
SUDO RM -RF: EFFICIENT NETWORKS FOR UNIVERSAL AUDIO SOURCE SEPARATION

Efthymios Tzinis\ Zhepei Wang\ Paris Smaragdis\,[

\ University of Illinois at Urbana-Champaign
[Adobe Research

ABSTRACT

In this paper, we present an efficient neural network for end-to-end
general purpose audio source separation. Specifically, the backbone
structure of this convolutional network is the SUccessive DOwn-
sampling and Resampling of Multi-Resolution Features (SuDoRM-
RF) as well as their aggregation which is performed through simple
one-dimensional convolutions. In this way, we are able to obtain
high quality audio source separation with limited number of float-
ing point operations, memory requirements, number of parameters
and latency. Our experiments on both speech and environmental
sound separation datasets show that SuDoRM-RF performs com-
parably and even surpasses various state-of-the-art approaches with
significantly higher computational resource requirements.

Index Terms— Audio source separation, low-cost neural net-
works, deep learning

1. INTRODUCTION

The advent of the deep learning era has enabled the effective usage
of neural networks towards single-channel source separation with
mask-based architectures [1]. Recently, end-to-end source separa-
tion in time-domain has shown state-of-the-art results in a variety of
separation tasks such as: speech separation [2, 3], universal sound
separation [4, 5] and music source separation [6]. The separation
module of ConvTasNet [2] and its variants [4, 5] consist of multiple
stacked layers of depth-wise separable convolutions [7] which can
aptly incorporate long-term temporal relationships. Building upon
the effectiveness of a large temporal receptive field, a dual-path re-
current neural network (DPRNN) [3] has shown remarkable perfor-
mance on speech separation. Demucs [6] has a refined U-Net struc-
ture [8] and has shown strong performance improvement on music
source separation. Specifically, it consists of several convolutional
layers in each a downsampling operation is performed in order to
extract high dimensional features. A two-step approach has been in-
troduced in [9] and showed that universal sound separation models
could be further improved when working directly on the latent space
and learning the ideal masks on a separate step.

Despite the dramatic advances in source separation perfor-
mance, the computational complexity of the aforementioned meth-
ods might hinder their extensive usage across multiple devices.
Specifically, many of these algorithms are not amenable to, e.g.,
embedded systems deployment, or other environments where com-
putational resources are constrained. Additionally, training such
systems is also an expensive computational undertaking which can
amount to significant costs.

Supported by NSF grant #1453104. A Titan V used for this research was
donated by the NVIDIA Corporation.

Several studies, mainly in the image domain, have introduced
more efficient architectures in order to overcome the growing con-
cern of large models with high computational requirements. Mod-
els with depth-wise separable convolutions [7] have shown strong
potential for several image-domain tasks [10] while significantly re-
ducing the computational requirements. Thus, several variants such
as MobileNets [11] have been proposed for deep learning on edge-
devices. However, convolutions with a large dilation factor might in-
ject several artifacts and thus, lightweight architectures that combine
several dilation factors in each block have been proposed for image
tasks [12]. More recent studies propose meta-learning algorithms for
optimizing architecture configurations given specific computational
resource and accuracy requirements [13, 14].

Despite the recent success on low-resource architectures on the
image domain, little progress has been made towards proposing ef-
ficient architectures for audio tasks and especially source separa-
tion. In [15] a WaveRNN is used for efficient audio synthesis in
terms of floating point operations (FLOPs) and latency. Other stud-
ies have introduced audio source separation models with reduced
number of trainable parameters [3, 16] and binarized models [17].
In this study, we propose a novel efficient neural network architec-
ture for audio source separation while following a more holistic ap-
proach in terms of computational resources that we take into con-
sideration (FLOPs, latency and total memory requirements). Our
proposed model performs SUccessive DOwnsampling and Resam-
pling of Multi-Resolution Features (SuDoRM-RF) using depth-wise
convolutions. By doing so, SuDoRM-RF exploits the effectiveness
of iterative temporal resampling strategies [18] and avoids the need
of multiple stacked dilated convolutional layers [2]. We report a
separation performance comparable or even better to several recent
state-of-the-art models on speech and environmental sound separa-
tion tasks with significantly lower computational requirements. Our
experiments suggest that SuDoRM-RF models a) could be deployed
on devices with limited resources, b) be trained significantly faster
and achieve good separation performance and c) scale well when
increasing the number of parameters. Our code is available online1.

