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ABSTRACT

We present a multi-object tracking (MOT) approach to track
small moving targets in satellite images. Our objects of in-
terest span few pixels, do not present a defined texture, and
are easily lost in cluttered environments. We propose a patch-
based convolutional neural network (CNN) that focuses on
specific regions to detect and discriminate nearby small ob-
jects. We use the object motion information to drive the patch
selection and detect objects using a region-based CNN. In ad-
dition, we present a direct MOT data-association approach by
using an improved Gaussian mixture-probability hypothesis
density (GM-PHD) filter. The GM-PHD filter offers an effi-
cient yet robust MOT formulation that takes into account clut-
ter, misdetection, and target appearance and disappearance.
We are able to detect and track blob-like moving objects and
demonstrate an improvement over competing state-of-the-art
tracking approaches.

Index Terms— Object Detection, Satellite Object Track-
ing, MOT, CNN, Deep Learning, GM-PHD

1. INTRODUCTION

Multi-object tracking (MOT) constitutes a key task in numer-
ous biological, surveillance, and remote sensing applications.
Particularly, remote sensing applications have experienced an
increased demand for MOT: novel Earth observation satellites
are able to capture large-scale images at sub-meter resolutions
that allow to detect and track small vehicles and pedestri-
ans. For instance, the Chinese Jilin-1 satellite constellation
yields ground videos at resolutions up to 0.72m, and Planet’s
Terra Bella Skysat-1 satellite constellation records videos up
to 0.8m. Large-scale ground data will contribute to improve
applications that currently rely on local ground/aerial sensors
such as traffic estimation [1], traffic pattern research [2], or
rare object tracking [3]. Fig. 1(a) shows an example of an im-
age of Valencia, Spain, and Figs. 1(b)(c) show sample objects
of interest and their tracks respectively.

Despite significant advancements in object tracking, small
satellite target tracking remains an emerging area of research.
Popular CNN approaches experience severe drawbacks when

(b) Sample Moving Targets (c) Sample Tracks

Fig. 1. Sample Satellite Image and Tracks.

detecting and tracking small targets in satellite images. Vehi-
cles are often represented as blobs with an average size of 6 x
6 pixels, such as in Fig. 1(b). Also, texture-rich backgrounds
contain blob-like objects such as air-conditioning units and
electrical transformers, which generate numerous false posi-
tives for object detection. Finally, training data is sparse and
often imperfect due to the difficulty of labeling small objects
across numerous frames.

We approach the challenging task of small object detec-
tion by using a patch-based CNN to detect tiny moving vehi-
cles in satellite images. We achieve this task by combining
the three frame difference algorithm to drive the region selec-
tion of a CNN object detector. This approach facilitates the
training of the CNN when training data is sparse because the



network learns directly from regions with objects rather than
whole images and it also reduces the amount of false positives
as it focuses on patches with moving targets.

In addition, we employ the Probability Hypothesis Filter
(PHD) to perform object tracking. The PHD filter offers a
sophisticated Bayesian data-association framework [4] that
allows estimating the states of a varying number of targets
given past measurements. This framework is robust to mis-
detections, false alarms, and appearing and disappearing ob-
jects. It also presents a significant advantage over commonly
employed MOT algorithms such as probabilistic data associ-
ation (PDA) [5] and multiple hypothesis tracking (MHT) [6]
thanks to its relatively low computational complexity.

We propose an improved PHD filter that receives the mea-
surements from the CNN object detector, discriminates sur-
viving objects from appearing objects, and propagates the la-
bels in time. The contribution of this paper is namely a track-
by-detection approach by using 1) a novel method to detect
small moving vehicles in satellite images and 2) the integra-
tion with an improved PHD filter to convert the measurements
into tracks with a MOT statistical model.

The paper is organized as follows: Section 2 presents a
literature review of state-of-the-art methods, Section 3 de-
scribes the proposed approach, first discussing the patch se-
lection mechanism and then developing on the improvements
of the PHD filter. Section 4 discusses the experiment section
and Section 5 develops the conclusions and insights.

2. RELATED WORK

Common approaches for satellite object tracking involve
using motion information or correlation filters. Du et al. uti-
lized a combination of frame-difference and correlation filter
to track a single object [7], Xuan et al. employed correla-
tion filters, together with Kalman filters and linear motion to
make a tracker robust to occlusions [8]. These approaches
show promising results for satellite object tracking but are
limited to single object tracking, require an initialization,
and they generally focus on larger targets (planes/trains vs
cars/pedestrians). Jiao et al. performed a survey [9] with
new generation deep learning tracking approaches where
numerous state-of-the-art deep learning approaches consist
in learning deep features and matching them in future/past
frames. However, these approaches would experience severe
drawbacks when tracking small objects in satellite videos:
satellite videos do not have large training datasets, targets do
not exhibit distinct features, and the objects of interest are
tiny relative to the satellite’s field of view.

