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ABSTRACT

The design of additive perturbations to the inputs of clas-
sifiers has become a central focus of adversarial machine
learning. An alternative approach is to synthesize adversarial
examples using structures akin to generative adversarial net-
works, albeit with the use of large amounts of training data.
By contrast, this paper considers the one-shot synthesis of
adversarial examples that requires only a single reference da-
tum. In particular, we explore solutions where the generated
data must simultaneously satisfy user-defined constraints on
its structural similarity to the reference input datum and the
output of the classifier of interest it induces. This gives rise
to what we call the Bidirectional One-Shot Synthesis (BOSS)
problem. We prove that the BOSS problem is NP-complete.
The experimental results verify that the targeted and confi-
dence reduction attack methods developed either outperform
or on par with state-of-the-art methods.

Index Terms— One-Shot Synthesis, Adversarial Attacks,
Trained Classifiers, Generative Models, Targeted and Confi-
dence Reduction Attacks, Decision Boundary Examples

1. INTRODUCTION

The problem of robustness is being assessed in adversarial
machine learning via additive perturbations to data and the
synthesis of adversarial examples, which are often used to test
the robustness of a given model. In this paper, we reconcile
the notion of one-shot learning [1] and the synthesis of ad-
versarial examples for the first time in what we call one-shot
synthesis. In particular, given a datum xd and a pre-trained
model p(. ; θ) parameterized by θ, we propose a synthesis
procedure that generates a new datum x to be used as an in-
put to p(. ; θ) such that constraints are satisfied on both the
input structure and the output inference. In terms of the in-
put, we ensure that x is similar to the given reference datum
xd by enforcing a small distance d(x,xd) ≤ δs. In terms of
the output, we generate x such that it approximately induces

This work was supported in part by NSF CAREER Award CCF-1552497
and NSF Award CCF-2106339, DOE Award DE-EE0009152, AFRL Con-
tract Number FA8750-20-3-1004, and AFOSR Award 20RICOR012.

a user-defined output distribution pd as the inference result
p(. ; θ) of the pre-trained model by enforcing a small distance
D(p(x; θ), pd) ≤ δc. In this sense, the underlying Bidirec-
tional One-Shot Synthesis (BOSS) problem is concerned with
generating data satisfying constraints on both the input and
output directions of the given classifier p(. ; θ). By control-
ling the induced output distribution, our approach general-
izes traditional notions of targeted and non-targeted attacks
[2]. Confidence reduction attacks can also be implemented in
our approach, where the goal is to lower the confidence level
of the true label to cause ambiguity [3], specifically against
systems for which a confidence threshold is introduced and
the classification is only regarded if the prediction confidence
score is above that threshold [4].

We propose a solution to the BOSS problem by leveraging
generative models whose parameters are updated based on the
distance between the given datum xd (distribution pd) and the
synthesized input datum x (output inference p(x ; θ)). See
Figure 1 for the problem description and BOSS samples.

It is worth noting that our generative approach is a one-
shot synthesis solution in that it only requires a single da-
tum xd, which mitigates the excessive data requirements of
popular methods based on Generative Adversarial Networks
(GANs) [10]. In fact, our proposed framework is more simi-
lar to the additive attack methods where a large body of works
are presented such as the CW attack [11], the L-BFGS attack
[12], Deepfool [13], Fast Adaptive Boundary (FAB) attack
[14], saliency map attack [3], and NewtonFool [15].

The contributions of the paper are the following. First, we
present the BOSS problem to synthesize feature vectors that
follow some desired input and output specifications. Second,
we prove that BOSS is NP-complete. Our third contribu-
tion is the proposed algorithmic procedure that is based on
generative networks and the back-propagation algorithm [16]
to produce (from scratch) these examples in a white-box set-
tings. Fourth, we present methods to select the input/output
specifications to generate targeted adversarial attacks, confi-
dence reduction attacks, and decision boundary samples. On
different attack evaluation metrics, we show that BOSS ei-
ther on par or outperform state-of-the-art methods. Further,
we show samples from small-scale and large-scale datasets
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Fig. 1: Problem demonstration (left) and examples (right). The true labels are placed on the left of each desired features (image) with bold
font. First row of images represent the desired features where the desired PMFs are placed on the left of each sample. The second row
presents the synthesized examples, by BOSS, with their corresponding predictions w.r.t their trained classifiers. From left to right, samples
are picked from the MNIST digits [5], MNIST fashion [6], CIFAR-10 [7], GTSRB [8], and ImageNet [9], respectively.

on famous state-of-the-art classification architectures.