2. SUDO RM -RF NETWORK ARCHITECTURE

On par with many state-of-the-art approaches in the literature [2,
9, 3, 6], SuDoRM-RF performs end-to-end audio source separation
using a mask-based architecture with adaptive encoder and decoder
basis. The input is the raw signal from a mixture x ∈ RT with T
samples in the time-domain. First we feed the input mixture x to an
encoder E in order to obtain a latent representation for the mixture
vx = E (x) ∈ RCE×L. Consequently the latent mixture repre-
sentation is fed through a separation module S which estimates the

1Code: https://github.com/etzinis/sudo rm rf

ar
X

iv
:2

00
7.

06
83

3v
1

 [
ee

ss
.A

S]
 1

4
Ju

l 2
02

0

https://github.com/etzinis/sudo_rm_rf

corresponding masks m̂i ∈ RCE×L for each one of the N sources
s1, · · · , sN ∈ RT which constitute in the mixture. The estimated la-
tent representation for each source in the latent space v̂i is retrieved
by multiplying element-wise an estimated mask m̂i with the en-
coded mixture representation vx. Finally, the reconstruction for each
source ŝi is obtained by using a decoder D to transform the latent-
space v̂i source estimates back into the time-domain ŝi = D (v̂i).
An overview of the SuDoRM-RF architecture is displayed in Fig-
ure 1. The encoder, separator and decoder modules are described in
Sections 2.1, 2.2 and 2.3, respectively. For simplicity of our notation
we will describe the whole architecture assuming that the processed
batch size is one. Moreover, we are going to define some useful op-
erators of the various convolutions which are used in SuDoRM-RF.

Separator 

� U-ConvBlocks

�

�̂1

�̂2

Encoder  Decoder 

�̂1

�̂2

�̂1

�̂2

�� �
(0)

�
(�)

Conv1D
, ,� �

�

2

Conv1D�,1,1

LayerNorm Conv1D�, ,1�
ConvTr1D

, ,� �

�

2

T �
(1)

�
(2)

T

T

T
Transpose Softmax

Fig. 1: SuDoRM-RF architecture for separating two sources.

Definition 2.1. Conv1DC,K,S : RCin×Lin → RC×L defines a
kernel W ∈ RC×Cin×K and a bias vector b ∈ RC . When ap-
plied on a given input x ∈ RCin×Lin it performs a one-dimensional
convolution operation with stride equal to S as shown next:

Conv1DC,K,S (x)i,l = bi +

Cin∑
j=1

K∑
k=1

Wi,j,k · xj,S·l−k, (1)

where the indices i, j, k, l denotes the output channel, the input chan-
nel, the kernel sample and the temporal index, respectively. Note that
without loss of generality and performing appropriate padding, the
last dimension of the output representation would be L = bLin/Sc.

Definition 2.2. ConvTr1DC,K,S : RCin×Lin → RC×L defines a
one-dimensional transpose convolution. Since any convolution oper-
ation could be expressed as a matrix multiplication, transposed con-
volution can be directly understood as the gradient calculation for a
regular convolution w.r.t. its input [19].

Definition 2.3. DWConv1DC,K,S : RCin×Lin → RC×L defines
a one-dimensional depth-wise convolution operation [7]. In essence,
this operator defines G = Cin separate one-dimensional convolu-
tions Fi = [Conv1DCG,K,S]i with i ∈ {1, · · · , G} where CG =

bC/Gc. Given an input x ∈ RCin×Lin the ith one-dimensional con-
volution contributes to CG = bC/Gc output channels by considering
as input only the ith row of the input as described below:

DWConv1DC,K,S (x) = Concat ({Fi (xi) , ∀i}) , (2)

where Concat(·) performs the concatenation of all individual one-
dimensional convolution outputs across the channel dimension.

2.1. Encoder

The encoder E architecture consists of a one-dimensional convolu-
tion with kernel sizeKE and stride equal to KE/2 similar to [2]. Each

convolved input audio-segment of KE samples is transformed to a
CE -dimensional vector representation where CE is the number of
output channels of the 1D-convolution. We force the output of the
encoder to be strictly non-negative by applying a rectified linear unit
(ReLU) activation on top of the output of the 1D-convolution. Thus,
the encoded input mixture representation could be expressed as:

vx = E (x) = ReLU
(
Conv1DCE ,KE ,KE/2 (x)

)
∈ RCE×L, (3)

where the activation ReLU (·) is applied element-wise.

