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ABSTRACT

Graphs are nowadays ubiquitous in the fields of signal pro-

cessing and machine learning. As a tool used to express rela-

tionships between objects, graphs can be deployed to various

ends: (i) clustering of vertices, (ii) semi-supervised classifi-

cation of vertices, (iii) supervised classification of graph sig-

nals, and (iv) denoising of graph signals. However, in many

practical cases graphs are not explicitly available and must

therefore be inferred from data. Validation is a challenging

endeavor that naturally depends on the downstream task for

which the graph is learnt. Accordingly, it has often been dif-

ficult to compare the efficacy of different algorithms. In this

work, we introduce several ease-to-use and publicly released

benchmarks specifically designed to reveal the relative merits

and limitations of graph inference methods. We also contrast

some of the most prominent techniques in the literature.

Index Terms— Graph learning, network topology inference,

benchmarks, graph signal processing, machine learning.

1. INTRODUCTION

Graphs are mathematical objects that express relationships

between items, referred to as vertices. As a natural repre-

sentation of complex data structure, graphs are ubiquitous, in

particular in the field of machine learning, where they can

be used for various ends: (i) they can model the inner de-

pendencies of observations, e.g. functional connectivity in

the brain [1]; (ii) they can model the relationship between

data samples, e.g. social networks and citation graphs [2];

and (iii) they can be used to directly model data, e.g. gene–

expression levels collected from microarray experiments [3].

However, graphs are not always explicitly available. Many

recent works have therefore considered the problem of in-

ferring the topology (i.e. the edges) of the graph based on

nodal observations [4, 5, 6]; see also [7] for a recent tutorial

treatment. Inferring a graph structure can be performed in a

task-agnostic manner, where only unsupervised observations
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are considered. In such a case, priors are used to relate ob-

servations to the sought graph structure: e.g. smoothness [5],

stationarity [4], sparsity [6], and probabilistic [8] as well as

graph filtering-based [9] generative models, just to name a

few. Other works consider inferring a graph for a specific

task. For example in [10] the authors infer graphs for medi-

cal search. In [11, 12, 13], the authors aim at improving the

accuracy of various classification tasks using inferred graphs:

semi-supervised learning, visual based localization and few-

shot learning.

Because it is more general, task-agnostic graph inference is

of particular interest. In this context, common desiderata are

to generate graphs used for visualization [5] and interpreta-

tion [14]. On the other hand, it is challenging to compare

methods for which there is no ground truth. Unsurprisingly,

many works rely on synthetic data to evaluate the ability of

their proposed methods in unveiling the topology from the

observations. While synthetic data are always useful to per-

form controlled scalability experiments as well as reveal the

emerging statistical and computational trade-offs, this valida-

tion protocol comes with two shortcomings. First, the models

used to generate synthetic data are likely to be biased in fa-

vor of the proposed methods. Second, the ability of the pro-

posed method to handle hard real-world problems is often not

demonstrated convincingly.

In order to address this problem, standardized benchmarks

are required. The main challenge is that benchmarks are

necessarily task-specific, and as such they do not encompass

the whole potential offered by state-of-the-art methods. To

fill in this gap, in this work we introduce a broad collec-

tion of benchmarks that are specifically designed to reveal

the relative merits and limitations of graph inference al-

gorithms. To this end, we consider three timely problems

arising with network data: (i) unsupervised clustering of

vertices; (ii) semi-supervised classification of vertices (with

or without vertex features); and (iii) graph signal denoising.

For each problem we introduce a balanced and easy-to-use

dataset that we release publicly 1. Note that our work is meant

to benchmark the graph inference task, for a benchmark of

the unsupervised/semi-supervised methods themselves we

refer the reader to OGN [15]. Furthermore, the released

datasets comprise various types of signals, namely natural

1https://github.com/cadurosar/benchmark_graphinference
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images, audio, texts, and traffic information. Note that we

do not include brain data and protein-protein interactions that

are two of the most interesting use-cases of graph inference

and classification. Our choice is informed by recent develop-

ments in the literature [16, 17], that have found no significant

performance gains when graph-based machine learning tech-

niques are brought to bear for some tasks in these areas. As

our objective here is to compare graph inference methods and

not the techniques used in the downstream tasks, we will not

delve into this issue further.