Common baselines for online multi-target trackers in-
clude Tracktor++ [10] and DeepSORT [11]. These methods
obtain remarkable results in surveillance camera videos by
using CNNs for detection and Kalman filters for tracking.
However, their CNNs are based on Faster-RCNN and would
have difficulties learning directly from the whole image.

Wei et al. presented the closest state-of-the-art approach
comparable to our problem in [12]. The authors used mo-
tion information, several post-processing steps, and multiple
Kalman filters to detect and track small objects in satellite
videos. This approach proved promising but would under-
perform if cluttered objects, slow moving objects, and the
data association were done using as a post processing step
with the Hungarian algorithm [13]. In our approach, we in-
corporate deep learning for object detection, and we opt for
a direct-MOT tracking with the PHD filter rather than using
several individual Kalman filters.

3. PROPOSED TRACKING ALGORITHM

We use the Random Finite Set (RFS) framework to model
the collection of state vectors as Xj, = {X},X3, .. .xg *1, and
the frame measurements as Zy = {z},23,...,zp* }, where
Ny, and M}, denote the number of objects and measurements
at time k. We define a single target state vector as X, =

i, v{,, ai]T where j and k are the object and time indices
respectively, and pi, vi, a{, € R? denote the target’s posi-
tion, velocity, and acceleration vectors. Similarly, we define a
measurement vector z; = [pi]7, where pi € R? denotes the
coordinates obtained by an object detector for the i‘" mea-
surement.

During each frame, we use the CNN-based object detec-
tor to obtain new measurements, i.e. Zj, and then we use
the PHD filter to approximate the posterior multi-target RFS
distribution: py;(Xg|Z1.x). The summary of the proposed

approach is depicted in Fig. 2.
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Fig. 2. Proposed Approach.

3.1. Patch-based CNN Object Detector

We propose a patch-driven approach to segment moving ve-
hicles. This approach filters overwhelming image informa-
tion and performs inference on relevant areas of interest. We
first apply a motion-based detector to obtain rough object lo-
cations. In our experiments, the frame difference algorithm
proved to be an effective and computationally lightweight op-
eration and it is defined as:

AlLi(i, ) = Ii (i, ) — L—1(4, ) (1)

1 if | AL (3, §)| + | ALk (4, 5)] > T
0 otherwise

2)

Where (%, j) denotes the image intensity at coordinates
1, j during time k and T}, is an adaptive threshold to binarize
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Fig. 3. Object Detector Comparison.

the three-frame difference response. During our experiments,
we obtained robust results by letting Ty, = ¢ - max(|AL| +
|ATj11]), where ¢ € (0,1). Sequentially, we use binary ero-
sion and connected components labeling to refine and trans-
form the three-frame difference into coordinates of interest.
We proceed to extract patches centered around the rough ob-
ject locations to perform a refined object detection. Figs. 3
(a) (b) show a sample patch with its ground truth respectively,
and Fig. 3 (c) shows the three-frame difference’s output.

The three-frame difference segmentation outputs rough
object locations but it does not regularize objects by area or
shape and it misses slow-moving objects. For example, Fig.
3 (c) shows nearby object merging, measurement duplication
for a single target, and missed objects toward the bottom of
the patch. Therefore we upsample the patch and apply Faster-
RCNN [14] to obtain precise object locations. Fig. 3 (d)
shows that Faster-RCNN detects and discriminates nearby ob-
jects, and corrects for the missed detections. In fact, with vi-
sual inspection, the proposed object detection provides a bet-
ter fit than the hand-annotated labels.

Finally, we convert the patch coordinates back to global
coordinates and perform global non-maximum suppression
(NMS) to discard repeated objects. This approach allows us
to exploit low-availability of labeled data by focusing the net-
work training on patches rather than whole images/videos.

The summarized pipeline for this approach is depicted in Fig.
4.