2.2. Separator

In essence, the separator S module performs the following transfor-
mations to the encoded mixture representation vx ∈ RCE×L:

1. Projects the encoded mixture representation vx ∈ RCE×L to
a new channel space through a layer-normalization (LN) [20]
followed by a point-wise convolution as shown next:

y0 = Conv1DC,1,1 (LN (vx)) ∈ RC×L, (4)

where LN (vx) denotes a layer-normalization layer in which
the moments used are extracted across the temporal dimen-
sion for each channel separately.

2. Performs repetitive non-linear transformations provided byB
U-convolutional blocks (U-ConvBlocks) on the intermediate
representation y0. In other words, the output of the ith U-
ConvBlock would be denoted as yi ∈ RC×L and would be
used as input for the (i + 1)th block. Each U-ConvBlock
extracts and aggregates information from multiple resolutions
which is extensively described in Section 2.2.1.

3. Aggregates the information over multiple channels by apply-
ing a regular one-dimensional convolution for each source on
the transposed feature representation yT

B ∈ RL×C . Effec-
tively, for the ith source we obtain an intermediate latent rep-
resentation as shown next:

zi = Conv1DC,CE ,1

(
yT
B

)T
∈ RCE×L (5)

This step has been introduced in [9] and empirically shown
to make the training process more stable rather than using the
activations from the final block yB to estimate the masks.

4. Combines the aforementioned latent codes for all sources
zi ∀i ∈ {1, · · · , N} by performing a softmax operation in
order to get mask estimates m̂i ∈ [0, 1]CE×L which add
up to one across the dimension of the sources. Namely, the
corresponding mask estimate for the ith source would be:

m̂i = vec−1

(
exp (vec (zi))∑N

j=1 exp (vec (zj))

)
∈ RCE×L, (6)

where vec (·) : RK×N → RK·N and vec−1 (·) : RK·N →
RK×N denotes the vectorization of an input tensor and the
inverse operation, respectively.

5. Estimates a latent representation v̂i ∈ RCE×L for each
source by multiplying element-wise the encoded mixture
representation vx with the corresponding mask m̂i:

v̂i = vx � m̂i ∈ RCE×L, (7)

where a � b is the element-wise multiplication of the two
tensors a and b assuming that they have the same shape.

�(0)

�(1)

�(2)

�(3)

�(4)

�(1)

�(0)

� ∈ ℝ
�×�

∈�(�)
ℝ

�×�
∈�(�+1)

ℝ
�×�

�(3)

�(2)
Channel expansion

Temporal UpsamplingTemporal downsampling

Copy

, ∈�
(�)

�
(�)

ℝ
�× ⋅�2−�

Channel contraction
Output transformation

Fig. 2: U-ConvBlock architecture.

Algorithm 1: U-ConvBlock forward pass

Input: y(i) ∈ RC×L

Output: y(i+1) ∈ RC×L

// Expand channel dimensions

q← PReLUCU

(
LN
(
Conv1DCU ,1,1

(
y(i)

)))
;

d(0) ← PReLUCU (LN (DWConv1DCU ,KU ,1 (q)));
for i = 1; i++; while i <= Q do

// Successive depth-wise downsampling

d(i) ← LN
(
DWConv1DCU ,KU ,SU

(
d(i−1)

))
;

d(i) ← PReLUCU

(
d(i)

)
;

end
u(Q) ← d(Q);
for i = Q− 1; i−−; while i >= 0 do

// Upsample and add resolutions

u(i) ← d(i) + ISU

(
u(i+1)

)
;

end
o← LN

(
Conv1DC,1,1

(
PReLUC

(
LN
(
u(0)

))))
;

return PReLUC

(
y(i) + o

)
;

2.2.1. U-convolutional block (U-ConvBlock)

U-ConvBlock uses a block structure which resembles a depth-wise
separable convolution [7] with a skip connection as in ConvTas-
Net [2]. However, instead of performing a regular depth-wise con-
volution as shown in [10] or a dilated depth-wise which has been
successfully utilized for source separation [2, 5, 9] our proposed
U-ConvBlock extracts information from multiple resolutions using
Q successive temporal downsampling and Q upsampling operations
similar to a U-Net architecture [8]. More importantly the output of
each block leaves the temporal resolution intact while increasing the
effective receptive field of the network multiplicatively with each
temporal sub-sampling operation [21]. An abstract view of the ith
U-ConvBlock is displayed in Figure 2 while a detailed description
of the operations is presented in Algorithm 1.