All in all, the contributions of this work can be summarized

as follows. We assemble a diverse set of datasets for vari-

ous tasks and types of signals, meant to assess the efficacy

of graph inference methods. We compare selected promi-

nent methods from the literature and identify their relative

strengths and shortcomings across different tasks and types

of data. We provide a public release of prepackaged data

and a simple script to evaluate future methods, facilitating

comparisons with the graph learning algorithms considered

in this paper. The outline for the remainder of this paper is

as follows. In Section 2 we introduce the considered tasks.

In Section 3, we present the created datasets. In Section 4,

we review some of the main methods from the literature. In

Section 5, we perform experiments and discuss the results.

Finally, we conclude in Section 6.

2. PROBLEM STATEMENT

We consider three tasks that can benefit from graph inference

methods. These tasks were chosen to represent most widely

considered applications cases found in the recent literature.

Before getting to the details of the methods, let us make a

quick recall about graphs and graph signals. A graph G =
〈V,W〉 is a tuple where V is the finite set of vertices and

W ∈ R
|V |×|V | is the adjacency matrix. Typically, W is sym-

metric. The degree matrix of the graph is the diagonal matrix

DW where DW[i, i] =
∑

j W[i, j]. Note that W[i, j] refers

to the weight located at i-th row and j-th column in W. Some

authors like to consider normalized adjacency matrices, such

as W ← D
−1/2
W

WD
−1/2
W

or W ← D
−1
W

W. The graph

Laplacian is the matrix L = DW −W. A graph signal is a

(most of the time real-valued) matrix X ∈ R
|V |×F , where F

stands for the number of nodal features.

Because the Laplacian is symmetric and real-valued, it can be

eigendecomposed as L = FΛF
⊤, where F is orthonormal

and F
⊤ is its transpose; and Λ is diagonal, and its elements

are sorted in ascending order. We refer to the first columns of

F as the low-frequency eigenvectors of the Laplacian.

Consider a given set of observations, each one composed of

several features. We divide our benchmarks into two types of

machine learning tasks. In the first ones (Tasks 1 and 2), the

graph model dependencies between observations. As such, a

vertex in the graph corresponds to one observation, and is as-

sociated with the corresponding features. In the second one

(Task 3), the graph models relationships between features.

Therefore, here a vertex in the graph represents a feature and

the graph is used as a proxy to the topology of the signal. We

expect some methods will perform better on the first series of

tasks and others to be more adequate to the second one.

2.1. Task 1: Unsupervised Clustering of Vertices (UCV)

Consider a dataset composed of |V | = N observations, each

one containing F features. Given a number of classes C, we

consider the task of partitioning the N observations into C

classes, such that the variability inside classes is smaller than

the variability between classes. In practice, variability can be

measured using various metrics. For the purpose of obtaining

quantified benchmarks, we consider here that the observations

belong to C categories (e.g. classes of images or sounds), and

that this information is not available when processing the con-

sidered methods. So, the performance of a considered method

is evaluated by computing the Adjusted Mutual Information

score [18] based on the ground truth.

Note that this clustering problem can be treated without a

graph structure. Examples are using C-means or DB-Scan

algorithms. In the context of this work, we consider using

spectral clustering. Spectral clustering consists in creating a

graph linking the observations where the edges are inferred

from the corresponding features. Then, vertices are projected

using the first eigenvectors of the graph Laplacian and clus-

tered using standard non-graph methods. In our work, we

use the discretization method first proposed in [19] when fea-

tures have been projected onto the first C eigenvectors of the

graph Laplacian except the very first one. We use the default

SciKit-Learn [20] implementation of spectral clustering and

of the C-means algorithm in our experiments.

2.2. Task 2: Semi-Supervised Classification of Vertices

(SSCV)

Consider a dataset composed of |V | = N observations, each

one containing F features. Here, a portion of the N observa-

tions are labeled. The task consists in inferring the labels of

the other portion of observations. Again, we consider datasets

where we have access to the ground truth, and artificially

hide the labels of part of the observations when processing

the data. The score consists in measuring the accuracy of the

classification on initially unlabeled observations.

This problem can be solved without relying on graphs. For

example, a common solution would consist in performing a

supervised classification using only the labeled observations.