3.2. Gaussian Mixture Probability Hypothesis Filter

We use the PHD filter to approximate the target’s posterior
RFS pyji(Xk|Z1.x) by recursively propagating its first order
moment, namely its intensity function, Dy (x). The GM-
PHD, proposed by Vo and Ma [15] approximates a closed
form solution to the PHD recursion with a weighted Gaus-
sian mixture. It assumes that the intensity function from the
previous frame has the form:

Jr—1
Dy—1(x) = Z wy_ N (z;my_ Py y) 3)
j=1

Where wifl, mifl, and Piq are the weight, mean, and co-
variance for the jth component and Jy_; is the number of
components. The closed form solution for the GM-PHD pre-
diction step is given by the equation:

e . .
Ds Z wi—1N(z;Fm),_,,Q+FP,_ F")

j=1

Where F and Q are the transition and motion covariance ma-
trices in the same format as in [16], A(x) is the birth RFS
intensity and p; is a hyper-parameter to denotes the survival
probability. Once a new set of measurements Zj, arrives from
the object detector, we update the GM-PHD posterior follow-
ing the equation:

Dy(z) = (1 — pp) Dyj—1(2)+

Jrik—1

Z Z wi(z)/\/(x; mim(z)»PiUc)

€2y, j=1

Where Dyi—1(x) denotes the predicted GM components
and pp is a hyper-parameter to denote the detection proba-
bility. The terms mfcl (2), Pfc‘k are the target-measurement
association mean and covariance, which are calculated using
the Kalman equations, and wj, (z) denotes the updated weight
for the data association and is defined as:

, A
Wl (2) = P w11y, (2) @

J _ . .
ki(z) +pp 3T w;ﬂk—ll;c(z)

Where r(z) denotes the clutter process intensity and
[}.(z) denotes the target-measurement association likelihood.

3.3. PHD Filter Improvements

The PHD filter requires an accurate birth intensity A\(z) mod-
eling in order to deal with a varying number of targets. We
estimate the birth intensity A(x) by using information from
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Fig. 4. Patch Based Object Detection.

the CNN object detector. We use the decomposed measure-
ment set similar to [17], defined as Z;, = Z;, U Z%, where Z;,
denotes the surviving targets and Zz denotes the appearing
(birth) targets. We classify a new measurement as surviving
measurement (i.e. z}lC € Z7) if it is the closest measurement
to the location of a predicted GM component and if this dis-
tance is less than a threshold 7y;,.5, otherwise we classify
the measurement as a birth measurement (i.e. z}:C S ZZ). We
approximate A(x) by initializing a new mixture component
centered around the spatial coordinates from zi, € Z! and its
velocity and acceleration components set to zero.

In addition, the PHD filter does not keep tracks of labels
by default, therefore we added the label tracking scheme pro-
posed by [18]. This approach propagates labels in time in a
tree-like structure without affecting the filter’s performance.

4. EXPERIMENTS

4.1. Evaluation Metrics

We evaluate our approach using object detection metrics,
tracking quality measures, and the ClearMOT [19] frame-
work. We use the Hungarian algorithm [13] at each frame
to match predicted hypotheses to ground truth labels and we
call a hypothesis T'P if it is located within a distance dpp,,s
from the ground truth label. We choose dr,,s = 20 pixels
to account for the noise introduced by the image stabilization
procedure. Similarly, we call F'P any unmatched hypothesis
and F'N any unmatched ground truth label.

We report object detection metrics by using precision (P),
recall (R), F'1 score (F1), and the Jacard similarity index (J).
These scores provide an assesment to the quality of object de-
tection and were computed by counting TPs, FPs, and FNs
over all the frames. In addition, we report tracking quality
measures where we report the percentage of mostly tracked
(MT) trajectories and mostly lost (ML) trajectories. We clas-
sify tracks as MT if at least 80% of the ground truth trajectory
is recovered, and ML if less than 20% of the ground truth

track is recovered.

Finally, we follow the ClearMOT [19] as it has become a
popular and robust metric for tracking algorithms. We report
the multiple object tracking accuracy (MOTA) which consid-
ers FPs, FNs, and identity switches (IDs), and we also report
the multiple object tracking precision (MOTP), which con-
siders the average distance error between the detected objects
and the ground truth objects.

4.2. Satellite Dataset

The experimental satellite video can be obtained by CGSTL
(available at https://mall.charmingglobe.com). This video
contains 3071x4096 pixels and it represents the city of
Valencia, Spain. The video contains 580 frames, lasts 29
seconds, and was imaged at 20 fps at a resolution of 1.0m
by the Jilin-1 Satellite on March 7, 2017. The labels were
created by the authors of [12] and they contain labels for one
every 10 frames. Specifically, three regions of the image were
actively labeled for evaluation purposes. These regions span
500 x 500 pixels and are shown in [12]. The approximate
locations are: [520, 1616] for area 1, [450, 2810] for area 2,
and [1074, 1895] for area 3. Due to the low availability of
ground truth annotations, we tested our method on area 1 and
area 2, and trained the network using 2D patches from area 3
and areas outside area 1 and area 2.

The network was trained using an NVIDIA Quadro T2000
with 4 GBs of RAM and the training time was 6 hours. In ad-
dition, we performed a pre-processing step of image stabiliza-
tion by using the first frame’s strong edges as reference. The
stabilization step was fundamental for the three-frame differ-
ence algorithm as it contributed to significantly reduce noise
introduced by the satellite motion. Experimentally, we set the
three-frame difference threshold parameter ¢ = 0.15, and the
GM-PHD filter parameters pp = 0.90 and pg = 0.95.

Table 1 denotes numerical comparisons for our pro-
posed approach vs competing methods, namely Needles
in a Haystack (NIAH) [12], ViBe [20] and Gaussian Mix-



Area | Method FP| | FN| | IDs] | Precisionf | Recallt | F171 I MT1 ML| MOTAT | MOTP|
Proposed 1560 | 3755 | 264 89.12 77.29 | 76.01 | 70.63 | 65.31% | 10.20% 66.3 3.64
1 NIAH [12] | 935 | 7877 | 901 90.25 52.37 | 56.64 | 49.56 | 6.12% 6.12 % 41.30 3.66
ViBe [20] | 53993 | 3908 | 310 18.96 76.37 | 40.99 | 1791 | 51.02% | 4.08% -252.0 3.64
GMM [21] | 556 | 5687 | 210 95.13 65.61 | 74.32 | 63.48 | 4490 % | 18.37% 61.0 2.50
Proposed 108 441 32 87.61 63.40 | 65.09 | 58.19 | 68.96% | 17.24% | 51.80 3.23
) NIAH [12] 197 | 2953 | 121 93.77 50.08 | 60.55 | 48.47 | 20.69% | 34.48% 44.71 2.35
ViBe [20] | 38218 | 2046 | 82 9.20 6542 | 18.69 | 8.76 | 55.17% | 20.69% | -582.0 3.69
GMM [21] | 1696 | 1915 | 43 70.00 67.39 | 40.07 | 52.29 | 58.62% | 27.58% 37.80 2.25

Table 1. Tracking scores. The arrow’s direction represents better scores.
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Fig. 5. Area 1 Tracking Results.

ture Models (GMM) [21]. We implemented these methods
following the directives in [12] and used SORT [22] as the
data-association step. We stabilized the images and its re-
spective ground truth annotations in order to reduce noise
across all the methods; hence our results are slightly different
than the ones reported in [12].

Our approach outperforms competing methods in com-
prehensive object detection and object tracking metrics. For
instance, NIAH [12] and GMM [21] obtain better precision
scores in Area 1, but their recall values in Area 1 are sig-
nificantly lower. The addition of Faster RCNN allows our
approach to discriminate nearby objects that are merged or
not detected in NIAH [12] or GMM [21] such as in Fig 3.
Area 2 presents numerous tiny objects such as motorcycles or
small cars that are undetected by all object detectors; hence
our approach obtains similar recall values. However, the com-
bination of our object detector and GM-PHD filter allows our
method to reduce FP, hence obtaining better precision scores.
The trade-offs and advantages of the proposed method are de-
noted in Table 1 where our approach obtains the highest F'1
scores and J scores for both areas.

The tracking performance is also outlined in the number
of mostly tracked (MT) trajectories, the MOTA score, and
MOTP score. Our approach obtains a slightly worse MOTP
score (1 pixel difference) due to the modeling of uncertainty
in the GM-PHD-filter; however, our method obtains more MT

trajectories, lower identity switches (IDs), and better MOTA
thanks to the employment of the GM-PHD filter. Particularly,
the GM-PHD reduces clutter detections and keeps track of
undetected objects for several frames.

5. CONCLUSION

In this paper, we presented a track-by-detection approach
combining a patch-based CNN object detector and the PHD
filter. The patch selection mechanism contributes to filter
unnecessary information and to train the neural network in a
dataset with sparse labels. In addition, we use the GM-PHD
algorithm to track multiple targets while reducing the amount
of clutter. Our approach presents an increased computational
burden due to the patch selection and CNN inference, but its
results outperform competing methods in both object detec-
tion and tracking scores for the challenging task of detecting
small satellite objects.
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