Definition 2.4. PReLUC : RC×L → RC×L defines a parametric
rectified linear unit (PReLU) [22] with C learnable parameters a ∈
RC . When applied to an input matrix y ∈ RC×L the non-linear
transformation could be defined element-wise as:

PReLUC (y)i,j = max (0,yi,j) + ai ·min (0,yi,j) (8)

Definition 2.5. IM : RC×L → RC×M·L defines a nearest neighbor
temporal interpolation by a factor of M . When applied on an input
matrix y ∈ RC×L this upsampling procedure could be formally
expressed element-wise as: IM (u)i,j = ui,bj/Me

2.3. Decoder

Our decoder module D is the final step in order to transform the la-
tent space representation v̂i for each source back to the time-domain.
In our proposed model we follow a similar approach as in [9] where
each latent source representation v̂i if fed through a different trans-
posed convolution decoder ConvTr1DCE ,KE ,KE/2. The efficacy of
dealing with different types of sources using multiple decoders has
also been studied in [23]. Ignoring the permutation problem, for the
ith source we have the following reconstruction in time:

ŝi = Di (v̂i) = ConvTr1DCE ,KE ,KE/2 (v̂i) (9)

3. EXPERIMENTAL SETUP

3.1. Audio source separation tasks

Speech separation: We perform speech separation experiments in
accordance with the publicly available WSJ0-2mix dataset [24] and
other studies [3, 25, 26]. Speaker mixtures are generated by ran-
domly mixing speech utterances with two active speakers at random
signal to noise ratios (SNR)s between −5 and 5dB from the Wall
Street Journal (WSJ0) corpus [27].
Non-speech sound separation: For our non-speech sound separa-
tion experiments we follow the exact same setup as in [9] and uti-
lize audio clips from the environmental sound classification (ESC50)
data collection [28] which consists of a wide variety of sounds (non-
speech human sounds, animal sounds, natural soundscapes, interior
sounds and urban noises). For each data sample, two audio sources
are mixed with a random SNR between−2.5 and 2.5dB where each
source belongs to a distinct sound category from a total of 50.

3.2. Data preprocessing and generation

We follow the same data augmentation process which was firstly in-
troduced in [9] and it has been show beneficial in other recent studies
[25]. The process for generating a mixture is the following: A) ran-
dom choosing two sound classes (for universal sound separation) or
speakers (for speech separation) B) random cropping of 4sec seg-
ments from two sources audio files C) mixing the source segments
with a random SNR (as specified in Section 3.1). For each epoch,
20, 000 new training mixtures are generated. Validation and test sets
are generated once with each one containing 3, 000 mixtures. More-
over, we downsample each audio clip to 8kHz, subtract its mean and
divide with the standard deviation of the mixture.

3.3. Training and evaluation details

All models are trained for 120 epochs using a batch size equal to
4. As a loss function we use the negative permutation-invariant [29]
scale-invariant signal to distortion ratio (SI-SDR) [30] which is de-
fined between the clean sources s and the estimates ŝ as:

L = −SI-SDR(s∗, ŝ) = −10 log10
(
‖αs∗‖2/‖αs∗ − ŝ‖2

)
, (10)

where s∗ denotes the permutation of the sources that maximizes SI-
SDR and α = ŝ>s∗/‖s‖2 is just a scalar. In order to evaluate the per-
formance of our models we use the SI-SDR improvement (SI-SDRi)
which is the gain that we get on SI-SDR measure using estimated
signal instead of the mixture signal.

3.4. SuDoRM-RF configurations

For the encoder E and decoder modulesD we use a kernel sizeKE =
21 corresponding to 2.625ms and a number of basis equal to CE =
512. For the configuration of each U-ConvBlock we set the input
number of channels equal to C = 128, the number of successive
resampling operations equal to Q = 4 and the expanded number of
channels equal to CU = 512. In each subsampling operation we
reduce the temporal dimension by a factor of 2 and all depth-wise
separable convolutions have a kernel length of KU = 5 and a stride
of SU = 2. We propose 3 different models which are configured
through the numberB of U-ConvBlocks inside the separator module
S. Namely, SuDoRM-RF 1.0x , SuDoRM-RF 0.5x , SuDoRM-RF
0.25x consist of 16, 8 and 4 blocks, respectively. During training,
we use the Adam optimizer [31] with an initial learning rate set to
0.001 and we decrease it by a factor of 5 every 50 epochs.

3.5. Literature models configurations

We compare against the best configurations of some of the latest
state-of-the-art approaches for speech [2, 3], universal [9] and music
[6] source separation. For a fair comparison with the aforementioned
models we use the authors original code, the best performing config-
urations for the proposed models as well as the suggested training
process. For Demucs [6], 80 channels are used instead of 100 in or-
der to be able to train it on a single graphical processing unit (GPU).

3.6. Measuring computational resources

One of the main goals of this study is to propose a model for au-
dio source separation which could be trained using limited computa-
tional resources and deployed easily on a mobile or edge-computing
device [32]. Specifically, we consider the following aspects which
might cause a computational bottleneck during inference or training:

1. Number of executed floating point operations (FLOPs).

2. Number of trainable parameters.

3. Memory allocation required on the device for a single pass.

4. Time for completing each process.

We are using various sampling profilers in Python for tracing all the
requirements on an Intel Xeon CPU E5-2695 v3 @ 2.30GHz CPU
and a Nvidia Tesla K80 GPU.

4. RESULTS & DISCUSSION

In Table 1, we show the separation performance alongside computa-
tional requirements for some of the most recent state-of-the-art mod-
els in the literature and the proposed SuDoRM-RF configurations. It
is easy to see that the proposed models can match and even out-
perform the separation performance of other several state-of-the-art
models using orders of magnitude less computational requirements.
A better visualization for understanding the Pareto efficiency of the
proposed architectures is displayed in Figure 3 where we show for
each model its performance on non-speech sound separation vs a
specific computational requirement. We do not show the same plots
for speech separation on the WSJ dataset as the patterns were similar.

4.1. Floating point operations (FLOPs)

Different devices (CPU, GPU, mobiles, etc.) have certain limitations
on their FLOPs throughput capacity. In the case of an edge device,

100 1017.0

7.5

8.0

8.5

SI
-S

DR
i (

dB
)

100 101

Forward pass on CPU

10 1 100

100 101

GFLOPs
7.0

7.5

8.0

8.5

SI
-S

DR
i (

dB
)

100 101

Memory (GB)

Backward pass on GPU

ConvTasNet DPRNN Demucs Two-Step TDCN SuDoRM-RF

10 1 100

Time (secs)

Fig. 3: SI-SDRi non-speech sound separation performance on
ESC50 vs computational resources with an input audio of 8000 sam-
ples for all models. (Top row) computational requirements for a sin-
gle forward pass on CPU (Bottom) for a backward pass on GPU. All
x-axis are shown in log-scale while the 3 connected blue stars corre-
spond to the three SuDoRM-RF configurations from Section 3.4.

the computational resource one might be interested in is the num-
ber of FLOPs required during inference. On the other hand, training
on cloud machines might be costly if a huge number of FLOPs is
needed in order to achieve high separation performance. As a result,
it is extremely important to be able to train and deploy models which
require a low number of computations [11]. We see from the first
column of Figure 3 that SuDoRM-RF models scale well as we in-
crease the number of U-ConvBlocks B from 4→ 8→ 16. Further-
more, we see that for both forward and backward passes the family
of the proposed SuDoRM-RF models appear more Pareto efficient
in terms of SI-SDRi performance vs Giga-FLOPs (GFLOPs) and
time required compared to the other state-of-the-art models which
we take into account. Specifically, the DPRNN model [3] which
performs sequential matrix multiplications (even with a low number
of parameters) requires at least 45 times more FLOPs for a single
pass compared to SuDoRM-RF 0.25x while performing worse when
trained for the same number of epochs.

4.1.1. Cost-efficient training

Usually one of the most detrimental factors for training deep learn-
ing models is the requirement of allocating multiple GPU devices
for several days or weeks until an adequate performance is obtained
on the validation set. This huge power consumption could lead to
huge cloud services rental costs and carbon dioxide emissions [14].
In Figure 4, we show the validation SI-SDRi performance for the
speech separation task which is obtained by each model versus the
total amount of FLOPs performed. For each training epoch all mod-
els perform updates while iterating over 20, 000 audio mixtures. No-
tably, SuDoRM-RF models outperform all other models in terms of
cost-efficient training as they obtain better separation performance
while requiring significantly less amount of training FLOPs. For
instance, SuDoRM-RF 1.0x obtains ≈ 16dB in terms of SI-SDRi
compared to ≈ 10dB of DPRNN [3] which manages to complete
only 3 epochs given the same number of training FLOPs.

4.2. Trainable parameters

From Table 1 it is easy to see that SuDoRM-RF architectures are
using orders of magnitude fewer parameters compared to the U-
net architectures like Demucs [6] where each temporal downsam-
pling is followed by a proportional increase to the number of chan-
nels. Moreover, the upsampling procedure inside each U-ConvBlock

Model SI-SDRi (dB) Parameters GFLOPs Memory (GB) Time (sec)
Speech separation Non-speech separation (millions) I B I B I B

ConvTasNet [2] 15.30* 7.74 5.05 5.23 5.30 0.65 0.88 0.90 0.33
Demucs [6] 12.12 7.23 415.09 3.43 10.34 2.24 8.77 0.53 0.36
DPRNN [3] 18.80* 7.20 2.63 48.89 48.90 2.23 3.40 3.98 0.60
Two-Step TDCN [9] 16.10* 8.22 8.63 7.09 7.23 0.99 1.17 1.05 0.30
SuDoRM-RF 1.0x 17.02 8.35 2.66 2.52 2.56 0.61 0.86 0.67 0.38
SuDoRM-RF 0.5x 15.37 8.12 1.42 1.54 1.56 0.40 0.45 0.36 0.21
SuDoRM-RF 0.25x 13.39 7.93 0.79 1.06 1.07 0.30 0.25 0.29 0.13

Table 1: SI-SDRi separation performance for all models on both separation tasks (speech and non-speech) alongside their computational
requirements for performing inference on CPU (I) and a backward update step on GPU (B) for one second of input audio or equivalently 8000
samples. * We assign the maximum SI-SDRi performance obtained by our runs and the reported number on the corresponding paper.

0 2 4 6 8 10 12
Peta FLOPs

6

8

10

12

14

16

SI
-S

DR
i (

dB
)

Validation SI-SDRi vs Training Computation

ConvTasNet
DPRNN

Demucs
Two-Step TDCN

SuDoRM-RF 0.25x
SuDoRM-RF 0.5x
SuDoRM-RF 1.0x

Fig. 4: Validation SI-SDRi separation performance for speech-
separation vs the number of FLOPs executed during training. All
models are trained using batches of 4 mixtures with 32, 000 time-
samples each. Each point corresponds to a completed training epoch.

does not require any additional parameters. The SuDoRM-RF mod-
els seem to increase their effective receptive field with significantly
fewer parameters compared to dilated convolutional architectures
[2, 9]. Notably, our largest model SuDoRM-RF 1.0x matches the
relatively low number of parameters of the DPRNN [3] model which
is based on stacked RNN layers.

4.3. Memory requirements

In most of the studies where efficient architectures are introduced
[11, 10, 12, 13] authors are mainly concerned with the total number
of trainable parameters of the network. The same applies to efficient
architectures for source separation [2, 3, 16]. However, the trainable
parameters is only a small portion of total amount of memory re-
quired for a single forward or backward pass. The space complexity
could easily blow up by the storage of intermediate representations.
The latter could become even worse when multiple skip connections
are present, gradients from multiple layers have to be stored or im-
plementations require augmented matrices (dilated, transposed con-
volutions, etc.). In Figure 3, we see that SuDoRM-RF models are
more pareto-efficient in terms of the memory required compared to
the dilated convolutional architectures of ConvTasNet [2] and Two-
Step TDCN [9] where they require an increased network depth in
order to increase their receptive field. Although SuDoRM-RF mod-
els do not perform downsampling in every feature extraction step
as Demucs [6] does, we see that the proposed models require or-
ders of magnitude less memory especially during a backward update
step as the number of parameters in Demucs is significantly higher.
Finally, SuDoRM-RF models have a smaller memory footprint be-
cause the encoder E performs a temporal downsampling by a factor