In this work, we consider inferring a graph connecting ob-

servations from the features. Then, we use this graph in two

settings. In the first setting, we want the graph to fully encom-

pass the information contained in the features, and therefore

perform label propagation. Label propagation consists in dif-

fusing the labels from the known observations to the other

ones using the inferred graph structure. In a second setting,

we use both the graph structure and the features to perform

classification. We use the methodology described in [21],

called Simplified Graph Convolution (SGC), where the goal

is to combine feature diffusion with logistic regression. Note

that in our case we should obtain equivalent results for both

SGC and GCN, as the number of observed nodes is smaller

than the amount of features as noted by [22].

In more detail, we use two layers of feature diffusion (X̂ =
W

2
X), followed by a logistic regression. The models are

trained for 100 epochs, using Adam optimization with a learn-

ing rate of 0.001. We use the average over 100 runs of the

accuracy using random splits of 5% training set and 95% test

set. We always report the average accuracy and standard de-

viation. To propagate labels, we simply diffuse the label sig-

nal one time using the exponential of the adjacency matrix.

We note that SGC models tend to use the “normalized aug-

mented adjancency matrix” W̃ = I+W where I is the iden-

tity matrix. This augmented adjacency matrix is then normal-

ized W̃ ← D
−1/2

W̃
W̃D

−1/2

W̃
. In our work we test both the

adjacency matrix and the augmented adjacency matrix and

their respective normalizations and we report the best possi-

ble combination in terms of mean accuracy.

2.3. Task 3: Denoising of Graph Signals (DGS)

Consider a dataset comprising N observations, each one con-

sisting of |V | = F features. Consider some additive noise

generated according to a distribution N . The task consists in

recovering initial observations from their noisy versions. We

measure performance by looking at the Mean Squared Error

(MSE) between both.

Here, the graph connects features of observations. The idea is

to use the graph structure to easily segregate components of

the noise from components of the initial signals. In our work,

we use a Simoncelli low-pass filter on the graph to perform

denoising. In our experiments we use the PyGSP [23] im-

plementation of the Simoncelli filter, which is defined by its

spectral response as follows:

fl =















1 if λl ≤
τ
2

cos
(

π
2
log(λl)
log(2)

)

if τ
2 < λl ≤ τ

0 if λl > τ

,

where τ ∈ [0, 1] is a user-defined threshold and λl the l-th

Laplacian eigenvalue. We normalize the eigenvalues by di-

viding by the largest one, so that 0 ≤ λl ≤ 1. We vary the pa-

rameter τ from 0 to 1 in increments of 0.025. We use the noisy

signal with a SNR (Signal to Noise Ratio) of 7, from [24], and

report the best SNR found for each graph construction.

3. DATASETS

For Tasks 1 and 2, we use datasets of images, audio and texts

(documents). To reduce the difficulty of the tasks in the image

and audio domains, we choose to use features extracted from

pretrained deep neural networks. Task 3 (DGS) data comes

from real life traffic information. Additional details are given

in the coming paragraphs.

3.1. Image dataset

For the image dataset we use the training set portion of

the “102 Category Flower Dataset” (shortened as flow-

ers102) [25]. This split contains N = 1020 images of

C = 102 classes of flowers (10 images per class). The

features are extracted from the final pooling layer of the In-

ceptionv3 architecture [26], which has a size of F = 2048
dimensions. Note that Inceptionv3 was trained on the 2012

split of ImageNet challenge, so that the features we obtain

are a case of transfer learning. This should be one of the most

challenging scenarios we consider, as it provides the highest

number of classes and has the highest signal dimension to

number of items ratio: 2.

3.2. Audio dataset

For audio data, we use “ESC-50: Dataset for Environmental

Sound Classification” [27]. This dataset contains C = 50
classes, with 40 audio signals each (2000 in total). It also

contains 5 standard splits that are not used here (as we do

unsupervised and semi-supervised classification). We use the

feature extractor introduced in [28] to generate our dataset,

that was trained on AudioSet. Similar to the images data, this

can be considered as transfer. At the end we have N = 2000
items with F = 1024 dimensions each. The signal dimension

to number of items ratio is 0.512.

