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ABSTRACT

In this paper, we perform the transient theoretical analysis of diffu-
sion recursive least squares via signed error (DRLS-SE) algorithm
over networks in the presence of impulsive noise. The obtained an-
alytical models allow us to investigate the impacts of nonstationary
system and cyclostationary colored inputs on the network transient
convergence behavior. Simulations are provided to highlight the ro-
bustness of DRLS-SE algorithm against impulsive noise, and corrob-
orate the correctness and accuracy of obtained theoretical findings.

Index Terms— Diffusion RLS, signed error, transient theoreti-
cal analysis, cyclostationary colored inputs, impulsive noise

1. INTRODUCTION

Adaptive networks have been introduced in recent years and inten-
sively studied within the contexts of estimation [1,2], inference [3,4],
tracking [5,6], and active noise control application [7], to cite a few.
It is well known that the recursive least squares (RLS) algorithm pos-
sesses inherent merits of much faster convergence rate and smaller
steady-state misadjustment error even for colored (correlated) input
signals compared with that of the least-mean-square (LMS) algo-
rithm [8,9]. Consequently, there have been considerable research ef-
forts on developing distributed RLS-type algorithms over networks
using the diffusion adaptation.

The diffusion RLS (DRLS) algorithm via incremental update
was primitively proposed to address the problem of distributed es-
timation in [10]. The steady-state mean-squared convergence per-
formance of the adaptive network was also analyzed in this paper.
Diffusion adaptation was applied with the bias-compensated RLS al-
gorithm in [11] in order to reduce the residual bias. The authors also
derived closed-form expressions describing the steady-state mean
and mean-square performances. Several distributed sparse RLS al-
gorithms were presented in [12] with their analyses at steady-state in
the mean and mean-square sense. Specifically, the distributed sparse
multitask RLS problem over networks was recently studied in [13].
Additionally, the partial diffusion recursive least squares (PDRLS)
algorithm was developed in [14] to reach a trade-off between esti-
mation accuracy and communication burden. Furthermore, the con-
vergence performance of the PDRLS algorithm was analyzed in the
mean and mean-square sense by using the energy conservation prin-
ciple. More recently, the reduced-communication DRLS algorithm
and its steady-state analytical models were provided in [15].

This work was supported in part by the National Natural Science Foun-
dation of China Grants (62171205, 62171380).

Cyclostationary signals with periodical variation widely exist in
real-world applications [16, 17]. As a consequence, the theoreti-
cal performance of many classical adaptive filtering algorithms have
been extensively studied within this context [18–20]. In particular,
the convergence behavior of the diffusion LMS (DLMS) was ana-
lyzed for cyclostationary inputs in [21–23]. On the other hand, it
was shown that DRLS-type algorithms are readily interfered by im-
pulsive noises which can lead to severe performance degradation. To
circumvent this problem, the authors in [24] devised robust DRLS
algorithms with side information to operate in environments subject
to impulsive disturbances. They also presented mean-square anal-
yses at steady-state, as well as transient semi-analytic models in-
volving terms that were not explicitly evaluated. In this paper, we
present a simple and robust diffusion recursive least squares algo-
rithm based on signed error (DRLS-SE) that can cope with impul-
sive noise. Inspired by recent works on RLS algorithm [25, 26],
we analyze the transient behavior of the DRLS-SE for nonstation-
ary systems and cyclostationary colored inputs corrupted by impul-
sive noise. Actually, those scenarios can be used to describe a large
range of real-world systems. Simulations support the robust perfor-
mance of DRLS-SE algorithm, as well as the accuracy of the analyti-
cal models derived for characterizing the network transient behavior.

Notation: Matrices IN and 1N denote the N ×N identity ma-
trix and the N×N matrix with all its entries equal to 1, respectively.
Notation ⊗ denotes Kronecker product. The operator bdiag{·} for-
mulates its arguments as a (block) diagonal matrix, and col{·} stacks
its vector arguments on top of each other to generate a column vector.
The operator tr{·} represents the matrix trace, and sgn{·} represents
the signum function.

