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ABSTRACT

The network output activation values for a given input can
be employed to produce a sorted ranking. Adversarial attacks
typically generate the least amount of perturbation required to
change the classifier label. In that sense, generated adversar-
ial attack perturbation only affects the output in the 1st sorted
ranking position. We argue that meaningful information about
the adversarial examples i.e., their original labels, is still en-
coded in the network output ranking and could potentially be
extracted, using rule-based reasoning. To this end, we intro-
duce a novel adversarial attack methodology inspired by the
K-anonymity principles, that generates adversarial examples
that are not only misclassified by the neural network classi-
fier, but are uniformly spread along K different positions in
the output sorted ranking. In order to regulate the introduced
perturbation that arises from the strength of the proposed opti-
mization objectives, an additional visual similarity-based loss
function is introduced as well, guiding the adversarial exam-
ples towards directions maintaining visual similarity accord-
ing the some objective metric, such as the CW-SSIM. Experi-
mental results denote that the proposed approach achieves the
optimization goals inspired by K-anonymity, while introduc-
ing reduced perturbation as well.

Index Terms— K-anonymity, Adversarial Attacks

1. INTRODUCTION

Adversarial attacks in classification tasks aim to generate
the minimum amount of perturbation required to be added
to the inputs, in order to fool a trained task classifier. Sev-
eral classification models based on deep-learning, including
Convolutional Neural Networks (CNNs), have been found
to be vulnerable to adversarial attacks [1, 2]. Furthermore,
recent studies [3, 4] have shown that carefully crafted adver-
sarial examples may deceive various classification methods
at the same time, ranging from similar deep architectures to
even totally different classification methods, e.g., Support
Vector Machines or Random Forests, rendering adversarial

attacks a strong weapon for adversaries to by-pass automated
classification systems.

Despite the obvious potential application for malicious
purposes, adversarial attacks may also be used in benevolent
applications as well, notably to protect against automated pri-
vate data analysis by automatic recognition systems, that are
typically used by service providers in social media [5]. For
example, adversarial attacks have been employed to disable
known automatic face detection/recognition algorithms ap-
plied on visual data uploaded by social media users [6], while
at the same time, not hiding the person identities to human
viewers, since they are imperceptible to the human eye. Up to
date, methods that adhere to privacy protection principles [7]
typically emphasize on protecting private data against every
possible recognizer (including humans), thus minimizing data
utility for human viewers. On the other hand, methods that
fool image classification systems using adversarial attacks [8]
do not consider privacy protection constraints.

Motivated by the potential applications in privacy protec-
tion against automated image classification, we propose novel
optimization objectives for adversarial attacks in order to fool
deep neural network classifiers in a privacy preserving man-
ner, while generating humanly imperceptible perturbations at
the same time. Inspired by K-anonymity principles [9, 10],
the proposed optimization conditions assure that the initial
identities of the crafted adversarial examples are not only mis-
classified by the neural network decision function, but are uni-
formly spread along K different ranked output positions. In
addition, human imperceptibility is maintained by emphasiz-
ing on minimizing the introduced perturbation by our adver-
sarial attack. To this end, we add a visual similarity term,
i.e., the CW-SSIM loss [11], that guides the adversarial at-
tack towards image pixel value modifications having minimal
impact on the perceived image quality.

The rest of the paper is structured as follows. Influential
adversarial attacks that consist the state of the art in this field
are described in Section 2. Section 3 provides the insights and
methodological description of the proposed method, followed
by experimental evaluation and conclusions.



2. ADVERSARIAL ATTACKS

Let S = {X ,Y} be an image classification dataset that has
been employed to train a classifier f with trainable parame-
ters θ. That is, for any given sample x ∈ X , the neural net-
work classifier is able to recover the true label y ∈ Y by its
decision function e.g., f(x;θ) = y, where f(x;θ) contains
the network output activation values for a given x. Adver-
sarial attacks typically generate the necessary perturbation as
a mapping to a space of similar characteristics i.e., X 7→ X̃
such that the ability of the classifier to map to the correct label
is disabled:

f(x̃;θ) 6= y,

where x̃ = x + p is an adversarial example, and p is the
introduced perturbation vector. The minimum amount of per-
turbation is determined by optimizing some objective func-
tion, e.g., minimizing the L2 norm ‖p‖2.

One of the most well-known methods to this end is the
L-BFGS attack [1]. Assuming access to the outputs of a con-
tinuous loss function Lf , associated with the classifier func-
tion f to be deceived, the adversary selects a target label
t 6= y ∈ Y , for the adversarial example x̃. Then, the min-
imum perturbation is determined in an iterative fashion:

min:
p

c‖p‖2 + Lf (f(x̃;θ), t), (1)

until the minimum p that satisfies f(x̃;θ)) = t is obtained
(or approximated for non-convex loss functions Lf ). The pa-
rameter c > 0 controls the amount of perturbation introduced
per iteration step and is empirically set using line search.

Fast Gradient Sign [2] is a significantly faster alternative
that estimates the perturbation p in a single gradient update
step, along the direction of the gradient sign at each image
pixel:

p = c · sign(∇Lf (f(x;θ), t)), (2)

at the expense of producing more noisy examples than L-
BFGS.

DeepFool [12] is an un-targeted adversarial attack method
that produces adversarial examples with less perturbation than
L-BFGS or Fast Gradient Sign, by approximating the decision
boundaries of deep neural networks with linear/affine classi-
fiers, of the form g(x) = wTx + b. The minimum pertur-
bation p required to change the classifier label is estimated
by the orthogonal projection of the sample x to the closest
decision boundary, namely p = − g(x)

‖w‖2w. An iterative opti-
mization algorithm estimates this perturbation, as follows:

min:
p

‖p‖22 (3)

s. t. : g(x̃)−∇g(x̃)Tp = 0,

until the perturbation p changes the classifier label. A similar
approach can be employed for deriving the multiclass case
[12], as well.

The Carlini-Wagner (C & W) attack [13] is perhaps one
of the most powerful targeted attacks up to date, that have
been found to be effective against Defensive Distillation [14],
as well as a number of other defenses [15]. This method is
the generalization of the L-BFGS attack, having investigated
different combinations of loss functions, suitable image data
mappings for avoiding limitations of the box constraint x, x̃ ∈
[0, 1] and various gradient descend optimization algorithms.

Finally, we should also mention that other adversarial at-
tack types have been proposed, such as the Jacobian-based
Saliency Map Attack [16], or even attacks that modify only a
single image pixel [17]. The reader is referred to the review
papers [18, 19, 20] for more information.

3. K-ANONYMITY ATTACK AGAINST DEEP
NEURAL NETWORKS

K-anonymity is a generic privacy protection concept that sug-
gests that the maximum probability of identifying an individ-
ual in a specific set must be lower than 1/K [9, 10]. In order
to quantify privacy protection introduced by adversarial at-
tacks according to the K-anonymity principles, one might em-
ploy the class identification probabilities (e.g., classification
rate) of a set of adversarial examples X̃ produced by some at-
tack against the classifier decision function f(x̃;θ) = y that
have been attacked. However, such a definition does not ex-
amine the overall neural network output activation values.

More specifically, according to the perspectives of Label
Ranking [21] and Multi-Label Classification [22], the net-
work output activation values contain an underlying strict or-
dered ranking over the finite label set Y = {`i, . . . , `C},
where C is the total number of classes supported by the model
and `i �x `j denotes that for a given data example x, label
`i is a more probable output classification label than label `j .
For simplicity reasons, we denote the output ranking with a
vector function r(x) = [rx(1), . . . , rx(C)]T , such that the
output classification label of sample x by the deep neural net-
work model is given in the 1st ranking position rx(1). We
argue that the ranking obtained for any sample x may en-
code underlying data properties, that may expose information
about the class of interest (e.g., we assume that in most cases,
the true label of misclassified samples may be obtained by
rx(2)).

Taking the above into consideration, we design an ad-
versarial attack methodology in order to preserve anonymity
(hide the true label) of every sample x ∈ X against the neu-
ral network according to the K-anonymity constraints, taking
into consideration the whole network output layer. To this
end, we argue that the appropriate mapping X 7→ X̃ should
achieve two conditions:

rx̃(1) 6= y, ∀x̃ ∈ X̃ , (4)

p(i) =

{
P (rx̃(i) = y) ≤ 1/K ,∀i ∈ {1, . . . , C}
0 , otherwise, (5)



where p(·) is the probability mass function of its argument,
containing the probability of a retrieving the true label of the
adversarial example x̃ in the i−th position of the output rank-
ing, e.g., P (rx̃(1)) is equal to the classification rate of the
model.

K is a hyperparameter denoting the K−anonymity pro-
tection level, e.g., 5-Anonymity. Condition (4) is the ad-
versarial attack objective, i.e., disabling correct classifica-
tion. Condition (5) is the novel K-anonymity objective, that
achieves anonymity in adversarial examples along the whole
network output. Without it, we argue that the network may
still be used to classify adversarial examples by exploiting
rule-based reasoning, e.g., by exploiting an adversarial ex-
ample detector in the system. For instance, if an adversarial
attack has been detected by some adversarial attack detection
method [23], the example may still be classified correctly
using the same network, only using the output of e.g., the 2nd
ranking position rx̃(2) instead of the 1st rx̃(1). Condition (5)
guarantees that such simplified reasoning rules are impossible
to be devised for the adversarial examples, according to the
K-anonymity concepts.

Let the dataset X consisting of exactly N samples on
which we would like to fool the task classifier. We assume
that the network has 100% accuracy in this dataset, i.e.,
rx(1) = y and for every x ∈ X . The aim of the proposed
adversarial attack is to generate a set X̃ of N adversarial
examples that satisfies the constraints (4) and (5). To this
end, we demand that the true labels of exactly K data groups,
each containing N/K samples of X̃ , are not retrieved in at
least k ∈ K = {2, . . . ,K + 1} sorted ranking positions, rel-
evant to K. Assuming K = 5, then 5 such data groups must
be formed, demanding that the true labels of the first group
are not retrieved in ranking positions rx(1), rx(2), while the
labels in the 5-th group are not retrieved in any position of
rx(i),∀i ≤ 6.

Furthermore, since the proposed methodology is designed
to achieve more difficult constraints when compared to stan-
dard adversarial attacks, it should be expected that increased
perturbation may be generated to the crafted adversarial ex-
amples, as a consequence. To counteract this effect, we in-
troduce a visual similarilty term to our proposed optimization
problem, namely the CW-SSIM loss function [11] s(x, x̃) be-
tween the initial samples and the crafted adversarial exam-
ples, guiding the optimization problem towards solutions that
regulate the amount of perturbation generated by the adver-
sarial attack.

Maintaining the assumptions of white-box attacks i.e., ac-
cess to a continuous loss function Lf associated with f , we
propose the following optimization problem:

min:
p

‖p‖2 + (1− s(x, x̃)) +

k∑
i=2

Lf (f(x̃;θ), rx(i)), (6)

until the ranking obtained for x̃ by the neural network archi-
tecture satisfies the constraint rx̃(i) �x̃ y,∀i ∈ K. In fact, in-

stead of the using the ranked label positions, any k randomly
selected target labels `i 6= y ∈ Y could be employed in the
proposed method, as well, without violating the K-anonymity
constraints. However, it should be also be noted that the vari-
able k ∈ K must be set to different value for every N/K
sample groups, (e.g., k = 2 for group 1, k = K+1 for group
K). If we set the variable k equal to some specific value of
K for every of the N adversarial examples to be crafted (e.g.,
k = 5), then the K-Anonymity constraints will be violated,
since the probability of retrieving the true label of x̃ will vio-
late the constraint (5), since P (rx̃(5) = y) > 1/K.

As can be observed in (6), for a given K = 1 (i.e., k = 2
for all training data) and by omitting the visual similarity
term, the proposed method degenerates to the standard L-
BFGS method [1]. Therefore, the proposed method can be
viewed as a generalization of L-BFGS that respects and sup-
ports the K-anonymity constraints, for the multi-class classi-
fication case.

4. EXPERIMENTS

In order to evaluate the performance of the proposed method,
we have employed the MNIST (digit classification), CIFAR-
10 (object recognition) and Yale (face recognition) datasets.
A CNN architecture, namely the LeNet5 (MNIST-LeNet)
[24] was trained from scratch in MNIST dataset. In CIFAR-
10 dataset, we have trained the MobileNetV2 architecture
[25] (CIFAR-10-MobileNetV2). In Yale dataset, we fine-
tuned a 9-Layer LightCNN architecture [26], that had been
pre-trained using more than 1.5M facial images from CelebA
dataset (Yale-LightCNN), totaling 3 architecture-dataset
combinations. All conducted experiments were implemented
using PyTorch.

The proposed method was employed to attack each archi-
tecture for different values of K = 1, 5, 9. For comparison
reasons, we have also employed the L-BFGS [1], DeepFool
[12] and the C & W [13] attack with L2 distance. All meth-
ods were implemented using their default parameter settings.
During the optimization process, we have slightly tuned the
learning rate parameter of the optimizers, while keeping their
settings equal for all competing methods. The same target la-
bels were assigned to L-BFGS and C & W attacks. We have
employed these methods to generate adversarial datasets X̃
by modifying the training samples of each dataset, so that all
samples were classified correctly by the task classifier.

The datasets obtained by each method were evaluated in
terms of satisfying K-anonymity principles, as have been de-
fined by equation (5) of this paper. That is, we have tried to
retrieve the original dataset labels using the architecture θ to
obtain ranked label outputs for each adversarial sample. We
have determined the probability mass functions p(i) for ob-
taining the ground truth label at the i−th ranking position,
plotted in Figure 1. As can be observed, the datasets obtained
by employing L-BFGS, DeepFool, C & W, and the variant



of the proposed method with K = 1 do not satisfy the K-
anonymity requirements, since P (rx̃(2) = y) > 1/K for ev-
ery K > 1. On the other hand, the probabilities of the adver-
sarial examples crafted by the proposed method with K = 5
and K = 9, satisfy P (rx̃(j) = y) ≤ 1/5 for i = 2, . . . , 6
and P (rx̃(j) = y) ≤ 1/9 for j = 2, . . . , 10 respectively in
almost every case, or lie really close.

(a) MNIST (b) CIFAR (c) Yale

Fig. 1: Probability mass functions of recovering the original
labels y in the j-th sorted ranking position P (rx̃(j) = y)
generated by L-BFGS, DeepFool, C & W, and the proposed
methods. L-BFGS, DeepFool, C & W, and the variant 1-A3

of the proposed method do not satisfy the K-anonymity re-
quirements, since in most cases, the original label y can be
recovered by retrieving the label ranked 2nd.

In addition, all adversarial attack methods were evalu-
ated in terms of the introduced perturbation. As evaluation
metrics, we have computed the average Mean Squared Er-
ror (MSE)= ‖x− x̃‖22 and average Structural Similarity [11]
(SSIM), scaled from [0, 1] to [0, 100], for better visibility pur-
poses, for the adversarial datasets generated by each method.
For CIFAR-10-MobileNet, we have reported the Multi-Scale
Structural Similarity (MS-SSIM) instead of SSIM, which is
more suitable variant for RGB images. Higher MSE values
denote that the adversarial examples contain increased per-
turbation, and high SSIM values denote that the adversarial
example x̃ appears visually similar with the training exam-
ple x. Results of the evaluation are drawn on Table 1. The
proposed method with K = 1 generated the least amount of
perturbation and generated the most visually similar exam-
ples, in the light of the selected evaluation metrics, especially
when compared to the standard L-BFGS attack, attributed to
employing the SSIM loss in its optimization process. The
introduced perturbation of the proposed method for K = 5
and K = 9 was increased when compared to when K = 1.
This was expected due to the demand of adherence to the K-
anonymity requirements. However, it should be noted that the
visual similarity of the adversarial examples generated by the
proposed methods for K = 5 and K = 9 with the original
images, have been found to be very close, or even increased
in some cases, when compared to the similarity of adversar-
ial examples generated by L-BFGS with the original images.
This effect should also be attributed to the exploitation of the
SSIM loss function.

Table 1: Introduced perturbation of competing methods

Dataset MNIST CIFAR10 Yale
Method/Metric SSIM MSE×103 SSIM MSE×105 SSIM MSE×104
L-BFGS 73.75 2.42 99.84 5.35 93.89 5.97
DeepFool 80.35 1.57 99.99 2.04 97.87 1.71
C & W 80.12 1.45 99.99 3.65 94.21 5.16
Proposed (K = 1) 84.64 1.87 99.99 1.65 98.05 1.59
Proposed (K = 5) 72.72 5.37 99.99 4.96 95.17 7.52
Proposed (K = 9) 61.69 15.15 99.98 8.08 93.17 4.36

5. CONCLUSION

In this paper, we presented a method that incorporates the K-
anonymity requirements to the white-box adversarial attack
optimization problem. An important limitation of the pro-
posed method is that it requires explicit knowledge about the
target architecture it targets to fool. Future work may focus
towards extending the proposed method to black-box adver-
sarial attack methodologies, or study its perforamance across
other modalities (e.g., sound). In addition, it could include
studying the robustness of models trained with examples de-
rived by the proposed adversarial attack, via an adversarial
training scheme.
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