3.3. Text dataset

We use the cora dataset [2], which is composed of N = 2708
scientific articles of C = 7 different domains for document

clustering or classification. The features come from a word

indicator vector (i.e. Bag of Words BoW) that indicates if

one of the words in the dictionary (F = 1433 in total) is

present on the title or abstract of the document. We prefer



Table 1. Summary of the tested graph topology inference methods.

Method Similarity/Distance k σ Adjacency matrices

Naive
Cosine, Covariance, RBF 5, 10, 20, 30, 40, 50,

100, 200, 500, 1000

None
W, D

−1/2
W

WD
−1/2
W

,

W̃, D
−1/2

W̃
W̃D

−1/2

W̃

NNK [6]
10−4

Kalofolias [5] Square Euclidean distance

simple BoW because our first tests using features extracted

from pretrained networks led to worse performance. The dic-

tionary is built with the most common words in the dataset.

The signal dimension to number of items ratio is: 0.53. Note

that this dataset is classically used for graph semi-supervised

learning as it comes with a citation graph. But in our work we

completely disregard this graph. Comparisons between the

ground truth graph and inferred ones could be an interesting

addition to this work. But since the citation graph is not ex-

actly redundant with the signals, it is expected that inferred

graphs and citation ones are quite different.

3.4. Toronto traffic data denoising (Toronto)

We use data from the road network of the city of Toronto,

from [24]. It describes traffic volume data at intersections in

the road network of Toronto for a total of F = 2202 vertices

and N = 1 observation. Note that extra information is avail-

able, such as the position of each road and intersection, but

our baselines only consider the raw signal data.

4. GRAPH INFERENCE METHODS

In our work, we perform experiments using off-the-shelf

graph inference techniques from the literature. We also pro-

vide implementations of the chosen techniques. Table 1

presents a summary of the methods and variations we tested.

4.1. Naive baselines

We first consider naive baselines by combining three steps:

1. Choosing a similarity measure to be applied to either

features of each vertex for Tasks 1 and 2 or to obser-

vations for Task 3. In more details, we consider co-

sine similarity, sampled covariance or an RBF kernel

applied on the L2 distance between considered items.

2. Choosing a number of neighbors to be kept for each

vertex. We simply use a k-nearest neighbor selection.

Note that we symmetrize the resulting graph, so that

each vertex has at least k neighbors.

3. Normalizing the obtained graph adjacency matrix.

Note that we obtain a large number of possible combinations,

and perform experiments for each one. In Section 5 we only

display the results obtained by the best combination.

4.2. Sparsity-based method

We now consider a more recent sparsity-based method.

We choose NNK (Non Negative Kernel regression) [6],

due to its simplicity and its demonstrated results on semi-

supervised learning tasks. This method can be interpreted

as producing representations with orthogonal approxima-

tion errors, which in turn favors sparser representations. It

has two parameters: k, the maximum degree for each ver-

tex, and σ the minimum value for an edge weight (thresh-

old). In this work we test multiple values of k and fix σ =
10−4 [5]. In our experiments we use the authors implementa-

tion fromhttps://github.com/STAC-USC/PyNNK_graph_construction.

4.3. Smoothness-based method

For our smoothness based topology inference method, we rely

on a state-of-the-art approach in [5]. It consists in a frame-

work that infers the graph from an underlying set of smooth

signals. As it was the case with the sparsity based method,

it has two parameters: k the desired mean sparsity and σ the

minimum value for an edge weight. We test the same values

for these two parameters as we did for the previous method

and keep the best combination. In our experiments we use the

implementation from the GSP toolbox [29].

5. BASELINE RESULTS

5.1. Task 1

For Task 1: UCV, we display both the results obtained with

the inferred graph structures and with a C-means baseline.

The results are presented in Table 2. We can see that both

naive and NNK get the most consistent results, with Kalofo-

lias having difficulties with the cora dataset.

Table 2. Results for Task 1. Here we present the best AMI

score for each inference method.

Method Inference/Dataset ESC-50 cora flowers102

C-means 0.59 0.10 0.36

Spectral clustering

Naive 0.66 0.34 0.45

NNK 0.66 0.34 0.44

Kalofolias 0.65 0.27 0.44

https://github.com/STAC-USC/PyNNK_graph_construction


Table 3. Results for Task 2. Here we present the best mean test accuracy and its standard deviation for each inference method.