2. PROBLEM FORMULATION &
CHARACTERIZATION

Suppose we have some trained model p with parameters θ
(e.g., a trained Neural Network) and a probability distribution
p(. ; θ) : RN → ∆M over the output of the model with entries
pm(x ; θ) for m ∈ [M ] := {1, 2, . . . ,M}, where M is the
total number of outputs, and ∆M is the probability simplex
over M dimensions.

Given a clean example (desired input features) xd, the
well-known formulation of the basic iterative extension of the
Fast Gradient Sign Method (FGSM) method [17] generates
an adversarial example x by minimizing some differentialable
loss function between p(x; θ) and pd. The distance between
x and xd, however, is restricted to the lp norm. A more gen-
eral formulation is used in [11] where the loss functions on
the input and output of the classifier of interest can be chosen
more flexibly. Therefore, we will compare our approach to
the attacks in [11] and an advanced version in [18].

Let d : RN × RN → [0, 1] and D : ∆M ×∆M → [0, 1]
denote distance functions between two feature vectors and
distributions, respectively, where a value 0 indicates identi-
cal arguments.

Definition 1 (BOSS Problem). Given a learning model
p(. ; θ) : RN → ∆M parameterized by θ, a tensor xd ∈ RN ,
and a probability distribution pd ∈ ∆M , find an input tensor
x ∈ RN such that d(x,xd) ≤ δs and D(p(. ; θ), pd) ≤ δc,
where upper bounds δs and δc and loss functions d and D are
given.

First, we prove that the BOSS problem is NP-complete.
This establishes that, in general, there is no polynomial-time
solution to the BOSS problem unless P = NP. In Section 3,
we develop a generative approach to obtain an approximate
solution to the BOSS problem.

Definition 2 (CLIQUE Problem). Given an undirected graph

G = (U,E) and an integer k, find a fully connected sub-
graph induced by U ′ ⊆ U such that |U ′| = k.

Theorem 1. The Bidirectional One-Shot Synthesis (BOSS)
problem in Definition 1 is NP-complete.

Proof. It is easy to verify that the BOSS problem is in NP
since, given a tensor x, one can check whether the input and
output constraints d(x,xd) ≤ δs and D(p(x ; θ), pd) ≤ δc are
satisfied in polynomial time. It remains to be shown whether
the BOSS problem is NP-hard. We will establish this re-
sult via a reduction from the CLIQUE problem in Definition
2. Given a CLIQUE instance 〈G = (U,E), k〉 with |U | = n
and |E| = m, we construct its corresponding BOSS instance
〈p(. ; θ),xd, pd, δs, δc〉 as follows. Let xd = 0 denote the all-
zeroes vector and let pd be defined as the desired output dis-
tribution below

pd =

(
eεk

eεk(k−1)/2 + eεk
,

eεk(k−1)/2

eεk(k−1)/2 + eεk

)T
, (1)

where ε ≤ 1−
√

1− (1/(k + 1)). Finally, let δs = k/n and
δc = 0. We choose the mean square error loss (MSE) func-
tion to compute d(x,xd) ≤ δs. The choice of loss function
for computing D(p(x; θ), pd) ≤ δc is superfluous since we
have chosen δc = 0. For the given trained model p(. ; θ), we
define its connectivity and parameters θ as follows. The input
layer consists of n entries given by the solution x ∈ [0, 1]n.
There is one hidden layer consisting of n+m ReLU functions
σ1, . . . , σn+m such that the first n ReLU functions have a bias
term of ε−1 and the next m ReLU functions have a bias term
of ε−2. Finally, there is an output layer with two softmax out-
put activation functions p1(x ; θ) and p2(x ; θ). Let θhij denote
the weight of the connection between the ith input xi and the
jth ReLU activation σj in the hidden layer. For each ui ∈ U
in the given CLIQUE instance, we have θhii = 1. The outputs
of these n ReLU activation functions are fully connected to
the softmax output activation function p1(x ; θ), each with a
corresponding weight of 1. For each edge ek = (ui, uj) ∈ E,
we have θhi,n+k = θhj,n+k = 1. This defines the input con-
nectivity of ReLU functions σn+1 to σn+m. The outputs of
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Fig. 2: Example reduction from a graph G (left) to a classifier
p(. ; θ) (right).

these are then fully connected to the second softmax function
p2(x ; θ), each with weight 1. See Figure 2 for an example.
We now prove that there is a clique of size k in G if and only
if there is a feasible solution x to the reduced BOSS instance.