KE C B Q Norm Mask Act. Dec. SI-SDRi
21 128 16 4 LN Softmax 2 16.0
17 128 16 4 LN ReLU 1 15.9
17 128 16 4 GLN ReLU 1 16.8
21 256 20 4 GLN ReLU 1 17.7
41 256 32 4 GLN ReLU 1 17.1
41 256 20 4 GLN ReLU 1 16.8
21 512 18 7 GLN ReLU 1 18.0
21 512 20 2 GLN ReLU 1 17.4
21 512 34 4 GLN ReLU 1 18.9

Table 2: SI-SDRi separation performance on WSJ0-2mix for var-
ious parameter configurations of SuDoRM-RF models. Mask Act.
corresponds to the activation function before the mask estimation
and Dec. specifies the number of decoders we are using before
reconstructing the time-domain signals. GLN corresponds to the
global layer normalization as described in [2]. All the other parame-
ters have the same values as described in Section 3.4

of div (KE , 2) = 10 compared to DPRNN [3] which does not re-
duce the temporal resolution at all.

4.4. Ablation study on WSJ0-2mix

We perform a small ablation study in order to show how different pa-
rameter choices in SuDoRM-RF models affect the separation perfor-
mance. In order to be directly comparable with the numbers reported
by several other studies [2, 3, 25, 26], we train our models for 200
epochs and test them using the given data splits from WSJ0-2mix
dataset [24]. The results are shown in Table 2.

5. CONCLUSIONS

In this study, we have introduced the SuDoRM-RF network, a novel
architecture for efficient universal sound source separation. The
proposed model is capable of extracting multi-resolution temporal
features through successive depth-wise convolutional downsampling
of intermediate representations and aggregates them using a non-
parametric interpolation scheme. In this way, SuDoRM-RF models
are able to significantly reduce the required number of layers in order
to effectively capture long-term temporal dependencies. We show
that these models can perform similarly or even better than recent
state-of-the-art models while requiring significantly less computa-
tional resources in FLOPs, memory and time. In the future, we aim
to use SuDoRM-RF models for real-time low-cost source separation.

6. REFERENCES

[1] Po-Sen Huang, Minje Kim, Mark Hasegawa-Johnson, and
Paris Smaragdis, “Deep learning for monaural speech sepa-
ration,” in Proc. ICASSP, 2014, pp. 1562–1566.

[2] Yi Luo and Nima Mesgarani, “Conv-tasnet: Surpassing ideal
time–frequency magnitude masking for speech separation,”
IEEE/ACM Transactions on Audio, Speech, and Language
Processing, vol. 27, no. 8, pp. 1256–1266, 2019.

[3] Yi Luo, Zhuo Chen, and Takuya Yoshioka, “Dual-path
rnn: efficient long sequence modeling for time-domain single-
channel speech separation,” in Proc. ICASSP, 2020.

[4] Ilya Kavalerov, Scott Wisdom, Hakan Erdogan, Brian Patton,
Kevin Wilson, Jonathan Le Roux, and John R Hershey, “Uni-
versal sound separation,” in Proc. WASPAA, 2019, pp. 175–
179.

[5] Efthymios Tzinis, Scott Wisdom, John R Hershey, Aren
Jansen, and Daniel PW Ellis, “Improving universal sound sep-
aration using sound classification,” in Proc. ICASSP, 2020.

[6] Alexandre Défossez, Nicolas Usunier, Léon Bottou, and Fran-
cis Bach, “Music source separation in the waveform domain,”
arXiv preprint arXiv:1911.13254, 2019.

[7] Laurent Sifre and Stéphane Mallat, “Rigid-motion scattering
for image classification,” Ph. D. thesis, 2014.

[8] Olaf Ronneberger, Philipp Fischer, and Thomas Brox, “U-net:
Convolutional networks for biomedical image segmentation,”
in International Conference on Medical image computing and
computer-assisted intervention. Springer, 2015, pp. 234–241.

[9] Efthymios Tzinis, Shrikant Venkataramani, Zhepei Wang, Cem
Subakan, and Paris Smaragdis, “Two-step sound source sep-
aration: Training on learned latent targets,” in Proc. ICASSP,
2020.

[10] François Chollet, “Xception: Deep learning with depthwise
separable convolutions,” in Proc. CVPR, 2017, pp. 1251–1258.

[11] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-
dreetto, and Hartwig Adam, “Mobilenets: Efficient convolu-
tional neural networks for mobile vision applications,” arXiv
preprint arXiv:1704.04861, 2017.

