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ABSTRACT

Data defined over a network have been successfully modelled by
means of graph filters. However, although in many scenarios the
connectivity of the network is known, e.g., smart grids, social net-
works, etc., the lack of well-defined interaction weights hinders the
ability to model the observed networked data using graph filters.
Therefore, in this paper, we focus on the joint identification of coef-
ficients and graph weights defining the graph filter that best models
the observed input/output network data.

While these two problems have been mostly addressed sepa-
rately, we here propose an iterative method that exploits the knowl-
edge of the support of the graph for the joint identification of graph
filter coefficients and edge weights. We further show that our itera-
tive scheme guarantees a non-increasing cost at every iteration, en-
suring a globally-convergent behavior. Numerical experiments con-
firm the applicability of our proposed approach.

Index Terms— Filtering over graphs, graph signal processing,
graph filter identification, networked data modeling, topology iden-
tification

1. INTRODUCTION

The increasing amount of networked data, also conceptualized as
graph signals within the graph signal processing (GSP) field [1] [2],
has gained a lot of attention in the scientific community. Due to
this, many signal processing tasks have been adapted towards their
networked counterpart, as extensively detailed in [3].

In the graph setting, it is common to parameterize network pro-
cesses through graph filters, due to their versatility and their natu-
ral distributed implementation [4] [5]. They play an important role
within GSP, with applications ranging from reconstruction [6] [7]
[8], denoising [9] and classification [10], to forecasting [11] [12]
and (graph-)convolutional neural networks [13]. Notable recent ad-
vances in such structures are [14], which generalizes state-of-the-
art graph filters to filters where every node weights the signal of its
neighbors with different values, and [15], which extends the classi-
cal problem of blind system identification or blind de-convolution to
the graph setting.

Given the structure of the graph, encoded by the so-called
graph shift operator (GSO) [2], and assuming a process modelled
by a graph filter, identifying an underlying network process from
input/output networked data amounts to estimate the graph filter
coefficients, thus alleviating the estimation workload [2] [16]. A key
assumption in graph filtering is the knowledge of the GSO, which
can be obtained from some other field of research or can be esti-
mated from historical data. The latter relates to network topology
inference or graph learning which, in recent years, has experienced

an exponentially-increasing scientific interest, see, e.g., [17] [18]
[19].

Related to the scenario we are going to consider, there are also
works that model the observed signal as the output of an unknown
graph filter over an unknown graph. In [20], a two-step GSO iden-
tification approach is taken, where first the GSO’s eigenvectors are
identified from the diffused (stationary) graph signals and then the
GSO’s eigenvalues are estimated based on some general properties
of the GSO. In [21], the work of [20] is extended to non-stationary
graph signals, entailing the solution of a system of quadratic matrix
equations. Using the same approach, the problem of directed net-
work topology identification is investigated in [22]. Note, though,
that none of these above works focuses on estimating the related
graph filter. More similar to our work, is the approach of [23], where
not only the GSO but also the filter taps are learned. Although the
context of [23] is different, in that work, a general linear filter oper-
ator is estimated from the data and then both the GSO and the filter
taps are estimated from it.

All the previous approaches rely on a multi-step algorithm and
only exploit some general properties of the GSO, e.g., sparsity. In
addition, in many practical networks such as social and supply net-
works, the support of the graph is a priori known, that is, the con-
nections between different entities of the network are already known,
yet their importance might be unknown. And this information is not
directly handled by the above algorithms.

Motivated by the above reasons, this work aims to jointly es-
timate the graph filter coefficients and the weights of the network
topology. This joint approach leads to an optimization problem that
is non-convex. We tackle the non-convexity of the problem by build-
ing on sequential convex programming (SCP), a local optimization
tool for non-convex problems that leverages the convex optimization
machinery. We show that an alternating minimization between the
filter coefficients and the GSO guarantees that the objective func-
tion value at each iteration is non-increasing, obtaining a globally
convergent method.