( =⇒ ) Assume there is a clique of size k in G. We can
derive a feasible solution x to the reduced BOSS instance as
follows. For every vertex ui ∈ U in the clique, let xi = 1
and let all other values of x be 0. The corresponding MSE
loss is d(x,xd) = k/n, thereby satisfying the input con-
straint defined by δs. The solution x induces an output of
σi(xi + (ε − 1)) = ε for each entry of x corresponding to a
vertex ui in the clique and an output of 0 for all other entries.
Thus, we have k inputs of value ε into the first softmax out-
put function. Now, let us consider the edges induced by this
clique. For each edge ek = (ui, uj) ∈ E in the clique, we
have σn+k(xi + xj + (ε− 2)) = ε and an output of 0 for all
other edges. Since there are k(k − 1)/2 edges in a clique of
size k, this yields k(k−1)/2 inputs of value ε into the second
softmax output function. Thus, we have p(x ; θ) = pd and the
constraint D(p(x; θ), pd) ≤ 0 = δc is satisfied. As a caveat,
it is worth noting that, under this construction, the all-zeroes
vector 0 yields equal outputs p1(0; θ) = p2(0; θ) = 1/2.
Per the preceding arguments, it is also the case that a feasi-
ble solution x derived for a clique of size k = 3 will output
p1(x; θ) = p2(x; θ) = 1/2. This is because k = k(k − 1)/2
for k = 3. Thus, for the remainder of the proof, we assume
that cliques of interest are of size k > 3.

( ⇐= ) We prove the contrapositive. That is, if there is
no clique of size k in G, then the reduced BOSS instance is
infeasible. We proceed by showing that there must be ex-
actly k non-zero entries in x in order to satisfy constraints
d(x,xd) ≤ k/n and D(p(x ; θ), pd) ≤ 0 and that, if there is
no clique of size k, then there is no choice of k non-zero en-
tries in x that will satisfy D(p(x ; θ), pd) ≤ 0. Note that there
must be at least k entries in x with value strictly greater than
(1 − ε) in order to yield an input of εk into the first softmax
output function and satisfy the first entry in pd. Let us con-

sider the minimum MSE loss for a solution x with more than
k non-zero entries. For k + 1 entries of value strictly greater
than (1 − ε), we have d(x,xd) = (k + 1)(1 − ε)2/n. With
some algebraic manipulation, we have that, for any value of
ε ≤ 1 −

√
1− (1/(k + 1)), (k + 1)(1 − ε)2/n > k/n,

thereby violating the constraint d(x,xd) ≤ δs. Thus, there
must be exactly k non-zero entries in x. Now, let us con-
sider the second softmax output function, which requires an
input of εk(k − 1)/2. Since there is no clique of size k in
G, any choice of k vertices in G will induce a set of edges
whose cardinality is strictly less than k(k − 1)/2. There-
fore, the output of the second softmax function will be strictly
less than the second entry in pd. This violates the constraint
D(p(x ; θ), pd) ≤ 0.

Note that, for a given CLIQUE instance in the proof of
Theorem 1, the corresponding reduced BOSS instance is such
that, if there exists a polynomial-time solution to the BOSS
problem, then we could use this solution to solve the CLIQUE
problem in polynomial time. This would imply that P = NP.
We therefore conjecture that a polynomial-time solution to the
BOSS problem is not likely to exist.