[12] Sachin Mehta, Mohammad Rastegari, Linda Shapiro, and Han-
naneh Hajishirzi, “Espnetv2: A light-weight, power efficient,
and general purpose convolutional neural network,” in Proc.
CVPR, 2019, pp. 9190–9200.

[13] Jiahui Yu, Linjie Yang, Ning Xu, Jianchao Yang, and Thomas
Huang, “Slimmable neural networks,” in Proc. ICLR, 2019.

[14] Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song
Han, “Once for all: Train one network and specialize it for
efficient deployment,” in Proc. ICLR, 2020.

[15] Nal Kalchbrenner, Erich Elsen, Karen Simonyan, Seb Noury,
Norman Casagrande, Edward Lockhart, Florian Stimberg,
Aaron Oord, Sander Dieleman, and Koray Kavukcuoglu, “Ef-
ficient neural audio synthesis,” in International Conference on
Machine Learning, 2018, pp. 2410–2419.

[16] Alejandro Maldonado, Caleb Rascon, and Ivette Velez,
“Lightweight online separation of the sound source of in-
terest through blstm-based binary masking,” arXiv preprint
arXiv:2002.11241, 2020.

[17] Minje Kim and Paris Smaragdis, “Efficient source separation
using bitwise neural networks,” in Audio Source Separation,
pp. 187–206. Springer, 2018.

[18] Muhammad Haris, Gregory Shakhnarovich, and Norimichi
Ukita, “Deep back-projection networks for super-resolution,”
in Proc. CVPR, 2018, pp. 1664–1673.

[19] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman,
“Deep inside convolutional networks: Visualising image clas-
sification models and saliency maps,” in Workshop Proc. ICLR,
2014.

[20] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton,
“Layer normalization,” arXiv preprint arXiv:1607.06450,
2016.

[21] Wenjie Luo, Yujia Li, Raquel Urtasun, and Richard Zemel,
“Understanding the effective receptive field in deep convolu-
tional neural networks,” in Advances in neural information
processing systems, 2016, pp. 4898–4906.

[22] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun,
“Delving deep into rectifiers: Surpassing human-level perfor-
mance on imagenet classification,” in Proc. CVPR, 2015, pp.
1026–1034.

[23] G. Brunner, N. Naas, S. Palsson, O. Richter, and R. Watten-
hofer, “Monaural music source separation using a resnet latent
separator network,” in Proc. ICTAI, 2019, pp. 1124–1131.

[24] John R Hershey, Zhuo Chen, Jonathan Le Roux, and Shinji
Watanabe, “Deep clustering: Discriminative embeddings for
segmentation and separation,” in Proc. ICASSP, 2016, pp. 31–
35.

[25] Neil Zeghidour and David Grangier, “Wavesplit: End-to-
end speech separation by speaker clustering,” arXiv preprint
arXiv:2002.08933, 2020.

[26] Yuzhou Liu and DeLiang Wang, “Divide and conquer: A deep
casa approach to talker-independent monaural speaker separa-
tion,” arXiv preprint arXiv:1904.11148, 2019.

[27] Douglas B. Paul and Janet M. Baker, “The design for the wall
street journal-based CSR corpus,” in Speech and Natural Lan-
guage: Proceedings of a Workshop Held at Harriman, New
York, February 23-26, 1992, 1992.

[28] Karol J Piczak, “Esc: Dataset for environmental sound classi-
fication,” in Proc. ACM International Conference on Multime-
dia, 2015, pp. 1015–1018.

[29] Dong Yu, Morten Kolbæk, Zheng-Hua Tan, and Jesper Jensen,
“Permutation invariant training of deep models for speaker-
independent multi-talker speech separation,” in Proc. ICASSP,
2017, pp. 241–245.

[30] Jonathan Le Roux, Scott Wisdom, Hakan Erdogan, and John R
Hershey, “Sdr–half-baked or well done?,” in Proc. ICASSP,
2019, pp. 626–630.

[31] Diederik P Kingma and Jimmy Ba, “Adam: A method for
stochastic optimization,” arXiv preprint arXiv:1412.6980,
2014.

[32] Nicholas D Lane, Sourav Bhattacharya, Petko Georgiev, Clau-
dio Forlivesi, Lei Jiao, Lorena Qendro, and Fahim Kawsar,
“Deepx: A software accelerator for low-power deep learning
inference on mobile devices,” in Proc. IPSN, 2016, pp. 1–12.