2. PRELIMINARIES AND DRLS-SE ALGORITHM

We consider an adaptive network consisting of K nodes and some
communication links between these nodes. We assume that every
node k has access to the input-output data pairs {xk(n), dk(n)}Nn=1,
where xk(n) = [xk(n), xk(n− 1), . . . , xk(n−L+1)]⊤ is the in-
put regression vector and dk(n) is the desired scalar output assumed
to be zero-mean. At each time instant n ≥ 0 and for each node k,
dk(n) is assumed to be generated from the input vector xk(n) pass-
ing through a linear regression model that varies over time, corrupted
by an impulsive noise, that is,

dk(n) = x
⊤
k (n)w

⋆(n) + zk(n) (1)

where w⋆(n) ∈ RL is an unknown optimal time-varying weight
vector to be estimated. Here, zk(n) represents the additive observa-
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tion noise with impulsive interference that is often modeled as the
contaminated-Gaussian (CG) noise [22]:

zk(n) = vk(n) + bk(n)ϵk(n) (2)

where vk(n) and ϵk(n) are temporally and spatially independent
zero-mean Gaussian noises with variances σ2

v,k and σ2
ϵ,k = ζσ2

v,k,
with ζ ≫ 1. Moreover, bk(n) is a Bernoulli random variable with
probabilities Pr(bk = 1) = pr and Pr(bk = 0) = 1 − pr . We
assume further that zk(n) is temporally and spatially independent of
any other signals.

In order to examine the tracking ability of DRLS-SE algorithm
for linear nonstationary systems, the random walk process is usually
used to model the slowly time-varying optimal weight vectorw⋆(n)
given by (1) for all nodes in networks [8, 9]:

w⋆(n+ 1) = w⋆(n) + q(n) (3)

with q(n) ∈ RL, which is a zero-mean white Gaussian random per-
turbation vector with covariance matrix E{q(n)q⊤(n)} = σ2

qIL.
Moreover, q(n) is assumed to be temporally independent of xk(n)
and zk(n). Each node k of the network seeks to estimate an identical
unknown parameter vectorw⋆(n) in a collaborative manners.

In addition, we also consider the nonstationary input regression
vector xk(n) in (1), which is modeled as a colored random process
with the periodically time-varying variance defined as [25]:

xk(n) = σx,k(n)uk(n) (4)

where σx,k(n) is defined as a deterministic sequence with repetition
period T , and uk(n) is a colored random sequence generated from a
Gaussian distribution. Correspondingly, the time-varying autocorre-
lation matrix of the cyclostationary colored input vector xk(n) can
be constructed as [25]:

Rx,k(n) = E{xk(n)x
⊤
k (n)} = Σx,kRu,kΣx,k (5)

with the diagonal matrix Σx,k = bdiag
{
σx,k(n), . . . , σx,k(n−L+

1)
}

, and the autocorrelation matrixRu,k = E
{
uk(n)u

⊤
k (n)

}
. The

sinusoidal variation model [18–20, 25], is adopted for periodic se-
quences σ2

x,k(n) to survey the impact of cyclostationary colored in-
puts on the transient convergence behavior of DRLS-SE algorithm.

Without loss of generality, we only focus on the DRLS-SE al-
gorithm with adapt-then-combine (ATC) diffusion strategy. Define
the local estimate wk(n) and the intermediate estimate ψk(n) of
w⋆(n), respectively. In the first adaptation step, we present the re-
cursive update relation ofwk(n) and ψk(n+ 1) for each node k:

ψk(n+ 1) = wk(n) + P k(n+ 1)xk(n)sgn
{
ek(n)

}
(6)

with the inverse autocorrelation matrix of input data

P k(n+ 1) = Φ−1
k (n+ 1) (7)

and the instantaneous estimation error of node k at time instant n

ek(n) = dk(n)− x⊤
k (n)wk(n). (8)

Here, Φk(n + 1) is the time-averaged correlation matrix of input
data for node k defined by [8, 9]

Φk(n+1)=

n+1∑
i=0

λn+1−ixk(i)x
⊤
k (i)=λΦk(n)+xk(n+1)x⊤

k (n+1)

(9)
with 0 ≪ λ < 1 denoting the forgetting factor. The initial condition

of Φk(n) is given by Φk(0) = δIL with a small positive value δ. As
given in (6), the signed error leads to the robustness of suppressing
the impulsive noise. Applying the matrix inversion lemma to the
right hand side (r.h.s.) of (9), the update equation of the inverse of
the autocorrelation matrix at node k is given by [8, 9]:

P k(n+ 1) = λ−1

[
P k(n)−

λ−1P k(n)xk(n)x
⊤
k (n)P k(n)

1 + λ−1x⊤
k (n)P k(n)xk(n)

]
(10)

where matrix P k(n) is initialized by P k(0) = δ−1IL.
In the second combination step, we attempt to further improve

the estimation precision of intermediate estimate ψk(n) for each
node k by sharing local data within its neighborhood. Therefore,
the weight vector combination is given by [26]:

wk(n+ 1) =
∑
ℓ∈Nk

aℓk ψℓ(n+ 1). (11)

The set {aℓk} for k = 1, 2, . . . ,K are nonnegative combination
coefficients, which satisfy aℓk ≥ 0,

∑K
ℓ=1 aℓk = 1, and aℓk =

0, if ℓ /∈ Nk, where neighborhood Nk denotes the set of nodes
connected to node k, including itself. Moreover, the coefficient aℓk

is the (ℓ, k)-th entry of a left-stochastic matrix A, i.e., A⊤1K =
1K . For simplicity, we refer to the DRLS-SE algorithm with ATC
diffusion strategy as DRLS-SE algorithm hereafter.

3. TRANSIENT ANALYSIS OF DRLS-SE ALGORITHM
WITH ATC DIFFUSION STRATEGY

In this section, we study the stochastic behavior of DRLS-SE algo-
rithm in the mean and mean-square error senses. We need to intro-
duce the intermediate weight error vector and the weight error vector
for node k at time instant n, namely

ψ̃k(n) = ψk(n)−w
⋆(n), w̃k(n) = wk(n)−w⋆(n). (12)

Furthermore, let ψ̃(n) and w̃(n) denote the block weight error vec-
tors by collecting (12) for all nodes as follows:

ψ̃(n) = col
{
ψ̃1(n), . . . , ψ̃K(n)

}
∈ RKL×1, (13)

w̃(n) = col
{
w̃1(n), . . . , w̃K(n)

}
∈ RKL×1. (14)

In order to simplify the notation, let us now introduce the following
K×K block diagonal matrices with individual entries of size L×L:

Rx(n) = bdiag
{
Rx,1(n), . . . ,Rx,K(n)

}
∈ RKL×KL, (15)

Φ(n) = bdiag
{
Φ1(n), . . . ,ΦK(n)

}
∈ RKL×KL, (16)

P (n) = bdiag
{
P 1(n), . . . ,PK(n)

}
∈ RKL×KL, (17)

and the K × 1 block column vector with vectors of length L:

t(n) = col
{

sgn
{
x⊤

1 (n)w̃1(n)− z1(n)
}
x1(n), . . . , (18)

sgn
{
x⊤

K(n)w̃K(n)− zK(n)
}
xK(n)

}
∈ RKL×1,

g(n) = col
{
q(n), . . . , q(n)

}
∈ RKL×1. (19)

Before proceeding, we introduce two important assumptions and
lemma as follows.

A1. The input data vectors xk(n) are zero-mean and spatially
independent signals.

A2. The weight error vector w̃k(n) is temporally independent
of the input data vectors xk(n).



These two assumptions are reasonable and classical, moreover,
they were successfully used and verified in [21].

Lemma 1 Assume that x1 and x2 are zero-mean jointly Gaussian
random variables. Given the impulsive CG noise defined by (2), and
let y = x1 + zk(n), it holds that [27]

E
{

sgn{y}x2

}
= (1− pr)E

{
sgn{y1}x2

}
+ pr E

{
sgn{y2}x2

}
with y1 = x1 + vk(n) and y2 = x1 + vk(n) + ϵk(n). This lemma
was also used in the theoretical analysis works of diffusion sign al-
gorithms [22, 24].

3.1. Mean Weight Error Analysis

Based on the definition (7), then (9) becomes

P−1
k (n+ 1) = λP−1

k (n) + xk(n+ 1)x⊤
k (n+ 1). (20)

Using (5) and the fact that 0 ≪ λ < 1, the steady-state expectation
of P−1

k (n) can be approximately computed as follows [11, 14, 15]:

lim
n→∞

E
{
P−1

k (n)
}
≈ lim

n→∞

n+1∑
i=0

λn+1−iE
{
xk(i)x

⊤
k (i)

}
= (1− λ)−1Rx,k(n).

(21)

Note that the steady-state expected value ofP−1
k (n) is deterministic

periodic due to the periodic variation of Rx,k(n). Considering as-
sumption A1 and using (15) and (21), thus the steady-state expected
value of (17) can be approximately calculated as

lim
n→∞

E
{
P (n)

}
≈ lim

n→∞

[
E
{
P−1(n)

}]−1
= (1− λ)R−1

x (n).

(22)
Collecting both sides of (9) for all nodes and using (16) to get the
block diagonal matrix of size KL×KL, then taking the expectation
of both sides and using (15), it leads to

E
{
Φ(n+ 1)

}
= λE

{
Φ(n)

}
+Rx(n) (23)

with the initial condition E
{
Φ(0)

}
= δIKL. The recursive update

relation (23) is very useful and crucial in the following theoretical
analysis. Replacing (1) into (8) and using (12), the instantaneous
estimation error can be alternatively rewritten as

ek(n) = zk(n)− x⊤
k (n)w̃k(n). (24)

Subtracting (3) from both sides of the recursive update equation (6),
and according to Eqs. (12) and (24), leads to the intermediate weight
error vector update equation:

ψ̃k(n+ 1) = w̃k(n)− P k(n+ 1)xk(n)

× sgn
{
x⊤

k (n)w̃k(n)− zk(n)
}
− q(n).

(25)

Subtractingw⋆(n+1) from both sides of combination relation (11),
and using (12), we have the weight error vector:

w̃k(n+ 1) =
∑
ℓ∈Nk

aℓk ψ̃ℓ(n+ 1). (26)

Substituting (25) into (26), and using the previously introduced ex-
pressions (13), (14) and (17)–(19), then the recursive update equa-
tion for the global weight error vector can be formulated as

w̃(n+ 1) = A
[
w̃(n)− P (n+ 1)t(n)− g(n)

]
(27)

with the matrix A = A⊤ ⊗ IL. Pre-multiplying both sides of (27)
by P (n+ 1)−1A−1, it follows from (7) that

Φ(n+1)A−1w̃(n+1) = Φ(n+1)w̃(n)−t(n)−Φ(n+1)g(n).
(28)

Taking the expectation on both sides of (28) and applying the statis-
tical properties of perturbation vector q(n), we have

E
{
Φ(n+ 1)A−1w̃(n+ 1)

}
= E

{
Φ(n+ 1)w̃(n)

}
− E

{
t(n)

}
.

(29)
As given in (18), the k-th subvector of E

{
t(n)

}
is the L×1 column

vector given by

E
{
tk(n)

}
= E

{
sgn

{
x⊤

k (n)w̃k(n)− zk(n)
}
xk(n)

}
. (30)

More specifically, the i-th element of E
{
tk(n)

}
is given by[

E
{
tk(n)

}]
i
= E

{
sgn

{
x⊤

k (n)w̃k(n)− zk(n)
}
xk(n− i+ 1)

}
.

(31)
We now evaluate (31) under assumptions A1 and A2. Taking the
conditional expectation of (31) on w̃k(n), applying lemma 1 and
Price’s theorem [28], then taking the expectation again, we obtain[
E
{
tk(n)

}]
i
=E

{
sgn

{
x⊤
k (n)w̃k(n)−zk(n)

}
xk(n−i+1)

∣∣w̃k(n)
}

=

√
2

π

[
Rx,k(n)

]⊤
i
E
{
w̃k(n)

}[ 1− pr√
σ2
v,k + w̃⊤

k (n)Rx,k(n)w̃k(n)

+
pr√

(ζ + 1)σ2
v,k + w̃⊤

k (n)Rx,k(n)w̃k(n)

]
. (32)

The random variable in the denominators of two terms on the r.h.s.
of (32) can be reasonably approximated as [19]

w̃⊤
k (n)Rx,k(n)w̃k(n) ≈ E

{
w̃⊤

k (n)Rx,k(n)w̃k(n)
}

= tr
{
Kk(n)Rx,k(n)

} (33)

with the autocorrelation matrix of weight error vector at node k, i.e.,
Kk(n) = E

{
w̃k(n)w̃

⊤
k (n)

}
. Substituting (33) into (32), and col-

lecting all the elements into a column vector, (30) can be evaluated
as

E
{
tk(n)

}
=

√
2/πθkRx,k(n)E

{
w̃k(n)

}
(34)

with

θk=
1− pr√

σ2
v,k+tr

{
Kk(n)Rx,k(n)

}+
pr√

(ζ+1)σ2
v,k+tr

{
Kk(n)Rx,k(n)

} .

(35)
In view of (34), the expectation of (18) can be evaluated as

E
{
t(n)

}
= S(n)E

{
w̃(n)

}
(36)

with

S(n) =
√

2/π bdiag
{
θ1IL, . . . , θKIL

}
Rx(n). (37)

For the sake of mathematical tractability, we assume that the
following two approximations hold, namely

E
{
Φ(n)A−1w̃(n)

}
≈ E

{
Φ(n)

}
A−1E

{
w̃(n)

}
(38)

E
{
Φ(n+ 1)w̃(n)

}
≈ E

{
Φ(n+ 1)

}
E
{
w̃(n)

}
. (39)

The proofs of two approximations (38) and (39) are not presented
explicitly due to the constrained space, whereas their rational-
ity and effectiveness will be validated by simulation results later.
Substituting (36) into (29), and using the above presented approxi-



mations (38) and (39), yields

E
{
Φ(n+1)

}
A−1E

{
w̃(n+1)

}
=
[
E
{
Φ(n+1)

}
−S(n)

]
E
{
w̃(n)

}
.

(40)
Pre-multiplying both sides of (40) by A

[
E
{
Φ(n + 1)

}]−1, the
mean weight error behavior of DRLS-SE algorithm is given by

E
{
w̃(n+ 1)

}
= A

[
IKL −

[
E
{
Φ(n+ 1)

}]−1
S(n)

]
E
{
w̃(n)

}
(41)

which utilizes the recursive relation (23) for final evaluation.

Theorem 1 (Convergence in the mean) Given a left-stochastic matrix
A, the weight error vector of DRLS-SE algorithm converges to a
zero vector as n → ∞, that is

lim
n→∞

E
{
w̃(n)

}
= 0KL (42)

which ensures that the estimate of DRLS-SE is asymptotically unbi-
ased and convergent in the mean sense, i.e., limn→∞ E

{
wk(n)

}
=

w⋆(n) for all nodes k.

Proof: When n → ∞, based on (41) the steady-state mean
weight error behavior of DRLS-SE algorithm can be expressed as

lim
n→∞

E
{
w̃(n+ 1)

}
= A

[
IKL − lim

n→∞

[
E
{
Φ(n+ 1)

}]−1
S(n)

]
× lim

n→∞
E
{
w̃(n)

}
. (43)

Inserting (22) in (43) and using (37), we can immediately obtain

lim
n→∞

E
{
w̃(n+ 1)

}
= A

(
IKL −H

)
lim

n→∞
E
{
w̃(n)

}
(44)

with

H = (1− λ)
√

2/π bdiag
{
θ1IL, . . . , θKIL

}
∈ RKL×KL. (45)

Note that the steady-state mean stability of DRLS-SE algorithm does
not depend on the variation of Rx(n). Consequently, the k-th entry
of (44) can be given as follow:

lim
n→∞

E
{
w̃k(n+ 1)

}
=

∑
ℓ∈Nk

aℓk

[
1− (1− λ)

√
2/πθk

]
IL

× lim
n→∞

E
{
w̃k(n)

}
. (46)

Taking 0 ≪ λ < 1 into account, it is easy to get

0 < (1− λ)
√

2/π ≪ 1. (47)

In view of (47), (46) implies that the steady-state mean stability (44)
is determined by all the values of θk for k = 1, 2, . . . ,K. Thus, we
shall discuss three possible values of θk in (35) as below:
Case 1: When σ2

v,k ≫ max
{

tr
{
Kk(n)Rx,k(n)

}}
> 1, we may

approximate θk only with the noise variance σv,k as

θk ≈ (1− pr)/σv,k + pr/(
√

ζ + 1σv,k) ≈ σ−1
v,k (48)

where the probability pr is small, and ζ is very large value. Ac-
cordingly, we have 0 < θk ≪ 1 due to σv,k ≫ 1. It then follows
from (47) and (48) that

0 ≪ 1−
√

2/π(1− λ)θk < 1 (49)

for all nodes k, which implies that (42) holds true.
Case 2: When σ2

v,k ≈ min
{

tr
{
Kk(n)Rx,k(n)

}}
, because of the

small probability pr and very large ζ, we also have the following

approximation

θk ≈
1 − pr√

2min
{

tr
{
Kk(n)Rx,k(n)

}} +
pr√

(ζ + 2)min
{

tr
{
Kk(n)Rx,k(n)

}}
≈ 1/

√
2min

{
tr
{
Kk(n)Rx,k(n)

}}
. (50)

Case 3: When min
{

tr
{
Kk(n)Rx,k(n)

}}
> σ2

v,k = 0, i.e., the
ideal noise free case, it follows that

θk = 1/
√

min
{

tr
{
Kk(n)Rx,k(n)

}}
. (51)

The realizations of random variable given by (50) and (51) are much
greater than 1, whereas, they are dramatically attenuated below 1
by (47) as the numerical simulations validated in Section 4. Finally,
we can still arrive at (49). Therefore, we conclude that the solution
of DRLS-SE algorithm is asymptotically unbiased in the mean. ■

3.2. Mean-Square Weight Error Analysis

We shall perform the mean-square transient analysis of DRLS-SE al-
gorithm in terms of the network mean-square-deviation (MSD) [1],
i.e., MSD(n) = tr

{
K(n)

}
/K =

∑K
k=1 MSDk(n)/K, where

K(n) = E
{
w̃(n)w̃⊤(n)

}
is the second-order moment matrix of

global weight error vector across all the nodes.
Post-multiplying (28) by its transpose, and taking the expecta-

tion of its both sides, then applying the statistical properties of per-
turbation vector q(n), we obtain

E
{
Φ(n+ 1)A−1w̃(n+ 1)w̃⊤(n+ 1)(A−1)⊤Φ(n+ 1)

}
= E

{
Φ(n+ 1)w̃(n)w̃⊤(n)Φ(n+ 1)

}
+ E

{
t(n)t⊤(n)

}
− E

{
t(n)w̃⊤(n)Φ(n+ 1)

}
− E

{
Φ(n+ 1)w̃(n)t⊤(n)

}
+ E

{
Φ(n+ 1)

}
E
{
g(n)g⊤(n)

}
E
{
Φ(n+ 1)

}
. (52)

In order to make the mean-square analysis tractable, we introduce
the following necessary approximations:

E
{
Φ(n+ 1)A−1w̃(n+ 1)w̃⊤(n+ 1)(A−1)⊤Φ(n+ 1)

}
≈ E

{
Φ(n+ 1)

}
A−1K(n+ 1)(A−1)⊤E

{
Φ(n+ 1)

}
, (53)

E
{
Φ(n+ 1)w̃(n)w̃⊤(n)Φ(n+ 1)

}
≈ E

{
Φ(n+ 1)

}
K(n)E

{
Φ(n+ 1)

}
, (54)

E
{
t(n)w̃⊤(n)Φ(n+ 1)

}
≈ E

{
t(n)w̃⊤(n)

}
E
{
Φ(n+ 1)

}
.(55)

Likewise, the corresponding proofs of the above presented approx-
imations (53)–(55) are omitted due to the limited space. Substitut-
ing (53)–(55) into (52), yields

E
{
Φ(n+ 1)

}
A−1K(n+ 1)(A−1)⊤E

{
Φ(n+ 1)

}
(56)

= E
{
Φ(n+1)

}
K(n)E

{
Φ(n+1)

}
−U(n)E

{
Φ(n+1)

}
+ T (n)

− E
{
Φ(n+ 1)

}
U⊤(n) + E

{
Φ(n+ 1)

}
QE

{
Φ(n+ 1)

}
.

with

T (n) = E
{
t(n)t⊤(n)

}
, (57)

U(n) = E
{
t(n)w̃⊤(n)

}
, (58)

Q = E
{
g(n)g⊤(n)

}
. (59)

By assumption A1, it is easy to obtain

T (n) = E
{
t(n)t⊤(n)

}
= Rx(n). (60)



Then, the (i, j)-th block of matrix U(n) is given by

U ij(n) = E
{
ti(n)w̃

⊤
j (n)

}
(61)

= E
{

sgn
{
x⊤

i (n)w̃i(n)− zi(n)
}
xi(n)w̃

⊤
j (n)

}
.

Furthermore, the submatrix U ij(n) can be written as[
U ij(n)

]
ℓp
=E

{
sgn

{
x⊤

i (n)w̃i(n)−zi(n)
}
xi(n−ℓ+1)

[
w̃j(n)

]
p

}
.

(62)
Subsequently, we consider assumptions A1 and A2, and Price’s the-
orem [28] for the following derivation. Taking the conditional ex-
pectation of (62) on w̃i(n), applying the lemma 1, then using the
approximation (33), we obtain[
U ij(n)

]
ℓp

(63)

= E
{

sgn
{
x⊤

i (n)w̃i(n)− zi(n)
}
xi(n− ℓ+ 1)

[
w̃j(n)

]
p

∣∣w̃i(n)
}

=
√

2/πθi
[
Rx,i(n)

]⊤
ℓ
E
{
w̃i(n)

[
w̃j(n)

]
p

}
From (63), thus U ij(n) defined in (61) can be calculated as

U ij(n) =
√

2/πθiRx,i(n)E
{
w̃i(n)w̃j(n)

}
. (64)

In view of (64), (58) can be expressed in compact matrix form as

U(n) = S(n)K(n). (65)

According to the temporal independence of perturbation vector
q(n), the matrixQ is computed as

Q = E
{
g(n)g⊤(n)

}
= σ2

q1K ⊗ IL. (66)

Substituting Eqs. (60), (65), and (66) into (56), we then arrive at

E
{
Φ(n+ 1)

}
A−1K(n+ 1)(A−1)⊤E

{
Φ(n+ 1)

}
(67)

= E
{
Φ(n+1)

}
K(n)E

{
Φ(n+1)

}
+Rx(n)−S(n)K(n)E

{
Φ(n+1)

}
− E

{
Φ(n+ 1)

}
K⊤(n)S⊤(n) + E

{
Φ(n+ 1)

}
QE

{
Φ(n+ 1)

}
.

Pre-multiplying (67) by A[E{Φ(n+1)}]−1 and post-multiplying (67)
by [E{Φ(n + 1)}]−1A⊤ simultaneously, we finally obtain the re-
cursive update equation ofK(n) as

K(n+ 1) (68)

= A
[
K(n) +Q+

[
E
{
Φ(n+ 1)

}]−1
Rx(n)

[
E
{
Φ(n+ 1)

}]−1

−
[
E
{
Φ(n+1)

}]−1
S(n)K(n)−K⊤(n)S⊤(n)

[
E
{
Φ(n+1)

}]−1
]
A⊤

with the initialization K(0) =
[
1K ⊗ w⋆(0)

][
1K ⊗ w⋆(0)

]⊤.
Note that the recursive relation (23) is also used for the evaluation of
K(n). Eq. (68) allows us to investigate the network transient con-
vergence behavior of DRLS-SE algorithm in the mean-square sense.

4. SIMULATION RESULTS

In this section, we present numerical simulations to testify the ro-
bustness of DRLS-SE algorithm against impulsive noise and the ac-
curacy of derived theoretical analysis results. Each empirical curve
was averaged over 200 independent trails to obtain the smoothness.

We considered a network consisting of 20 nodes with the topol-
ogy illustrated in Fig. 1(a). Fig. 1(b) depicts the noise variances
σ2
v,k at each node. Fig. 1(c) depicts the initialized system impulse

responsew⋆(0) generated from a standard normal distribution scal-
ing by a exponential decaying factor 0.5 for all nodes.
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Fig. 2. The realizations of random variable for ρ = 0.5.

The parameters of sinusoidal variation model were set to be
same as those in references [20, 25]. Three different periods of
sinusoidal cyclostationary inputs variances were set to T = 512,
T = 32, and T = 4, respectively. The variance σ2

q of perturba-
tion vector was set to 1 × 10−6. We set the step-size η of DLMS
algorithm to be 0.05 for all nodes. The parameter ζ and probability
pr of impulsive CG noise were selected as 5× 104 and 0.1, respec-
tively. We chose the forgetting factor λ and parameter δ as 0.995
and 0.1 for RLS-SE, DRLS, and DRLS-SE algorithms. The station-
ary colored sequences uk(n) are generated independently across all
nodes k according to the first-order autoregression, i.e., uk(n) =

ρuk(n− 1) + σu,k

√
1− ρ2wk(n), where ρ is the normalized cor-

relation factor, and wk(n) is generated from the standard normal
distribution. Hence, the (i, j)-th entry of autocorrelation matrix of
vector uk(n) can be determined as

[Ru,k]ij = E
{
uk(n− i+ 1)uk(n− j + 1)

}
= σ2

u,kρ
|i−j| (69)

with 1 ≤ i, j ≤ L. The realizations of random variable [1 − (1 −
λ)

√
2/πθk] given by (46) are depicted in Fig. 2 for slow and fast si-

nusoidal variation of cyclostationary input variance. It can be clearly
seen that the realized values are very close to 1 during the initial
stage, however, the entire dynamic realizations versus time instant
are bounded and always less than 1. Therefore, the simulation results
actually indicate that the weight error vector of DRLS-SE algorithm
asymptotically approaches to zero in the mean sense.

Fig. 3 shows the empirical and theoretical MSD with ρ = 0.5 for
slow, moderate, and fast sinusoidal variations of the input variance,
respectively. First, DRLS-SE algorithm can perform well for the
time-variant system and cyclostationary colored inputs in the impul-
sive noise environment, which results in severe performance degra-
dation and even divergence for DLMS-type algorithms. Second,
the DRLS-SE significantly outperforms the noncooperative RLS-SE
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Fig. 3. The comparisons of empirical and theoretical MSD for ρ = 0.5 and sinusoidal variations of input variance.

and the DRLS without robustness in terms of convergence rate and
steady-state accuracy of MSD. Third, the empirical and theoretically
predicted MSD of DRLS-SE algorithm coincide with each other ex-
cept of slight mismatch in the initial transient phase, which is caused
by the large deviation between the instantaneous Φ(n) and expected
E{Φ(n)} given by (23). Therefore, one can see the good agree-
ment between the empirical and theoretical learning curves, which
demonstrates the validity of theoretical findings and supported the
rationality of necessary assumptions and used approximations.

5. CONCLUSION
In this paper, we proposed the robust DRLS-SE algorithm against
impulsive noise. Its transient theoretical convergence performance
was analyzed to examine the change of convergence characteristics
under the conditions of time-variant system and cyclostationary col-
ored inputs. Simulation results illustrate the superiority of the pro-
posed algorithm, as well as the sufficient precision of theoretical pre-
dictions provided by the obtained analytical models.
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