3. GENERATIVE APPROACH

To obtain a solution to the BOSS problem in Definition 1, we
take a generative approach in which x is obtained as the out-
put of a generative network, g(.;φ) : RQ → RN , with param-
eters φ, i.e., g(z ;φ) = x, where z ∈ RQ is a random input to
the generative network. We utilize the adjustable parameters
of network g for the objectives of BOSS. Therefore, we define
the combined network h(. ;ψ) : RQ → [M ], whose layers are
the concatenation of the layers of g and p, where ψ = {φ, θ}.
In other words, h(z ;ψ) = p(x ; θ) = p(g(z ;φ) ; θ). We aug-
ment a repeated version of vector z to create a small training
dataset. Given the two objectives of BOSS, and the utilization
of the adjustable parameters of network h, φ, we introduce the
surrogate losses Lh(p(g(z ;φ) ; θ), pd) and Lg(g(z ;φ),xd),
and use the back-propagation algorithm [16] to optimize φ
based on the minimization

min
φ

[
Lg
(
g(z ;φ),xd

)
+ λLh

(
p(g(z ;φ) ; θ), pd

)]
, (2)

where λ is a loss weight. It is important to note that (2) is used
to update parameters φ while the trained classifier parameters
θ remain unchanged. Due to the use of network h, the surro-
gate loss functions Lg and Lh can be selected as the MSE and
the categorical cross-entropy loss, respectively.

In the following, we present an algorithmic approach to
solve BOSS by iteratively optimizing (2). At every iteration,
the adjustable parameters φ of the generator model g are up-
dated to satisfy the two objectives of small PMF distance from
pd and high similarity of the generated example to xd. We



Algorithm 1 BOSS Algorithm
Input: z, p(. ; θ), g, xd, pd, δc, δs
Output: x

1: Initialize x, φ, λ
2: while D(p(x ; θ), pd) ≥ δc or d(x,xd) ≥ δs

3: obtain φ as the minimizer of (2) with λ
4: x = g

(
z ;φ

)
5: update λ using (3)
6: return x

define an exit criteria if either a maximum number of itera-
tions/steps is reached, or if a feasible solution per Definition
1 is found given xd, pd, δs, and δc.

The parameter λ in (2) weighs the relative importance of
each loss function to both avoid over-fitting and handle situa-
tions in which the solver converges for one loss function prior
to the other [19]. We propose a dynamic update that depends
on the distanceD between the desired specification pd and the
actual output p(g(z ;φ) ; θ) at every iteration. Specifically, we
update λ as

λ← σ

(
λ− λ0 δc

D
sign

( δc

D
− 1
))

. (3)

As such, it is required to have the distance function D return-
ing values in the range of [0, 1]. Here, we utilize the Jensen-
Shannon (JS) divergence distance [20], which returns 0 for
two equivalent PMFs and is upper bounded by 1. The updates
are also a function of the initial selection of λ denoted λ0. In
this paper we focus on the task of image classification. The
authors in [21] proposed the LPIPS distance metric as a mea-
sure of similarity that mimicks human perceptibility. How-
ever, since this metric is classifier-dependent, here we use a
universal metric. Specifically, we set d = 1 − I , where I is
the Structural Similarity Index (SSIM) [22], which is equal to
1 for two identical images and captures luminance, contrast,
and structure in the measurements.

The signum function sign(.) is used to determine whether
to increase or decrease λ, based on the ratio of the actual and
desired specifications which regulates the amount of change.
The ReLU function σ(. ) prevents λ from becoming negative.
This occurs when the desired pd is easily attained in early
steps of the algorithm. The procedure is presented in Algo-
rithm 1.

4. EXPERIMENTAL RESULTS

We show results for Targeted attacks which we call BOSS-
T. The desired distribution is selected such that pd(l) = 1
if l is the target entry and 0 otherwise. Second, Confidence
reduction examples, which we dub BOSS-C. Let the true label
of xd be f∗ and the desired confidence be cd, then pd(l) = cd

Table 1: BOSS-C and NewtonFool with cd = 0.6, δc = 0.2, and
δs = 0.85 for the MNIST dataset.

Environment CA(%) σcon(%) σs(%) σJS

Model 98.1 99.1 100 0.03
Model+BOSS-C 98.1 66.73 87.89 0.19

Model+NewtonFool [15] 75.5 67.85 97.02 0.48

Original 
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Fig. 3: Samples from each class of the CIFAR-10 dataset (columns).
The first row shows the original examples. