E) with vertex set V of cardinality |V| = N
and edge set E ⊆ V×V of cardinality |E| =M . An edge is a tuple eij =
(i, j) connecting nodes i and j. The neighborhood of node i is the set of
nodes Ni = {j|(i, j) ∈ E} connected to i. Associated to G is the graph
shift operator (GSO) matrix S ∈ RN×N , whose sparsity pattern matches
the graph structure. That is, entry (i, j) satisfies [S]i,j = si,j 6= 0 only
if i = j or (i, j) ∈ E . Commonly used GSOs include the adjacency
matrix, the graph Laplacian, and their normalized and translated forms.

On the vertices of G, we define a graph signal x ∈ RN whose
ith component is the value at node i. We consider applications where
graph signals are processed in a distributed fashion. A typical example
is in sensor networks without access to a centralized processing unit and
where each sensor communicates only with its neighbor sensors.
Graph convolution. A graph convolution is defined as a graph filter
H(S) that can be written as a polynomial of the GSO S [7]. For an input
signal x and filter coefficients h = [h0, . . . , hK ]>, the output y ∈ RN
of the graph convolutional filter is computed as

y = H(S)x =

K∑
k=0

hkS
kx. (1)

Due to the locality of S, graph convolutions can be run distribu-
tively. When building the output y, we need to compute the terms
Sx, . . . ,SKx. Since S is local, operation Sx requires one-hop node
exchanges and so, by writing Skx = S(Sk−1x) = Sx(k−1), node i can



compute signal x(k) through exchange of previous shifted information
x(k−1) with its neighbors. This recursion allows for distributed commu-
nications and computational cost of order O(MK), while the trainable
parameters defining (1) are of order O(K) [7].
Graph convolutional neural networks (GCNNs). We consider a
GCNN of L graph convolutional layers followed by a shared fully con-
nected layer per node. Each convolutional layer comprises a bank of
graph filters [cf. (1)] and a nonlinearity. At layer l, the GCNN takes
as input Fl−1 features {xgl−1}

Fl−1
g=1 from layer (l − 1) and produces

Fl output features {xfl }
F
f=1. Each input feature xgl−1 is processed by

a parallel bank of Fl graph filters {Hfg
l (S)}f . The filter outputs are

aggregated over the input index g to yield the f th convolved feature

zfl =

Fl−1∑
g=1

Hfg
l (S)xgl−1=

Fl−1∑
g=1

K∑
k=0

hfgkl S
kxgl−1, for f = 1, . . . , Fl.

(2)
The convolved feature zfl is subsequently passed through an activation
function σ(·) to obtain the f th convolutional layer output

xfl = σ(zfl ), for f = 1, . . . , F. (3)

The output features of the last convolutional layer L, x1
L, . . . ,x

FL
L ,

represent the final convolutional features. These features are interpreted
as a collection of FL graph signals, where on node i we have the FL× 1

feature vector χLi = [x1Li, . . . , x
FL
Li ]
>. Each node locally combines the

features χLi with a one-layer perceptron to obtain the output

ỹ = HFCχLi (4)

where matrix HFC ∈ RFo×FL maps the FL convolutional features to
the Fo output features (e.g., the number of classes). The parameters in
HFC are shared among nodes to keep the number of trainable parameters
independent of the graph dimensions (i.e. N andM ), but only dependent
on the filter order and the number of features and layers.

By grouping all learnable parameters into the setH = {hfgl ;HFC}lfg ,
we can consider the GCNN as a map Φ(·) that takes as input a graph
signal x, a GSO S, and a set of parametersH to produce the output

Φ(x;S;H) := ỹ. (5)

The output (5) is computed for a training set T = {(x,y)} of |T | pairs,
where y are the target representations.

Activation functions. The activation function σ(·) in (3) can be
any of the conventional pointwise activation functions, such as ReLU
(σ(x) = max(0, x)), or a localized activation function [15]. Differently
from the pointwise, localized activation functions consider the features
at the neighborhood of each node i in the nonlinear GCNN component
[15]. For a graph signal feature x the localized activation function is
based on two local operators, namely:
• local max operator, max(S,x), whose output is a graph signal z

with ith entry being the maximum value of the signal in the neigh-
borhood, i.e., zi = [max(S,x)]i = max

(
{xj : vj ∈ Ni}

)
;

• local median operator, med(S,x), whose output is a graph sig-
nal z with ith entry being the median value of the signal in the
neighborhood, i.e., zi = [med(S,x)]i = med

(
{xj : vj ∈ Ni}

)
.

For simplicity, we denote both local operators with the generic local
function f(S,x). Then, the localized activation function is defined as

σ(x) = βReLU(x) +

K∑
k=1

hσkf(Sk,x). (6)

where f(Sk,x) applies the local activation function to the signal values
of the k-hop neighbors and parameters β and hσ=[hσ1, . . . , hσK ]> are
learned [15]. A GCNN with localized activation functions can thus be
written as the map Φ(x;S;H) with parametersH={hfgl ;hfσl;HFC}lfg .

As it follows from (6), localized activation functions ignore the edge
weights and require information from the non-immediate k-hop neigh-
bors, which makes them not distributable. Hence, in distributed settings,
the order K in (6) is limited to one. To address this limitation, we pro-
pose two new activation functions based on local operators and kernel
functions to account for the graph structure and be distributable.

3. GRAPH-ADAPTIVE ACTIVATION FUNCTIONS
In this section, we first define the graph-adaptive localized activation
functions, which are based on arbitrary nonlinear operators acting on
the one-hop neighborhood of a node (Section 3.1). Then, we define the
graph-adaptive kernel activation functions (Section 3.2). Finally, we
prove the proposed nonlinearities are permutation equivariant and stable
to input perturbations (Section 3.3).

3.1. Graph-Adaptive Localized Activation Functions

To start, let us first define the basic building block for graph-adaptive
activation functions: the shifted localized operator (SLO).

Definition 1 (Shifted Localized Operator). Let G be an N -node graph
with shift operator S, x a signal, and Skx the kth shifted signal. Con-
sider an arbitrary nonlinear localized function f(·,Ni) : RN → RN ,
which at node i computes the local nonlinear operation [f(x,Ni)]i =
f({xj}j∈Ni). For this choice of f(·,Ni), the k-hop shifted localized
operator maps input x to output z ∈ RN as

zi = [f(Skx,Ni)]i = f({[Skx]j : j ∈ Ni}). (7)

That is, the SLO shifts the signal k times to obtain Skx, and then
replaces the value of this signal at each node i by a nonlinear aggregation
f(·,Ni) of the signal values within the one-hop neighborhood of i. The
SLO utilizes information locally available at each node to account for
the signal-topology coupling for nodes that are k-hops away. We can
now define graph-adaptive nonlinear graph filters as follows.

Definition 2 (Shifted Localized Graph Filter). Consider the shifted lo-
calized operator induced by an arbitrary nonlinear localized function
f(·,Ni) [cf. Def. 1], and let hσ = [hσ1, . . . , hσK ]> be a vector of
parameters. The output of the shifted localized graph filter applied to
signal x, w.r.t. the shift operator S, is the signal z ∈ RN with ith entry

zi =

K∑
k=1

hσk[f(S
kx,Ni)]i. (8)

Definition 2 implies the output of a shifted localized graph filter is
a linear combination of the SLOs f(Skx,Ni) at different resolutions.
Hence, shifted localized graph filters inherit the localization property
of SLOs, as they incorporate the graph structure up to K hops away
accessing only neighboring information. These nonlinear filters can be
employed to define graph-adaptive localized activation functions.

Definition 3 (Graph-Adaptive Localized Activation Function). Con-
sider a scalar β and vector hσ=[hfσl1, . . . , h

f
σlK ]> of learnable param-

eters. At layer l, the graph-adaptive localized activation function maps
the linear features zfl [cf. 2] to the output features xfl following the
recursion

[xfl ]i = βReLU([zfl ]i) +

K∑
k=1

hfσlk[f(S
kzfl ,Ni)]i. (9)

Definition 3 combines the pointwise ReLU nonlinearity and the
shifted localized graph filters [cf. Def. 2] into a single graph-adaptive
localized nonlinearity for GNNs. The latter is distributable and localized
because, even though the resolution —given by the shift order— can
be arbitrarily large, the SLO f(·,Ni) [cf. Def. 1] operates only in the
one-hop neighborhood. In Section 4, we evaluate this activation function
for f(·,Ni) being the max and median, leading to the graph-adaptive
max and median activation function, respectively.