2. PRELIMINARIES

In this section, we introduce the GSP background material necessary
for the rest of the paper, including the formal definition of graph sig-
nals and the core concepts of graph filtering and topology identifica-
tion.

Graph Signal Processing We consider the case in which the
data of interest live in a non-Euclidean domain, described by the
undirected graph G = (V, E ,S), where V = {1, . . . , N} is the
set of nodes (or vertices), E ⊆ V × V is the set of edges, and S
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is a symmetric N × N matrix that represents the graph structure.
The matrix S is called the graph shift operator (GSO) [2], whose
entries [S]ij for i 6= j are different from zero only if nodes i and j
are connected by an edge. Typical choices of the GSO include the
(weighted) adjacency matrix W [2] and the graph Laplacian L [1].

This allows us to define a graph signal, denoted by the vector
x ∈ R

N , as a mapping from the node set to the set of real vectors;
that is, x : V → R

N . In this way, xi ∈ R is a scalar that represents
the signal value at node i. Because S reflects the local connectivity
of G, the operation Sx performs at each node a local computation
enabling us to introduce the concept of filtering in the graph setting.

Graph Filters We can process a graph signal x by means of a
so-called graph filter [2] as:

y = H(h,S)x =

K∑

k=0

hkS
k
x, (1)

where K is the order of the filter, H(h,S) is a polynomial matrix
on S and h := [h0, . . . , hK ]⊤ is the vector that contains the filter
taps. Due the locality of S, graph filters represent linear transfor-
mations that can be implemented in a distributed setting [20]. More
formally, the output entry yi of y at node i is a linear combination of
K + 1 terms: the first term is the signal value xi of node i; the kth
term (k = 1, 2, . . . ,K) combines signal values xj from the k-hop
neighbors of node i.

Topology Identification When the connections of the network
cannot be directly observed or the network is just a conceptual model
of pair-wise relationships among entities, a fundamental question is
how to learn its structure from the graph signals. Formally, consider
the matrix X = [x1, . . . ,xT ] ∈ R

N×T that stacks column-wise
T graph signals xt residing over the network G = (V, E ,S). The
goal is to infer the latent underlying network topology encoded in
the GSO S under some optimality criterion.

This problem has been addressed in the past by means of sta-
tistical approaches, mostly based on correlation analysis and its
connections to covariance selection and high-dimensional regres-
sion for learning Gaussian graphical models. Only more recently,
GSP postulated the network topology inference problem under the
assumption that the observed signals exhibit certain properties over
the graph, such as smoothness, stationarity or band-limitedness. The
reader interested in this topic is referred to [17] [18] [19].

Differently from the traditional topology identification setting,
instead of estimating S from X, we rely on model (1) and focus
on a problem where given input and output data, the values of the
nonzero entries of S, i.e., the edge weights, and the filter taps h of
a graph filter H(h,S) have to be jointly identified. In Section 3, we
rigorously formulate this problem and, in Section 4, we propose a
way to efficiently tackle it.

3. JOINT GRAPH FILTER AND TOPOLOGY ESTIMATION

Suppose there is an unknown network process that can be accurately
modelled by a graph filter H(h,S) where, in response to an input
xt, we observe a corresponding output yt. Such dynamics can be
found for instance in social networks, where as a result of an ad-
vertisement campaign, we may expect to observe a response of the
network’s users; or in epidemics, where the nodes of the network are
cities and we monitor the evolution of a spreading disease from one
time instant to the next.

Let us assume that there are T input-output pairs available, and
that we stack them column-wise in the matrices X = [x1, . . . ,xT ]
and Y = [y1, . . . ,yT ], respectively. Let the unknown filter

H(h,S) be of the form in (1). At this point, we are ready to
formally state the problem we are going to address.

Problem Statement Given the input-output data {xt,yt}
T
t=1 and

the support, A, of the graph G, the goal is to identify the filter coef-

ficients h and the GSO S embodied in the graph filter H(h,S), that

maps xt into yt as accurately as possible.

The above problem can be mathematically defined with a least-
squares formulation as:

argmin
h,S

‖Y −
∑K

k=0 hkS
kX‖2F

s.t. S ∈ S
supp (S) ⊆ A

(2)

where S represents the set of valid GSOs,A denotes the set with the
support of G, and ‖ · ‖F denotes the Frobenius matrix norm. Note
the (relaxed) constraint on the support: as the sparsity pattern of the
GSO might have been overestimated, we leave it to the algorithm
to optimize it, eventually shrinking to zero some unnecessary edges.
That is, we constrain only the entries of the GSO to be zero in cor-
respondence to the zeros of the support, leaving the other entries
unconstrained (both zero and non-zero values are admitted).

From (2), we can deduce that the problem is not convex. Indeed,
the objective function is made up of cross-products between the en-
tries of S and the filter coefficients hk, and by the power terms Sk.
The overall optimization problem is hence not convex and traditional
tools of convex optimization cannot be used.

Although not directly handling the fixed-support case, the works
referenced in Section 1 address the estimation problem using multi-
step approaches to find S and/or h. For instance, in [23] each realiza-
tion is modeled through a graph filter-based vector auto-regressive
(VAR) model, and this structure is leveraged to first recover the
graph filters Hi(h,S) representing the matrix filter taps of the VAR,
and only then to recover the shift S and the coefficients h from them.
Other approaches, such as [20] [21] are only interested in learning
the shift S, while others, such as [15], only in the filter coefficients
h.

Differently from the method in [23], in the following, we intro-
duce a globally convergent SCP-based method to directly find both
the filter taps h and the GSO S. To the best of our knowledge, this is
the first work that jointly learns the filter taps and the graph topology
from observations.

4. ALTERNATING MINIMIZATION

To tackle the non-convexity of the problem and to bypass the limited
flexibility of other methods, we resort to the alternating minimization
(AM) approach, acting iteratively on h and S. The general AM
pseudo-code, adapted to our case, is reported in Algorithm 1. Notice
that due to steps 3 and 4 in Algorithm 1, the cost is guaranteed to be
a non-increasing function of the iteration number. In the following,
we show how to perform step 3 and 4 of the proposed algorithm.

Given the estimate of the GSO S at the (n− 1)th iteration, i.e.,

S(n−1), the estimation problem at the nth iteration for the filter taps
vector h, i.e., h(n), reads as:

h
(n) = argmin

h

‖Y −

K∑

k=0

hk

(
S
(n−1))k

X‖2F. (3)

Problem (3) is convex and boils down to the traditional linear least
squares (LLS) problem.
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Algorithm 1 Joint GF & GSO Identification

Require: Feasible S(0), ε > 0, A, S
1: n← 1
2: while not converged do

3: h(n) ← argmin
h
f
(
h,S(n−1)

)
[See Eq. (3)]

4: S(n) ← argmin
S
f
(
h(n),S

)
(SCP) [See Alg. 2]

5: Check convergence (h(n),S(n), ε)
6: n← n+ 1
7: end while

8: return S(n),h(n)

The solution of (3) is then used in the next step, i.e., step 4, to
minimize the function with respect to the constrained GSO S; that is

S(n) = argmin
S

{f(S) := ‖Y −
∑K

k=0 h
(n)
k SkX‖2F}

s.t. S ∈ S
supp (S) ⊆ A

(4)
As problem (4) is not convex, we employ SCP [24], a heuristic and
local optimization method for non-convex problems that leverages
convex optimization, where the non-convex portion of the problem
is modeled by convex functions that are (at least locally) accurate.

Given the non-convex function f(S), the idea in SCP is to main-

tain a solution estimate S[l] and a respective convex trust region

T [l] ⊆ R
N×N over which we “trust” our solution to reside1. Then,

using a convex approximation f̂ of f , around S[l], the next solution

estimate, S[l+1], is computed using the optimizer of f̂ in T [l]. Typi-
cal trust regions include ℓ2-norm balls or bounded regions.

For our case, we define as trust region the box:

T [l] =






S ∈ S,

supp (S) ⊆ A

|[S]ij − [S[l]]ij | ≤ ρij(l), if (i, j) ∈ E 6= 0, ∀i, j ∈ V,
(5)

where ρij : Z+ → R++ is a mapping from the iteration number to
the breadth of the search for the (i, j)th entry.

For the convex approximation of the function, we linearize the
function f(S) around the previous estimate S[l] using its first-order
Taylor approximation2:

f̂ [l](S) := f(S[l]) + tr
[
∇Sf(S

[l])⊤(S− S
[l])

]
. (6)

We then find a feasible intermediate iterate by solving the problem:

Ŝ = argmin
S∈T [l]

f̂ [l](S). (7)

Due to the non-convexity of the cost function f(S), its value at

the (feasible) point Ŝ is not guaranteed to be lower than the one at
S[l]. Hence, to find the “best” feasible solution S at the (l + 1)th
iteration, we first resort to a line search to find the optimal scaling
step size parameter αl toward the feasible descent direction ∆l :=

Ŝ− S[l]; that is,

α∗
l = argminαl∈[0,1]f(S

[l] + αl∆l). (8)

1We use the superscript with square brackets to indicate the SCP itera-
tions.

2The computation of ∇Sf(S
[l]) is reported in the Appendix.

Then, we compute our next solution estimate S[l+1] through

S
[l+1] = S

[l] + α∗
l ∆l, (9)

which is feasible for the original problem as long as the set S is
convex, i.e., the update in (9) is a convex combination of feasible
points. The specialized SCP procedure for our problem is summa-
rized in Algorithm 2. Note that steps 7-9 guarantee, at each iteration,
the feasibility of the iterate and a non-increasing cost function value,
leading to the global convergence of Algorithm 1.

Algorithm 2 SCP

Require: S(n), h(n), {ρij}(i,j)∈E , ε > 0
1: l← 1
2: S[0] ← S(n)

3: while not converged do

4: Compute {ρij(l − 1)}(i,j)∈E

5: Construct f̂ [l−1](S) as in (6)

6: Define T [l−1] as in (5)
7: Ŝ← argmin

S∈T [l−1]

f̂ [l−1](S)

8: α∗
l−1 ← argminαl−1∈[0,1]f(S

[l−1] + αl−1(Ŝ− S[l−1]))

9: S[l] ← S[l−1] + α∗
l−1(Ŝ− S[l−1]))

10: Check convergence (h(n),S[l], ε)
11: l← l + 1
12: end while

13: return S[l]

Due to the non-convexity of the cost function, the global op-
timality of the solution is not guaranteed, thus the results are de-
pendent on the initial starting point(s) as they might lead to dif-
ferent local minima. Despite that in these cases multi-start is rec-
ommended, we have found in our numerical experiments that both
the unweighted adjacency matrix, A, and the respective combina-
torial Laplacian matrix, L, are good initial iterates, i.e., S(0), for
the proposed approach; they are straightforward choices and can be
computed using the support of the graph. To validate this claim, in

our experiments, we generate initial GSO iterates S
(0)
i , through a

method reported in the Appendix, and show their performance in the
next section, along with those of A and L.

5. NUMERICAL RESULTS

In this section, we show some numerical results obtained for identi-
fying different graph filters and GSOs S. In these experiments, we
consider cases where the GSOs to identify are the weighted adja-
cency matrix and the Laplacian.

To evaluate the correctness of our method, we first generate a
random graph composed of N = 30 nodes with the GSP Toolbox
[25] and construct from the graph the respective GSO S involved
in the graph filter that generates the output data. We then generate
T = 500 input graph signals {xt}

T
t=1 drawn from a standard normal

distribution. By fixing the order of the graph filter to K = 5, we
generate graph filter taps h following a Gaussian distribution with
zero mean and σ = 3. Finally, the output graph signals {yt}

T
t=1 are

generated following (1).

In our experiments, we analyze two main aspects of the pro-
posed method: i) the convergence of the algorithm, regardless the
initial starting point; and ii) the similarity in terms of edge weights

between the groundtruth GSO S and the identified one Ŝ. To provide
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Fig. 1: NMSE for different settings of the true GSO type Sg and the hypothesis GSO type Sh. The legend in each plot contains the considered
GSOs for initializing the algorithm.

a fair comparison, we assume we do not know in advance the type
of GSO that generate the network process, i.e., S is not completely
known a priori. For this, we provide a guess of GSO type as input
to Algorithm 1, and hope that a proper guess leads to a good fitting.
In the sequel, we denote with Sg the type of GSO used to generate

the data, and with Sh the type of GSO hypothesized. Both types of
GSOs can assume the values W and L, indicating respectively the
(weighted) adjacency matrix and the Laplacian matrix3.

As performance metric for the error evaluation, we consider the
normalized MSE (NMSE), defined as

NMSE =

∑T

t=1 ‖ŷt − yt‖
2
2∑T

t=1 ‖yt‖
2
2

(10)

where ŷt is the predicted graph signal relative to the input xt.
Figure 1a shows the NMSE as function of the “cumulative” it-

eration number4, for Sg = Sh = L. Regardless of the starting point,
we observe the non-increasing behavior of the NMSE, corroborating
the global convergence of the algorithm. For this particular (Sg, Sh)
combination, L and A are the best performing starting points in
terms of final NMSE, with L reaching convergence in just a few
iterations. The sharp steps downwards, especially noticeable in the
case of A are due to the update of the graph filter coefficients h. In
this case, the other initial points are not better that the straightfor-
ward initial guesses. Similar observations can be made from Fig. 1b.
A case of GSO mismatch is shown in Fig. 1c, where the data are
generated using the weighted adjacency matrix, but the algorithm is
running based on the Laplacian hypothesis. As expected, the A ma-
trix is the best starting point. Comparing Fig. 1b and Fig. 1c, where
the curves starting at A and L achieve the same NSMSE, we note
how in case of matched hypotheses, the GSOs generated through
the generation procedure yield a lower error with respect to the mis-
matched counterpart.

As a quantitative measure of similarity between the groundtruth
and the inferred weights, we report their Spearman correlation coef-
ficient rs, which is a non parametric measure of rank correlation. In
particular, it answers the following question: do edges with higher

weight in the groundtruth GSO tend to have a higher weight in the

inferred one? A perfect Spearman correlation of +1 or −1 occurs
when each of the variables is a perfect monotone function of the
other. In our setting, rs = 0.74 thus confirming a strong positive

3Note how we don’t use here the bold notation, because both Sg and Sh

are (textual) parameters of the algorithm, in contrast to the considered GSOs
starting points that are effectively matrices.

4We count all the iterations of the algorithm up to its convergence. We
sum in a cumulative manner the outer and the inner iterations of Algorithm 1.

correlation of the two vectors. Moreover, as depicted in the Q-Q
plot of Fig. 2, the quantiles of the two vectors lie almost entirely
on the straight line, allowing us to state that the weights of the two
GSOs come approximately from the same distribution. For a qual-
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Fig. 2: Q-Q plot of the weights of the groundtruth GSO and the
weights of the inferred Laplacian for the case Sg = L, Sh = L

itative and visual assessment of the method, in Fig. 3a and Fig. 3b
we show, respectively, the graphs and the weighted sparsity pattern
of the groundtruth and the learned Laplacian matrix (for Sg = Sh =
L). We observe how, up to a scaling factor, the algorithm is able to
give a larger weight to those edges that are also “important” in the
original graph. All these considerations make us optimistic in the
continuation of the development and the study of the proposed ap-
proach, driving us toward its application in more complex real-world
scenarios.

6. CONCLUSION

In this work, we formulated and studied the problem of jointly es-
timating the filter coefficients and the graph shift operator (GSO)
defining a graph filter that models the dynamics of signals defined
over a network. In particular, motivated by practical scenarios, we
exploited the a priori knowledge of the sparsity pattern of the net-
work. We proposed an alternating-minimization approach, whose
non-convex subproblem is handled through sequential convex pro-
gramming methods. As shown in the numerical results, the proposed
method is globally convergent and is able to identify the type of GSO
used to generate the data. Quantitative statistical measures and qual-
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Fig. 3: (a) Graphs and (b) Laplacian matrix heatmaps for the case
Sg = Sh =L

itative graphics demonstrated the efficacy of the algorithm to assign
higher values to those weights that are prominent in the real graph.

7. APPENDIX

To compute the derivative ∇Sf(S), let us first expand the function
f(S)5:

f(S) =

= tr
[
(Y −H(h,S)X)(Y −H(h,S)X)⊤

]

= tr
(
YY

⊤
)
− 2tr

(
HXY

⊤
)
+ tr

[
H

⊤
HXX

⊤
]

= tr
[
YY

⊤
]
− 2

K∑

k=0

hktr
[
S
k
XY

⊤
]

+
K∑

k1

K∑

k2

hk1hk2 tr
(
S
k1+k2XX

⊤
)

5We set h(n) to h, and H(h,S) to H, for the rest of the proof.

Then

∇Sf(S) =

= −2

K∑

k=0

hk∇Str
[
S
k
XY

⊤
]

+
K∑

k1

K∑

k2

hk1hk2∇Str
(
S
k1+k2XX

⊤
)

Because S is symmetric, we have to take into account its struc-
ture for the computation of the derivative of f(S). Indeed, due to the
matrix symmetry, the overall gradient can be decomposed in:

∇Sf(S) =

[
∂f(S)

∂S

]
+

[
∂f(S)

∂S

]⊤

− diag

[
∂f(S)

∂S

]
.

Finally, because ∂
∂S

Tr
(
Sk

)
= k

(
Sk−1

)⊤
and ∂

∂S
Tr

(
BSk

)
=

∑k−1
r=0

(
SrBSk−r−1

)⊤
, we have that the component [∂f(S)/∂S]

of the gradient is :

∂f(S)

∂S
=

= −2
K∑

k=0

hk∇Str
[
S
k
XY

⊤
]

+

K∑

k1

K∑

k2

hk1hk2∇Str
(
S
k1+k2XX

⊤
)

= −2
K∑

k=1

hk

[
k−1∑

r=0

(Sr
XY

⊤
S
k−r−1)⊤

]

+
K∑

k1

K∑

k2

hk1hk2

k1+k2−1∑

r=0

(Sr
XX

⊤
S
k1+k2−r−1)⊤

7.1. GSO Candidate Generation

Let the model be y = H(h,S)x for some order K of the filter.
Then, a K = 1 approximation for the overall problem (2) is given
by

y ≈ (ĥ
(1)
0 I+ Ŝ1)x, (11)

where ĥ
(1)
0 is the constant filter tap estimate related to the first order

approximation, and Ŝ1 ∈ S is the respective estimate for the GSO.

We assume ĥ
(1)
1 = 1 to avoid the scalar ambiguity that would other-

wise arise in the term ĥ1Ŝ1. This also decouples the filter parameters
from the GSO, both of which can be estimated by LLS. This way, a

first GSO candidate S
(0)
1 for the algorithm is found. Next, we con-

sider a second order approximation of the model

y ≈ (ĥ
(2)
0 I+ Ŝ2 + ĥ

(2)
2 S

(0)2
1 )x, (12)

where the variables are now ĥ
(2)
0 , ĥ

(2)
2 and Ŝ2, and we still assume

the first filter tap ĥ
(2)
1 is equal to one. This again leads to a LLS

problem which generates a second GSO candidate S
(0)
2 . We iterate

this procedure by increasing the order of the filter at each step, and
maintaining the term that is linear in the GSO variable S. At the end,

we have K initial GSO candidates S
(0)
1 ,S

(0)
2 , . . . ,S

(0)
K , which can

be given as input to Algorithm 1.
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