Method Inference/Dataset ESC-50 cora flowers102

Logistic Regression 52.92%±1.9 46.84%±1.6 33.51%±1.7

Label Propagation

Naive 59.05%±1.8 58.86%±2.9 36.73%±1.6
NNK 57.44%±2.2 58.66%±2.9 33.57%±1.6

Kalofolias 59.16%±1.8 58.60%±3.4 37.01%±1.7

SGC

Naive 60.48%±2.0 67.19%±1.5 37.73%±1.5
NNK 61.38%±2.0 66.58%±1.5 36.81%±1.5

Kalofolias 59.36%±2.0 66.28%±1.5 37.5%±1.5

5.2. Task 2

For the SSCV task, the results are presented in Table 3. We

can see that using a similarity graph as support helps when

compared to a simple logistic regression. Note that this is

not a 100% fair comparison as the logistic regression is not

able to exploit the unsupervised data. In this task we have

two methods, Label Propagation and SGC. In the first one,

Kalofolias presents the best results for both flowers102 and

ESC-50, but still struggles with the cora dataset. In SGC both

Kalofolias and NNK seem to not be able to improve that much

over the naive baselines.

5.3. Task 3

For the graph signal denoising task, the results are presented

in Table 4. In this scenario we are not able to use neither

cosine or covariance similarity. We compare our results with

the ones we would obtain using the ground truth road map

graph. Our RBF baselines were able to reduce the amount of

noise, but not at the same level as of the real road graph. The

Kalofolias smooth graph was able to achieve a better SNR

than the real road graph.

Table 4. Results for Task 3. Here we present the best test

accuracy for each baseline.

Best SNR
Road graph Kalofolias RBF NNK RBF k-NN

10.32 10.41 9.99 9.80

5.4. Discussion on baselines

Over all tasks we can extract some lessons on graph inference:

1. Similarity choice: If we have multiple non-negative

realizations of the signal, cosine seems the best choice.

It has competitive results on all benchmarks and it does

not come with a parameter (as does RBF with γ).

2. Choosing parameter k: The best amount of sparsity

depends not only on the dataset and task, but on the

similarity that was chosen. We consider the ESC-50

dataset as an example. In the spectral clustering the

best k value for the k-NN graph was 30 for cosine, 5

for RBF and 20 for covariance. We note that in the

graph denoising task, the best case was to not perform

k-neighbors thresholding.

3. Normalization: Note that only our graph denoising

task does not expect a normalized graph, therefore most

of our better results used normalized graphs. On the

graph denoising task, normalized and non-normalized

graphs had similar results.

4. Cora dataset: The cora dataset is challenging not only

because it is not class-balanced, but also because its

features are binary (a bag of words, containing 1 if the

word is present in the article and 0 if not). This could

be a reason for the bad performance of both NNK and

Kalofolias in this dataset.

5. Sparse graphs in semi-supervised problems: In the

semi-supervised tasks, the test accuracy standard devi-

ation over the splits was very high. This could pos-

sibly be caused by the fact the sparse graphs we use

here have more than one connected component, mean-

ing that sometimes there could be sections of the graph

that do not have any labeled vertices. One possible fu-

ture direction would be to integrate a graph sampling

algorithm to the problem in order to select which ver-

tices we should label, instead of doing so randomly.

6. Naive Baselines vs. optimization approaches: Over

our tests there was no clear winner between simply do-

ing a naive k-NN approach and more advanced graph

topology inference techniques. Kalofolias had very

good performance on the Label Propagation and De-

noising tasks, while NNK was consistent in SGC and

Spectral Clustering, but both were not able to consis-

tently beat the naive baseline. On the other hand, there

was a clear advantage of both Kalofolias and NNK over

the naive baselines when we consider the robustness of

both methods to the parameter k selection.



6. CONCLUSION

We have introduced graph inference benchmarks that allows

us to test different graph topology inference methods in real

downstream signal and information processing tasks. We

have tested naive graph inference methods and more ad-

vanced techniques in the literature. This allowed us first to

verify that improving the graph inference leads to better per-

formance on the downstream tasks and to take away some

guidelines for experimentation in this domain. We note that

while we tested various baselines, a more thorough analysis

of the results is needed. The benchmark is available online

and should be easy to use to compare newer techniques. We

hope that this allows for more advances in the field and we are

eager to continue improving this tool as the field advances.
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