3.2. Graph-Adaptive Kernel Activation Functions

The graph-adaptive kernel activation functions replace the localized non-
linear function f(·,Ni) by a localized kernel to enrich the representation
power. Let x

(k)
i ∈ R|Ni| denote the vector containing |Ni| copies of the

k shifted signal at node i, [Skx]i, i.e. x
(k)
i = 1|Ni|⊗[S

kx]i where 1|Ni|
is the vector of ones of dimension |Ni| and ⊗ is the Kronecker opera-
tor. Additionally, consider the vector containing the values at neighbors



j ∈ Ni of the kth shifted signal Skx, i.e. x
(k)
j∈Ni

= [Skx]j∈Ni . With
this notation in place, we define a graph kernel operator as follows.

Definition 4 (Kernel Operator). Let G be an N -node graph with shift
operator S, x a signal, and Skx the kth shifted signal. Consider an ar-
bitrary kernel function g(·,Ni) : R|Ni| → R|Ni|, which at node i com-
putes the nonlinear local operation [g(x,Ni)]i = g(x̃i,xj∈Ni), where
x̃i = 1|Ni| ⊗ [x]i is a vector of dimensionality |Ni| containing copies
of signal x at node i. The k-hop shifted kernel operator mapping from x
to z ∈ RN has the entries

zi = [g(Skx,Ni)]i := g(x
(k)
i ,x

(k)
j∈Ni

). (10)

Definition 4 shows the kernel operator first shifts the input signal x
as Skx and then replaces the signal value at each i by the kernel value
g(·,Ni) in the one-hop neighborhood of i. Thus, the kernel operator
employs only local information at each node to account for the signal-
topology coupling up to k-hops away from a node. For the kernel func-
tion g(·,Ni) we will employ the Gaussian kernel

g(x, y) = exp
(
−||x− y||2/2γ2) , (11)

where scalar γ is tunable. We can now define kernel graph filters.

Definition 5 (Kernel Graph Filter). Consider a kernel operator [cf. 4]
with kernel function g(·,Ni) and let hσ = [hσ1, . . . , hσK ]> be a vector
of parameters. The output of the kernel graph filter applied to signal x,
w.r.t. the shift operator S, is the signal z ∈ RN with ith entry

zi =

K∑
k=1

hσk[g(S
kx,Ni)]i. (12)

Definition 5 implies the output of the kernel graph filter is a linear
combination of the kernel operator applied to each k-shifted signal Skx
for 1 ≤ k ≤ K. Kernel graph filters thus preserve the localization
properties of kernel operators, i.e. they account for the topology of the
graph up to K-hops away accessing only information in the one-hop
neighborhood. These kernel graph filters can be further employed to
define the graph-adaptive kernel activation function as follows.

Definition 6 (Graph-Adaptive Kernel Activation Function). Consider
a scalar β and vector hσ = [hfσl1, ..., h

f
σlK ]> of learnable parameters.

At layer l, the graph-adaptive kernel activation function maps the linear
features zfl [cf. 2] to the output features xfl following the recursion

[xfl ]i = βReLU([zfl ]i) +

K∑
k=1

hfσlk[g(S
kzfl ,Ni)]i. (13)

Definition 6 combines the pointwise ReLU and kernel graph filters
[cf. Def. 5] into a single graph-adaptive kernel activation function. This
activation function is distributable and localized because, even though
the resolution —given by the shift order— can be arbitrarily large, the
kernel g(·,Ni) operates only in the one-hop neighborhood.

In both proposed activation functions, coefficients {β,hσ} are
trainable, meaning these nonlinearities adapt the multi-hop resolution
weights to the task at hand. Because these coefficients are shared among
nodes, the number of parameters to learn for a graph-adaptive activa-
tion function is independent of the graph size. This allows GCNNs to
scale. Note that even though the nonlinear functions f(·,Ni) or the
kernel functions g(·,Ni) act only on the one-hop neighborhood, they
are applied to the shifted signals Skx, therefore they account for the
feature-graph coupling (up to K-hops away) in a nonlinear fashion.
This is an advantage over traditional GCNNs with pointwise nonlinear-
ities, in which the graph topology is only incorporated through linear
encodings generated by graph convolutions.

Definitions 3 and 6 implement fully graph-adaptive GCNNs that,
at each layer, apply a graph convolution followed by a graph-adaptive
activation function. The distributed GCNN is given by the map

Φ(x;S,H,W) := ỹ. (14)
The GCNN output now depends on both the coefficientsH [cf. (5)] and
on the nonlinear activation functions coefficientsW = {hfσl}lf ∪ {β}.

3.3. Properties of Graph-Adaptive Nonlinearities

A key property GCNNs with pointwise activation functions inherit from
graph convolutions is permutation equivariance [15]. The output of a
GCNN is invariant to node relabeling and, more importantly, GCNNs
exploit graph symmetries to generalize learned representations to differ-
ent graph signals that share some of these symmetries. Herein, we show
that permutation equivariance also holds for graph-adaptive nonlineari-
ties. We will also discuss a property that is specific to the graph-adaptive
localized max activation: Lipschitz stability to input perturbations.

Permutation equivariance. Consider the graph convolutional filter
H(S) [cf. (1)] and let P be an N × N permutation matrix satisfying
PTP = PPT = I. If we permute the GSO S and input x respec-
tively as S′ = PTSP and x′ = PTx, we get the corresponding graph
convolution output

y′ = H(S′)x′ = H(PTSP)PTx = PTH(S)PPTx = PTy . (15)

Because pointwise activation functions are scalar and by definition per-
mutation equivariant, (15) implies GCNNs with pointwise nonlinearities
are invariant to node relabelings. For GCNNs with graph-adaptive ac-
tivation functions, it is then desirable to retain this property. This is
guaranteed by the following proposition.

Proposition 1 (Permutation equivariance). Consider a graph signal x
defined on an N -node graph G with GSO S . Let Φ(x;S,H,W) be the
output of a GCNN with graph-adaptive activation functions [cf. (14)]
and let P be an N ×N permutation matrix. The GNN Φ(x;S,H,W)
satisfies

Φ(P>x;P>SP,H,W) = P>Φ(x;S,H,W) (16)

i.e., GNNs with graph-adaptive activation functions are permutation
equivariant.

Proof. For the proof, we refer the reader to the Appendix.

Lipschitz stability. In addition to permutation equivariance, the graph-
adaptive max nonlinearity is Lipschitz stable to input perturbations with
respect to the infinity norm ‖ · ‖∞ as stated in the following proposition.

Proposition 2 (Lipschitz stability). Let G be a graph with GSO S. As-
sume that S is normalized by its largest eigenvalue so that its spectral
norm ρ(S) is unitary. Let x be a graph signal and let x̃ be a perturbation
of x. The output of the graph-adaptive max activation function

[z]i = βReLU([x]i) +

K∑
k=1

hσk[max(Skx,Ni)]i (17)

with coefficients |hσk| ≤ C is Lipschitz stable to input perturbations in
the infinity norm ‖ · ‖∞. That is, there exists a constant Lσ such that

‖z̃− z‖∞ ≤ Lσ‖x̃− x‖∞ (18)

where Lσ = |β|+KCmaxk ‖Sk‖∞.

Proof. For the proof, we refer the reader to the Appendix.

Proposition 2 implies the graph-adaptive max activation is Lipschitz
stable at each node. Lipschitz stability is crucial to make learning more
robust. For instance, in classification problems a GNN with graph-
adaptive max nonlinearities will more likely classify correctly a per-
turbed signal x̃ than a GNN with non-Lipschitz activation functions. The
Lipschitz constant depends on the coefficient β, the number of filter taps
K, the weights hσk (throughC), and the graph (through maxk ‖Sk‖∞).
While we may not have full control over maxk ‖Sk‖∞, β andK are de-
sign parameters, and so is the maximum value of the coefficients hσk.
The Lipschitz constant of graph-adaptive max nonlinearities is thus tun-
able. This represents an advantage compared to conventional pointwise
activation functions, which are stable but have fixed Lipschitz constants.



4. NUMERICAL EXPERIMENTS
We evaluate the performance of six activation functions that include:
ReLU, localized activation functions (max and median) [15], and our
proposed graph-adaptive localized (max and median) and kernel acti-
vation functions. Our goal is to highlight the benefits and limitations
of the different nonlinearities in applications requiring distributed com-
putations with both synthetic and real data. To train the GCNNs we
used the ADAM optimizer with learning rate 10−3 and forgetting fac-
tors β1 = 0.9 and β2 = 0.999. As the GSO, we employ the adjacency
matrix normalized by the maximum eigenvalue. For the graph-adaptive
kernel nonlinearity, we set the parameter γ in (11) to γ = 0.1

4.1. Source Localization

We consider a diffusion process over a graph of N = 40 nodes di-
vided into C = 4 communities. The goal is to determine the source
community of a given diffused signal locally at a selected node; hence,
the distributed implementation is essential. The graph is an undirected
stochastic block model (SBM) with intra- and inter-community proba-
bilities p = 0.8 and q = 0.1, respectively. The graph signals are defined
as Kronecker deltas δc ∈ RN centered at a source node c and diffused
at a timestamp t ∈ [0, 30], i.e. xt = Stδc. We choose as source node
c each of the 40 nodes, thus generating a data set consisting of 1200
graph signals. We split these samples into training, validation, and test
set respectively as 80%, 10%, and 10%. We simulate 10 different graphs
and generate 10 different splits per graph. The training and testing are
performed for the highest connected node for each community, resulting
in four nodes. Training is performed for 400 epochs with a batch size of
100 samples.

Table 1 shows the classification accuracy for different number of
features, F ∈ {2, 4, 8}. For the graph-adaptive nonlinearities, we car-
ried out the experiments with resolutions K = 1 and K = 2. We
only report the results for the better performing filter order, as the rest
were comparable to the localized nonlinearities from [15]. We observe
both the localized nonlinearities and the proposed graph-adaptive non-
linearities significantly outperform ReLU, with a difference in classifi-
cation accuracy of at least 14%. This result highlights the benefits of
accounting for the graph topology during classification. Moreover, the
graph-adaptive max and median activation functions outperform their
localized versions, confirming the advantage of accounting for further
away data-graph coupling. The max nonlinearities achieve a higher ac-
curacy than medians in both the localized and graph-adaptive localized
nonlinearities. This result could be caused by the fact that the median
will overall smooth the signal, hence undermining some local variations
important for classification. Additionally, this could also explain the
lower performance of the graph-adaptive kernel nonlinearities compared
to the localized nonlinearities, which might be affected by the possible
redundancies in the extra information coming from neighbors.

4.2. Distributed Finite-Time Consensus

Distributed finite-time consensus aims to achieve consensus among all
nodes in finite-time, by accessing only local information at each node.
We consider learning the distributed consensus function in a data-driven
fashion over an undirected SBM graph with N = 100 nodes divided
into C = 5 communities with intra- and inter-community probabilities
p = 0.8 and q = 0.1, respectively. The graph signals are generated from
a normal distributionN (0, I). We generate 2500 samples and split them
into 80%, 10%, 10% training, validation, and test sets, respectively. We
average the performance across 10 different graph realizations and 10
different data splits for each graph. We consider a two layer GCNN with
F = 32 features per layer followed by a per-node fully connected layer.
We employ various number of filter ordersK ∈ {20, 25, 30, 35}. Train-
ing is performed for 400 epochs with batch size 100. The evaluation
metric is the RMSE.

Figure 1a shows the RMSE as a function of the filter order for the
different nonlinearities. All GCNNs achieve a lower RMSE compared
with the FIR graph filter. For the lowest order K = 20, ReLU yields a
worse RMSE than the localized and graph-adaptive nonlinearities. Once

Table 1: Source Localization Test Accuracy. L.: localized nonlinearities
[cf. 6]; G.A.: graph-adaptive nonlinearities [cf. (9) and (13)]. Between
brackets the filter order K is specified.

Nonlinearity/ F 2 4 8
ReLU 47.9(±12.1)% 44.9(±15.6)% 47.2(±15.5)%
Max L. 64.5(±8.0)% 69.7(±8.6)% 72.2(±7.7)%
Max G.A. (2) 64.9(±7.6)% 69.2(±7.0)% 73.9(±6.8)%
Median L. 61.6(±7.4)% 65.1(±8.3)% 69.6(±7.2)%
Median G.A. (2) 65.4(±7.5)% 65.6(±7.6)% 71.3(±7.1)%
Kernel G.A. (1) 58.6(±9.5)% 57.4(±10.2)% 61.9(±10.7)%

the filter order increases, and thus the degrees of freedom, adding a para-
metric nonlinearity seems to be less beneficial because the network has
enough degrees of freedom in the filter to model the consensus function.
We also experiment with the robustness of the different models to link
losses by removing graph edges with different probabilities, following
the random edge sampling model of [17]. For each method, we consid-
ered the best performing setup. From the trained graph G, we randomly
removed edges with probabilities in the interval [0.025, 0.15]. The re-
sults are shown in Figure 1b, averaged across 10 realizations. Although
all models deteriorate when the link losses increase, graph-adaptive non-
linearities handle the stochasticity better. The kernel nonlinearity seems
to be the most sensitive as its performance reaches those of the other
graph-adaptive alternatives.

4.3. Distributed Regression

We perform distributed regression using the Molene dataset, which con-
tains hourly temperature measurements of N = 32 stations over T =
744 hours recorded in January 2014 in the area of Brest (France). Us-
ing the node (station) coordinates, we generate a weighted geometric
graph using a ten nearest neighbor approach proposed in [18]. We con-
sider as graph signals the measurements taken at different timestamps
t ∈ T . Thus, our data set consists of 744 graph signals. On top of
the original signals we add zero-mean noise with a signal-to-noise ratio
(SNR) of 3 dB. These noisy signals are split into 80%, 10%, 10% train-
ing, validation, and test sets, respectively. Our goal is to train a GCNN
for removing the noise distributively. We employ a GCNN with one
layer and a varying number of features F ∈ {1, 2, 4} and filter orders
K ∈ {1, 2, 4, 8}. We perform the training for 500 epochs with a batch
size of 100 samples. We employ RMSE as the evaluation metric. The
final results are averaged across 20 different splits of the data set.

Figure 1c shows the RSME as a function of the filter order for the
different nonlinearities. Across all GCNNs the best performance was
achieved for the highest number of features, four, so we only report the
results for this setup. In the other setups, the performances were compa-
rable. All GCNNs perform better than the FIR, but the difference is more
significant for the lowest filter order K = 1, especially in the case of
graph-adaptive localized nonlinearities. This finding suggests their ap-
plicability in situations where the communication resources are limited.
To further address this hypothesis, we experimented with different lev-
els of noise added to the data. For each method, we considered the setup
with the lowest filter orderK = 1. The results in Figure 1d show that the
graph-adaptive and localized nonlinearities outperform or achieve com-
parable results to ReLU. The general trend shows an increase in perfor-
mance when the SNR becomes larger, with a more significant increase
for the graph-adaptive localized nonlinearities. The performance of the
graph-adaptive kernel nonlinearity suffers in this scenario, as it requires
higher filter orders compared to the rest. We suggest using higher orders
in the latter case to fully exploit the kernel power.

4.4. Recommender Systems

We implement a GNN-based recommender system by considering aU×
M rating matrix R, containing 100,000 ratings given by U = 943 users
to M = 1682 movies in the MovieLens 100k dataset [19]. The entries
[R]um are the ratings between 1 and 5 if user u has rated movie m,
and 0 otherwise. We interpret the rows of R, i.e. the user rating vec-



20 25 30 35
Filter Order

10 2

10 3

RM
SE

FIR
ReLU
L. Max
L. Med
G.A. Max K=2
G.A. Med K=2
G.A. Kernel K=2

(a)

0.000 0.025 0.050 0.075 0.100 0.125 0.150
Probability of edge removal

10 2

10 3

RM
SE FIR

ReLU
L. Max
L. Med
G.A. Max K=2
G.A. Med K=2
G.A. Kernel K=2

(b)
1 2 4 8

Filter Order

1.2

1.4

1.6

1.8

2.0

2.2

2.4

RM
SE

FIR
ReLU
L. Max.
L. Med
G.A. Max K=2
G.A. Med K=2
G.A. Kernel K=2

(c)

5 3 0 3 5
SNR

1.25

1.50

1.75

2.00

2.25

2.50

2.75

RM
SE FIR

ReLU
L. Max
L. Med
G.A. Max K=2
G.A. Med K=2
G.A. Kernel K=2

(d)

Fig. 1. (a) Root mean square error (RMSE) of the GCNNs and FIR graph filters for distributed finite-time consensus as a function of filter order.
(b) Robustness of the GCNNs and FIR graph filters for distributed finite-time consensus as a function of link-loss probabilities. (c) RMSE of the
GCNNs and FIR graph filters for distributed regression as a function of filter order. (d) Robustness of the GCNNs and FIR graph filters for distributed
regression as a function of the SNR. L.: localized nonlinearities [cf. 6]; G.A.: graph-adaptive nonlinearities [cf. (9) and (13)]. K denotes the filter
order.

Table 2: Average test RMSE over five train-test splits for the movies
Toy Story, Contact and Return of the Jedi. L.: localized nonlinearities
[cf. 6]; G.A.: graph-adaptive nonlinearities [cf. (9) and (13)].

Nonlinearity Toy Story Contact Return of the Jedi
ReLU 0.976(±0.158) 1.022(±0.042) 1.018(±0.177)
Max L. 0.999(±0.166) 1.028(±0.029) 1.001(±0.162)
Max G.A. 0.968(±0.168) 1.018(±0.038) 0.998(±0.172)
Median L. 0.987(±0.156) 1.039(±0.055) 1.020(±0.177)
Median G.A. 0.989(±0.160) 1.020(±0.038) 1.021(±0.181)
Kernel G.A. 0.977(±0.152) 1.021(±0.037) 1.014(±0.177)

tors ru, as graph signals on a M -node movie similarity network. The
graph signals are split into 90% as training and 10% as test set, and the
movie similarity network is built by computing pairwise correlations be-
tween movie rating vectors (i.e. columns of R) containing only ratings
from users in the training set. The GNN is trained to predict user rat-
ings to a movie m. This is achieved by “zero-ing” out the ratings to
movie m in the input graph signals ru, feeding them to the GNN to
generate the rating prediction [ru]m, and minimizing the smooth `1 loss
|[ru]m−[ru]m|. We consider three graph-adaptive GNNs employing the
one-hop max, one-hop median, and one-hop kernel graph-adaptive non-
linearities to highlight the impact of immediate neighboring information,
hence making the recommendation more localized over items. They are
compared with GNNs containing ReLU activations and the one-hop max
and median activations from [15]. All GNNs consist of L = 1 layer,
F = 32 features using graph convolutional filters banks with K = 5 fil-
ter taps each. We train all GNNs over 30 epochs and in batches of 5 for
the movies Toy Story, Contact, and Return of the Jedi. The average test
RMSEs over five random train-test splits for each movie are reported in
Table 2.

We observe the graph-adaptive max activation function outperforms
the other nonlinearities for all three movies. In particular, the graph-
adaptive max fares better than both the ReLU and its localized counter-
part. The graph-adaptive median also outperforms the localized median
for the movie Contact, and achieves comparable performance for the
other movies. As for the graph-adaptive kernel activation, it performs
similarly to the ReLU and does not provide much of an improvement.

5. CONCLUSIONS

We proposed a new family of graph-adaptive activation functions for
GNNs that capture the graph topology while also being distributable.
These activation functions incorporate the data-topology coupling into
all the GNN components by combining nonlinearized features from
neighboring nodes with a set of trainable parameters. These param-
eters adapt the information coming from neighborhoods of different
resolutions to the task at hand, hence aiding learning. The proposed
graph-adaptive activation functions preserve permutation equivariance
and the graph adaptive max activation function is Lipschitz stable to
input perturbations. Graph-adaptive nonlinearities were compared to
GCNNs employing localized and pointwise nonlinearities in four differ-
ent problems based on both synthetic and real-world data, showing an

improved performance compared to pointwise and other state-of-the-art
localized nonlinearities. Future work will be on two fronts: characteriz-
ing the stability of the proposed activation functions to perturbations in
the topology and performing learning distributively.

APPENDIX

Proof of Prop. 1. Let S′ = P>SP be the graph permutation and x′ =
P>x the permuted signal. From (15), the output of the graph convo-
lution is equivariant to the action of P. Hence, we only need to prove
permutation equivariance of the graph-adaptive activation functions in
(9) and (13). We write their output as the signal z with entries

[z]i = βReLU([x]i) +

K∑
k=1

hσk[g(S
kx,Ni)]i (19)

where g(·,Ni) denotes either a shifted localized operator [cf. Def 1] or
a kernel operator [cf. Def. 4]. Applying the activation functions in (19)
to the permuted signal x′, we obtain

[z′]i = βReLU([P>x]i) +

K∑
k=1

hσk[g((P
>SP)kP>x,Ni)]i. (20)

Since the ReLU activation function is pointwise, it is permutation
equivariant, i.e. ReLU(P>x) = P>ReLU(x). We then focus on
the second term of the sum, where we observe that (P>SP)k =
P>SPP>SP...P>SP = P>SkP, which implies (P>SP)kP>x =
P>Skx. We can rewrite z′ as

[z′]i = β[P>ReLU(x)]i +

K∑
k=1

hσk[g(P
>Skx,Ni)]i. (21)

Because function g(·,Ni) is localized, it acts on the one-hop neighbor-
hoods of each node, which are preserved under node relabelings. There-
fore, g(·,Ni) is permutation equivariant and (21) becomes

[z′]i = β[P>ReLU(x)]i +

K∑
k=1

hσk[P
>g(Skx,Ni)]i

= [P>βReLU(x)]i +

[
P>

K∑
k=1

hσkg(S
kx,Ni)

]
i

.

Therefore z′ = P>z and, hence, GNNs with graph-adaptive activation
functions are permutation equivariant.

Proof of Prop. 2. Let x̃ be a perturbed input with ith entry [x̃]i = [x]i+
εi. Denoting by z̃ the output obtained by applying the graph-adaptive
max activation function to x̃, we can write

‖[z̃]i − [z]i‖ ≤ ‖β (ReLU([x̃]i)− ReLU([x]i))‖

+

∥∥∥∥∥
K∑
k=1

hσk
(
[max(Skx̃,Ni)]i − [max(Skx,Ni)]i

)∥∥∥∥∥ (22)



which is obtained by grouping terms and applying the triangle inequality.
The ReLU activation is Lipschitz stable with constant one [20], and so

‖β (ReLU([x̃]i)− ReLU([x]i))‖≤ |β| ‖[x̃]i − [x]i‖= |β| ‖[x̃− x]i‖ .
(23)

For the second part of the sum in (22), we have∥∥∥∥∥
K∑
k=1

hσk
(
[max(Skx̃,Ni)]i − [max(Skx,Ni)]i

)∥∥∥∥∥
≤

K∑
k=1

|hσk|
∥∥∥[max(Skx̃,Ni)]i − [max(Skx,Ni)]i

∥∥∥
which follows from the Cauchy-Schwarz inequality. Observe that, for
any two functions f(·) and g(·), we can write the inequality max(f) =
max(f − g + g) ≤ max(f − g) + max(g), and so

K∑
k=1

|hσk|
∥∥∥[max(Skx̃,Ni)]i − [max(Skx,Ni)]i

∥∥∥
≤

K∑
k=1

|hσk|‖[max(Sk(x̃− x),Ni)]i‖.

We proceed by noting that

‖[max(Sk(x̃− x),Ni)]i‖ ≤ ‖max
i

[Sk(x̃− x)]i‖

≤ max
i
‖[Sk(x̃− x)]i‖ = ‖Sk(x̃− x)‖∞

which allows us to write∥∥∥∥∥
K∑
k=1

hσk
(
[max(Skx̃,Ni)]i − [max(Skx,Ni)]i

)∥∥∥∥∥
≤

K∑
k=1

|hσk|‖Sk(x̃− x)‖∞ ≤
K∑
k=1

|hσk|‖Sk‖∞‖x̃− x‖∞

≤ KCmax
k
‖Sk‖∞‖x̃− x‖∞.

(24)

Putting (23) and (24) together, we can write

‖[z̃− z]i‖ = ‖[z̃]i − [z]i‖ ≤ |β| ‖[x̃− x]i‖+KCmax
k
‖Sk‖∞‖x̃− x‖∞.

Since this is true for all i and from the definition of ‖ · ‖∞, we conclude

‖z̃− z‖∞ =≤
(
|β|+KCmax

k
‖Sk‖∞

)
‖x̃− x‖∞

which completes the proof. Note that ‖Sk‖∞ ≥ ρ(S)k = 1 for all k
with limk→∞ ‖Sk‖∞ = ρ(S)k = 1, so there exists K0 such that, for
all k > K0, ‖Sk‖∞ ≤ maxk ‖Sk‖∞ with maxk ‖Sk‖∞ = ‖SK0‖∞.

6. REFERENCES

[1] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A
comprehensive survey on graph neural networks,” IEEE Transac-
tions on Neural Networks and Learning Systems, 2020.

[2] F. Gama, E. Isufi, G. Leus, and A. Ribeiro, “Graphs, convolutions,
and neural networks,” arXiv:2003.03777, 2020.

[3] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional
neural networks on graphs with fast localized spectral filtering,” in
30th Conf. Neural Inform. Process. Syst., Barcelona, Spain, 5-10
Dec. 2016, pp. 3844–3858, Neural Inf. Process. Syst. Foundation.

[4] F. Gama, A. G. Marques, G. Leus, and A. Ribeiro, “Convolutional
neural network architectures for signals supported on graphs,”
IEEE Trans. Sig. Proc., vol. 67, no. 4, pp. 1034–1049, Feb. 2019.

[5] D. I. Shuman, P. Vandergheynst, D. Kressner, and P. Frossard,
“Distributed signal processing via chebyshev polynomial approxi-
mation,” IEEE Transactions on Signal and Information Processing
over Networks, vol. 4, no. 4, pp. 736–751, 2018.

[6] E. Isufi, A. Loukas, A. Simonetto, and G. Leus, “Autoregressive
moving average graph filtering,” IEEE Trans. Sig. Proc., vol. 65,
no. 2, pp. 274–288, 2016.

[7] S. Segarra, A. G. Marques, and A. Ribeiro, “Optimal graph-filter
design and applications to distributed linear network operators,”
IEEE Trans. Sig. Proc., vol. 65, no. 15, pp. 4117–4131, Aug. 2017.

[8] Aliaksei Sandryhaila, Soummya Kar, and José MF Moura, “Finite-
time distributed consensus through graph filters,” in 2014 IEEE In-
ternational Conference on Acoustics, Speech and Signal Process-
ing (ICASSP). IEEE, 2014, pp. 1080–1084.

[9] John Tsitsiklis, Dimitri Bertsekas, and Michael Athans, “Dis-
tributed asynchronous deterministic and stochastic gradient opti-
mization algorithms,” IEEE transactions on automatic control, vol.
31, no. 9, pp. 803–812, 1986.

[10] Ali Jadbabaie, Jie Lin, and A Stephen Morse, “Coordination of
groups of mobile autonomous agents using nearest neighbor rules,”
IEEE Transactions on automatic control, vol. 48, no. 6, pp. 988–
1001, 2003.

[11] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral net-
works and deep locally connected networks on graphs,” in 2nd Int.
Conf. Learning Representations, Banff, AB, 14-16 Apr. 2014, pp.
1–14, Assoc. Comput. Linguistics.

[12] F. M. Bianchi, D. Grattarola, C. Alippi, and L. Livi, “Graph neural
networks with convolutional ARMA filters,” arXiv:1901.01343
[cs.LG], 2019.

[13] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and
Y. Bengio, “Graph attention networks,” in Int. Conf. Learning
Representations 2018, Vancouver, BC, 30 Apr.-3 May 2018, pp.
1–12, Assoc. Comput. Linguistics.

[14] E. Isufi, F. Gama, and A. Ribeiro, “EdgeNets: Edge varying graph
neural networks,” arXiv:2001.07620v1 [cs.LG], 21 Jan. 2020.

[15] L. Ruiz, F. Gama, A. G. Marques, and A. Ribeiro, “Invariance-
preserving localized activation functions for graph neural net-
works,” IEEE Trans. Sig. Proc., vol. 68, no. 1, pp. 127–141, Jan.
2020.

[16] F. Gama, J. Bruna, and A. Ribeiro, “Stability properties of graph
neural networks,” arXiv:1905.04497v2 [cs.LG], 4 Sep. 2019.

[17] Elvin Isufi, Andreas Loukas, Andrea Simonetto, and Geert Leus,
“Filtering random graph processes over random time-varying
graphs,” IEEE Transactions on Signal Processing, vol. 65, no. 16,
pp. 4406–4421, 2017.

[18] Elvin Isufi, Andreas Loukas, Nathanael Perraudin, and Geert Leus,
“Forecasting time series with varma recursions on graphs,” IEEE
Transactions on Sig. Proc., vol. 67, no. 18, pp. 4870–4885, 2019.

[19] F. M. Harper and J. A. Konstan, “The MovieLens datasets: History
and context,” ACM Trans. Interactive Intell. Syst., vol. 5, no. 4, pp.
19:(1–19), Jan. 2016.

[20] T. Wiatowski and H. Bölcskei, “A mathematical theory of deep
convolutional neural networks for feature extraction,” IEEE Trans-
actions on Inf. Theory, vol. 64, no. 3, pp. 1845–1866, 2017.



Towards Finite-Time Consensus with Graph
Convolutional Neural Networks

Bianca Iancu and Elvin Isufi
Intelligent Systems Department, Delft University of Technology, Delft, The Netherlands

Abstract—This work proposes a learning framework for dis-
tributed finite-time consensus with graph convolutional neural
networks (GCNNs). Consensus is a central problem in distributed
and adaptive optimisation, signal processing, and control. We
leverage the link between finite-time consensus and graph filters,
and between graph filters and GCNNs to study the potential of a
readily distributed architecture for reaching consensus. We have
found GCNNs outperform classical graph filters for distributed
consensus and generalize better to unseen topologies such as
distributed networks affected by link losses.

Index Terms—Finite-time consensus, graph convolutions,
graph signal processing, graph neural networks.

I. INTRODUCTION

Distributed average consensus is a fundamental problem in
signal processing, sensor networks, and multi-agent control
[1]–[7]. A first approach to reach consensus is through dis-
tributed iterative solvers, such as randomized gossip [8] or
methods of multipliers [9]. These methods reach consensus at
steady-state and their convergence rate is dominated by the
network topology. A more recent direction considers reaching
consensus within a finite number of iterations and frames this
problem as a graph filtering operation [10].

The first work to formalize finite-time consensus through
graph filters is [11]. This work uses the finite impulse response
(FIR) graph filters and designs the filter coefficients by relying
on the graph spectrum. Conditions on when the latter is
feasible are further analyzed in [12], [13]. A main limitation
of these theoretical contributions is that the filter coefficients
depend on the specific eigenvalues of the graph Laplacian
matrix. The cost of computing the eigendecomposition limits
also their applicability to graphs of small dimensions. The
designed filters suffer also from numerical issues due to the
finite-precision of the eigenvalues. Besides the theoretical
insights, the practical benefit of these works is to approximate
better consensus in a finite number of iterations compared
with the other distributed solvers. The fastest converging filter
is the edge varying graph filter [14], which differently from
FIRs exploits also nodes’ locality and sparsity to enhance the
degrees of freedom. However, the edge varying graph filter
requires a fixed labeling in both design and implementation
phase and the graph structure to be fixed; both assumptions
that might be infeasible in practical distributed settings or
when the topology changes slightly (e.g. nodes and links that
fail).

In this paper, we address distributed finite-time consensus as
a learning problem on graphs. We employ a distributed graph

convolutional neural network (GCNN) to learn the consensus
function in a data-driven fashion. GCNNs can be thought of
as extending to graphs conventional CNNs, where the spatial
convolutional filters are substituted by graph convolutional
filters [15], [16]. By having the FIR graph filter as their
integral part, GCNNs link directly to finite-time consensus
if the activation functions leave unaffected the distributed
implementation. The coupling graph filter-activation function
also facilitates the transferability of GCNNs to graphs that
deviate slightly from the ones they were trained on [17]. The
main research question we address is how do GCNNs behave
for distributed finite-time consensus. Our preliminary results
show the potential of the GCNNs to outperform FIRs for
reaching consensus. The improved performance is sensitive to
the activation function and to the graph topology. Parametric
activation functions should be employed when the GCNN with
non-parametric ones (e.g., ReLU) has limited discriminatory
power or when the communication complexity is limited. Also,
better connected graphs yield a better performance. Finally,
we observed GCNNs are more robust than FIRs in reaching
consensus over graphs affected by link losses.

This paper is organized as follows. Section II recalls some
background material about graph signal processing and dis-
tributed consensus with graph filters. Section III details the
architecture and nonlinearities under study. The numerical
experiments are reported in Section IV, while the paper
conclusions in Section V.

II. BACKGROUND

We start with some basic concepts from graph signal
processing and then we continue with graph filters and their
link to distributed consensus.

A. Graph signal processing

Consider a graph G = (V, E) with vertex set V =
{v1, v2, ..., vN} of cardinality |V| = N and edge set E ⊆ V×V
of cardinality |E| = M . An edge is a tuple eij = (vi, vj)
connecting nodes vi and vj . The neighborhood of node vi is
the set of nodes connected to vi, i.e., Ni = {vj |(vi, vj) ∈ E}.
Associated with G is an N × N matrix S, named the graph
shift operator (GSO) matrix, whose sparsity pattern matches
the graph structure. The entry (i, j) of S is [S]i,j = si,j 6=
0, if i = j or (i, j) ∈ E . Commonly used GSOs are the adja-
cency matrix A, the graph Laplacian matrix L (for undirected
graphs), or their normalized and translated forms.



On the vertices of G, we define a graph signal x =
[x1, x2, ..., xN ]> ∈ RN , whose i-th component xi is the signal
value of node vi. The GSO can be used to represent the
signal in the graph spectral domain. For this, consider the
eigendecomposition S = UΛU−1 with eigenvectors U =
[u1, . . . ,uN ] and eigenvalues Λ = diag(λ1, . . . , λN ). The
graph Fourier transform (GFT) of x is defined as x̂ = U−1x,
where x̂i quantifies how much eigenvector ui contributes to
the variation of signal x over the graph [10], [18]. As we
shall see in the sequel, this Fourier decomposition plays a
role in approaching consensus from a spectral perspective. For
completeness, the inverse GFT is x = Ux̂ and the eigenvalues
Λ are referred to as the graph frequencies.

B. Consensus as graph signal filtering

Consider the signal x and the consensus version x̄ = x̄1,
with x̄ being the mean of x and 1 the vector of all ones. We can
think of x̄ as a signal whose GFT coefficients ˆ̄x are such that
the combined eigenvectors yield the DC component. For the
GSO being the graph Laplacian S = L, this is straightforward
since eigenvector u1 associated to the smallest eigenvalue
λ1 = 0 is constant, i.e., u1 = 1/

√
N1. Only the first coeffi-

cient ˆ̄x1 is necessary to represent the consensus signal, while
all other coefficients can be null, ˆ̄x2 = . . . = ˆ̄xN = 0. For S
being the adjacency matrix or any other graph representation
matrix that does not have a constant eigenvector, vector ˆ̄x will
have more than one entry (if not all) non-zero to represent the
constant signal.

We can think of consensus as a graph filter that takes an
heterogeneous graph signal x and filters it to return the con-
stant mean signal x̄ = x̄1 over the nodes [11]. A graph filter
matrix H(S) w.r.t. the GSO S is defined as the polynomial
matrix of order K

H(S) =

K∑
k=0

hkS
k (1)

that takes as input a graph signal x to return the output
signal y = H(S)x. Vector h = [h0, . . . , hK ]> contains the
K+1 filter coefficients. Exploiting the GFT, we can write the
input-output graph filtering relation as ŷ = H(Λ)x̂, where
the diagonal matrix H(Λ) =

∑K
k=0 hkΛ

k contains the filter
frequency response on the main diagonal. Reaching consensus
with graph filters of the form in (1) accounts for learning the
filter parameters h such that the signal is low-pass filtered to
pass only the DC component.

Another advantage of (1) is its readily distributed imple-
mentation. In building the output y, we need to compute
the terms Sx,S2x, . . . ,SKx. By exploiting the recursion
Skx = S(Sk−1x) = Sx(k−1), node i can compute the shifted
signal x(k) by exchanging previous shift information x(k−1)

with its direct one-hop neighbors Ni, since the shift operator
is local. This recursive implementation allows for a distributed
communication and computational cost of order O(MK) [12].

The main benefit of (1) is that, under appropriate conditions
on the spectrum of S [13], coefficients h can be designed
to achieve exact finite-time consensus in at most K = N

iterations [11], [19]. However, their applicability is limited to
simple (cyclic or star) graphs, since these approaches require
high numerical precision of the eigenvalues. An approach to
tackle the numerical issues is to consider a different graph filter
in (1), such as ARMA [20], node varying [12], or edge varying
[21]. Of particular interest is the so-called edge varying
graph filter [21], which substitutes scalars hk with N × N
coefficient matrices Hk in which entry (i, j) is the coefficient
applied to edge eij . In this case, finite-time consensus can be
approximated with higher accuracy compared with (1), but the
graph structure and its labeling should be fixed. The latter is
also practically non-transferable to a slightly different graph,
such as a graph affected by link losses.

Employing instead a GCNN with filters of the form in
(1) does not require the GSO eigendecomposition, a fixed
labeling, and it is better transferable to unseen graphs than
the linear graph filter [17].

III. METHODS

In this section, we first detail the GCNN architecture and
the activation functions under study. Then, we discuss two
properties of the GCNN, namely, the permutation equivariance
and transference to unseen graphs and their suitability to
distributed consensus.

Architecture. We consider a GCNN composed of L graph
convolutional layers followed by a per node fully connected
layer –Figure 1. Each graph convolutional layer comprises a
bank of graph filters [cf. (1)] and a nonlinearity. At layer l,
the GCNN takes F input features {xgl−1}Fg=1 and produces
other F output features {xfl }Ff=1. Each input feature xgl−1 is
treated as graph signals and processed by a parallel bank of
F graph filters {Hfg

l }f of the form (1). The filter outputs
are then aggregated over the input index g to yield the f -th
intermediate feature

zfl =

F∑
g=1

Hfg
l (S)xgl−1 =

F∑
g=1

K∑
k=0

hfgkl S
kxgl−1, for f ∈ {1, . . . , F}.

(2)
The intermediate feature zfl is another graph signal whose
i-th entry [zfl ]i is associated with node vi. The latter is
subsequently passed through an activation function σ(·) to
yield the f -th output of the l-th convolutional layer

xfl = σ(zfl ), for f ∈ {1, . . . , F}. (3)

Layer l is characterized by the F 2 coefficient vectors hfgl =

[hfg0l , . . . , h
fg
Kl]
> of filters Hfg

l (S) in (2). Remark the number
of input and output features do not need to be the same, but
we assume so to ease notation.

The input feature of layer l = 1 is the graph signal x0 := x
for which we want to reach consensus. The output features of
layer L, x1

L, . . . ,x
F
L , represent the final convolutional features.

The latter can also be seen as a collection of F graph signals,
where on node vi we have the F × 1 feature vector χLi =



Graph signal:
x = [x1, …, xN]

σ(·) …

Input Graph Convolutional Layers and Activation Functions Fully Connected Layer Per Node

MSE

MSE

σ(·)

Fig. 1: Distributed GCNN architecture for finite-time consensus. The input is a graph signal x, which is filtered by a filter
bank of F FIR graph filters [cf. (1)] and then passed through and activation function σ(·). This forms a graph convolutional
layer, which is cascaded L times. The final convolutional features are concatenated per node and passed to a per-node fully
connected layer to compute the final output. This output is used during training the minimze the mean squared error (MSE).

[x1Li, . . . , x
F
Li]
>. Each node locally combines the features χLi

with a one-layer perceptron1 to build the final scalar output

yi = h>FCχLi (4)

where hFC = [h1, . . . , hF ]> is the F × 1 vector of parameters
in the local fully connected layer. Vector hFC is shared
among all nodes to keep the number of trainable parameters
independent from the graph dimensions.

Activation functions. If the activation functions in the con-
volutional layers were local, the GCNN would be readily
distributable. In fact, all filters {Hfg

l (S)}fgl are distributable,
as discussed in Section II-B. The last fully connected layer
leaves unaffected the distributed implementation since it is
local over the nodes. In this work, we study the effect of three
activation functions for distributed consensus: the pointwise
ReLU, the pointwise kernel [22], and the local max [23].

ReLU: The rectified linear unit is pointwise on each scalar
entry xi of the feature vector x and it is defined as

σ(x) = max(0,x). (5)

Kernel: The pointwise kernel activation function considers
a one-dimensional dictionary d = [d1, . . . , dD]> of D atoms
sampled uniformly around zero. Any scalar feature xi of node
vi is combined with all elements of d to build the parametric
nonlinear features

σ(xi) =

D∑
j=1

hjκ(xi, dj) (6)

where hσ = [h1, . . . , hD]> is a D × 1 vector of trainable
parameters and κ(xi, dj) is a one-dimensional kernel between
feature value xi and dictionary atom dj . Following [22], we
employ the Gaussian kernel function κ(xi, dj) = exp

(
−γ(xi−

dj)
2
)
, where γ is a tuneable parameter.

Max local: Differently from the above two, the max local
activation function is not pointwise at node vi but takes into
account also feature values at neighboring nodes Ni. Let x
be an N × 1 graph signal feature on which we want to apply
the max local activation function. Then, the output of a local

1Each node can also consider a local multi-layer perceptron to combine the
features in χLi.

max operator max(S,x) applied to signal x is another graph
signal z whose i-th entry zi is the maximum value in the
neighboorhood, i.e., zi = [max(S,x)]i = max

(
{xj : vj ∈

Ni}
)
. The max local activation function for the feature signal

x builds the parametric features

σ(x) = h0 max(0,x) + h1max(S,x). (7)

with trainable parameters hσ = [h0, h1]>. The ReLU term
nonlinearizes also the node features. In [23], the authors
extended (7) to a neighborhood of order K. This choice,
however, is not distributable and we shall not discuss it further.

The above activation functions leave unaffected the commu-
nication and computational costs of the GCNN, which remain
governed by the cost of running all graph filters [cf.(1)]. For an
architecture of F features per layer and L graph convolutional
layers the cost is of order at most O(F 2LMK).

Parameter training. If the ReLU nonlinearity is used, the
total number of parameters of the GCNN is F 2(L− 1)(K +
1)+F (K+1)+F . This divides as: i) F (K+1) parameters for
the F filters in the first graph convolutional layer; ii) F 2(K+
1)(L−1) for the parameters of the F 2 filters in the remaining
L−1 graph convolutional layers; and iii) F parameters in the
final fully-connected layer. Instead, if the kernel or the max
local activation functions are used, we should also consider
the parameters in hσ . This adds DL or 2L parameters for the
kernel or the max local activation function, respectively.

By grouping all parameters into set H =
{hfgl ; hσl; hFC}lfg , we can consider the GCNN as a
mapping Φ(·) that takes as input a graph signal x, a GSO S,
and a set of parameters H to produce the output

Φ(x; S;H) := ỹ. (8)

The output (8) is computed for a training set T = {(xr,yr)}
of |T | = R pairs, where the input xr is a graph signal and
yr is the vector containing the consensus signal x̄r for all
nodes; i.e., yr = x̄r1. The goal of the GCNN is to learn
the distributed averaging function from examples in T and
extrapolating it to unseen graph signals x /∈ T .

As a loss function, we considered the averaged mean
squared error (MSE) between the GCNN output ỹr and the



20 25 30 35 40
Filter Order

10 2

10 3

RM
SE

FIR
GCNN - ReLU
GCNN - Kernel
GCNN - Max

(a)

0.05 0.10 0.15 0.20 0.25
SBM: inter-community probability

10 2

10 3

RM
SE

FIR
GCNN - ReLU

(b)

0.000 0.025 0.050 0.075 0.100 0.125 0.150
Probability of edge removal

10 2

10 3

RM
SE

FIR
GCNN - ReLU
GCNN - Kernel
GCNN - Max

(c)

Fig. 2: Root mean square error (RMSE) of the GCNN and FIR graph filters for reaching finite-time consensus. (a) Comparison
of different filter orders (iterations) and nonlinearities. (b) Performance of the FIR and GCNN with ReLU nonlinearity as a
function of the graph connectivity. (c) Robustness of the different models as a function of link loss probability.

label yr; i.e.,

L =
1

R

R∑
r=1

‖yr − ỹr‖22. (9)

This loss is minimized w.r.t. parameters in H using standard
backpropagation with stochastic gradient descent or any other
preferred descent method.
Equivariance and transference. The coupling graph filter-
activation function embodies the GCNN with two important
properties, namely, permutation equivariance and transference
to unseen graphs. Permutation equivariance implies that the
processing of a graph signal with the GCNN is independent
of node labeling. This is satisfactory for distributed consensus
because we would like to train the GCNN on a graph G and
deploy it on any permuted version of G. Although permuta-
tion equivariance restricts the family of activation functions,
pointwise nonlinearities and the max local nonlinearity are
permutation equivariant [23].

The transference of the GCNN to unseen graphs is essential
for distributed consensus since in practical scenarios communi-
cation links are prone to perturbations. Transference properties
of the graph filters [cf. (1)] and of the GCNN [cf. (8)] are
recently linked with their ability to be robust to perturbations
[17], [24]. Next, we investigate this property for consensus
and observe that GCNNs have a better transference to unseen
graphs compared with the FIR filter (1).

IV. NUMERICAL RESULTS

We evaluate the impact of the three activation functions,
ReLU (5), kernel (6), and localized max (7), for the GCNN
architecture (8) and compare their performance with the FIR
graph filter (1). Our goal is to highlight the benefits and
limitations of the different activation functions as well as
provide preliminary insights on the GCNN behavior when
employed for distributed consensus. In specific, the research
questions we aim to answer are:

RQ.1 What is the impact of the activation function and filter
order on the GCNN?

RQ.2 What is the impact of the graph connectivity when
learning the GCNN consensus function?

RQ.3 How do different activation functions behave when the
GCNN is deployed on different graphs?

Setup. We considered an undirected stochastic block model
(SBM) graph of N = 100 nodes divided into C = 5 communi-
ties with intra- and inter-community probabilities p = 0.8 and
q = 0.1, respectively. The graph signals are generated from
a normal distribution N (0, I). We generated 2500 samples
and split them into 80%, 10%, 10% training, validation and
test sets, respectively. We averaged the performance across
10 different graph realizations and 10 different data splits
for each graph. The GSO is the normalized adjacency matrix
S = A/λmax(A), where λmax(A) is the maximum eigenvalue
of the adjacency matrix2. The considered architecture is a two
layer GCNN with F = 32 features per layer followed by a
per-node fully connected layer. To train the parameters, we
considered the ADAM optimizer with learning rate 0.001 and
forgetting factors β1 = 0.9 and β2 = 0.999 for 400 epochs and
batch size of 100 samples. For the kernel activation function,
we considered the same parameters as in [22].

Non-linearity and filter order. We analyzed the three ac-
tivation functions in Section III and filter orders in the set
K ∈ {20, 25, 30, 35, 40}. Since for consensus we want the
filters to approximate a strongly low-pass transfer function,
low filter orders (e.g., K ∈ {1, . . . , 5} as used for classifica-
tion) significantly affect the performance. From Fig. 2a, we
see the ReLU and the local max activation functions achieve
a significantly lower root MSE compared with the kernel
activation function but also with the FIR graph filter. The
local max performs better than ReLU only for the lowest order
K = 20, which goes in line with the classification results in
[23]. When the filter order K increases, hence the degrees of
freedom, adding a parametric nonlinearity is a disadvantage.
In fact, the kernel activation function (6) has D = 20 extra

2We also experimented with the Laplacian as GSO but its performance was
consistently worse compared with the normalized adjacency matrix.



parameters per layer and yields a worse performance compared
with the local max which has two additional parameters.
These observations suggest that parametric activation functions
should be preferred when a GCNN architecture with non-
parametric ones has a low discriminatory power or when the
communication cost is limited.

Graph connectivity. To analyze the impact of the graph con-
nectivity when learning the consensus function, we evaluated
the inter-community edge formation probability in the interval
q ∈ [0.05, 0.25]. In Fig. 2b, we compare directly the ReLU
nonlinearity for K = 25 with the FIR graph filter since it was
the best performing architecture. For both methods, we observe
a lower RMSE when the communities are better connected.
This finding is intuitively satisfying for distributed consensus,
as the better connected the communities the easier nodes get
information from further away neighbors.

Robustness. In this last experiment, we analyze the robustness
of the different methods when transferred to graphs affected
by link losses. For each method, we considered the best
performing order. From the trained graph G, we randomly
removed edges with probabilities in the interval [0.025, 0.15].
Fig. 2 illustrates the performance averaged over 10 additional
realizations. All GCNN models outperform the FIR. It is,
however, remarkable that the kernel activation function is quite
robust to link losses compared with the rest. We attribute this
behavior to the increased degrees of freedom, which trade
performance with robustness.

V. CONCLUSIONS AND FUTURE WORK

We proposed a data-driven framework for addressing finite-
time consensus with GCNNs. We exploited the link between
consensus, graph convolutional filters, and GCNNs to propose
a method that is readily distributable if the activation functions
are properly chosen and the multilayer perceptron is applied
per node. Our preliminary results suggest: i) parametric ac-
tivation functions should be employed when the distributed
graph filters embedded into a non-parametric nonlinearity have
limited discriminatory power –the latter is often linked to com-
munication complexity (i.e., filter order); ii) better connected
graphs facilitate learning the consensus function –our rationale
is the improved performance is because each node gets easier
the information from all other nodes; iii) GCNNs generalize
better to unseen graphs compared with FIR graph filters. These
preliminary observations show the potential of the GCNNs
for finite-time consensus rather than being conclusive. Three
interesting research directions should be addressed in future
work. First, theoretical research is needed to investigate the
limits of GCNN for finite-time consensus and link them with
the graph spectrum. Second, extensive results in different
graphs are needed to validate our observations. Third, it is
worth investigating an asynchronous implementation since
the latter has often shown superior performance compared
with the synchronous one. This work, nevertheless, shows
GCNNs overcome by a margin FIR graph filters for finite-
time consensus.

REFERENCES

[1] M. H. DeGroot, “Reaching a consensus,” Journal of the American
Statistical Association, vol. 69, no. 345, pp. 118–121, 1974.

[2] J. Tsitsiklis, D. Bertsekas, and M. Athans, “Distributed asynchronous
deterministic and stochastic gradient optimization algorithms,” IEEE
transactions on automatic control, vol. 31, no. 9, pp. 803–812, 1986.

[3] A. Jadbabaie, J. Lin, and A. S. Morse, “Coordination of groups of mobile
autonomous agents using nearest neighbor rules,” IEEE Transactions on
automatic control, vol. 48, no. 6, pp. 988–1001, 2003.

[4] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and coop-
eration in networked multi-agent systems,” Proceedings of the IEEE,
vol. 95, no. 1, pp. 215–233, 2007.

[5] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,”
Systems & Control Letters, vol. 53, no. 1, pp. 65–78, 2004.

[6] S. Sundaram and C. N. Hadjicostis, “Distributed function calculation
and consensus using linear iterative strategies,” IEEE journal on selected
areas in communications, vol. 26, no. 4, pp. 650–660, 2008.

[7] S. Pequito, S. Kruzick, S. Kar, J. M. Moura, and A. P. Aguiar, “Optimal
design of distributed sensor networks for field reconstruction,” in 21st
European Signal Processing Conference (EUSIPCO 2013). IEEE, 2013,
pp. 1–5.

[8] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip
algorithms,” IEEE/ACM Transactions on Networking (TON), vol. 14,
no. SI, pp. 2508–2530, 2006.

[9] T. Sherson, R. Heusdens, and W. B. Kleijn, “On the distributed method
of multipliers for separable convex optimization problems,” IEEE Trans-
actions on Signal and Information Processing over Networks, vol. 5,
no. 3, pp. 495–510, 2019.

[10] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Van-
dergheynst, “The emerging field of signal processing on graphs: Ex-
tending high-dimensional data analysis to networks and other irregular
domains,” vol. 30, no. 3, pp. 83–98, May 2013.

[11] A. Sandryhaila, S. Kar, and J. M. Moura, “Finite-time distributed con-
sensus through graph filters,” in Acoustics, Speech and Signal Processing
(ICASSP), 2014 IEEE International Conference on. IEEE, 2014, pp.
1080–1084.

[12] S. Segarra, A. G. Marques, and A. Ribeiro, “Optimal graph-filter design
and applications to distributed linear network operators,” vol. 65, no. 15,
pp. 4117–4131, Aug. 2017.

[13] M. Coutino, E. Isufi, T. Maehara, and G. Leus, “On the limits of finite-
time distributed consensus through successive local linear operations,”
in 2018 52nd Asilomar Conference on Signals, Systems, and Computers.
IEEE, 2018, pp. 993–997.

[14] M. Coutino, E. Isufi, and G. Leus, “Advances in distributed graph
filtering,” IEEE Transactions on Signal Processing, vol. 67, no. 9, pp.
2320–2333, 2019.

[15] F. Gama, A. G. Marques, G. Leus, and A. Ribeiro, “Convolutional neural
network architectures for signals supported on graphs,” vol. 67, no. 4,
pp. 1034–1049, Feb. 2019.

[16] E. Isufi, F. Gama, and A. Ribeiro, “Edgenets: Edge varying graph neural
networks,” arXiv preprint arXiv:2001.07620, 2020.

[17] F. Gama, J. Bruna, and A. Ribeiro, “Stability properties of graph
neural networks,” arXiv:1905.04497v2 [cs.LG], 4 Sep. 2019. [Online].
Available: http://arxiv.org/abs/1905.04497

[18] A. Sandryhaila and J. M. F. Moura, “Discrete signal processing on
graphs,” vol. 61, no. 7, pp. 1644–1656, Apr. 2013.

[19] S. Sundaram and C. N. Hadjicostis, “Finite-time distributed consensus
in graphs with time-invariant topologies,” in 2007 American Control
Conference. IEEE, 2007, pp. 711–716.

[20] E. Isufi, A. Loukas, A. Simonetto, and G. Leus, “Autoregressive moving
average graph filtering,” vol. 65, no. 2, pp. 274–288, Jan. 2017.

[21] M. Coutino, E. Isufi, and G. Leus, “Advances in distributed graph
filtering,” vol. 67, no. 9, pp. 2320–2333, May 2019.

[22] S. Scardapane, S. Van Vaerenbergh, D. Comminiello, and A. Uncini,
“Improving graph convolutional networks with non-parametric activa-
tion functions,” in 2018 26th European Signal Processing Conference
(EUSIPCO). IEEE, 2018, pp. 872–876.

[23] L. Ruiz, F. Gama, A. G. Marques, and A. Ribeiro, “Invariance-preserving
localized activation functions for graph neural networks,” arXiv preprint
arXiv:1903.12575, 2019.

[24] R. Levie, E. Isufi, and G. Kutyniok, “On the transferability of spectral
graph filters,” in 13th Int. Conf. Sampling Theory Applications. Bor-
deaux, France: IEEE, 8-12 Jul. 2019, pp. 1–5.


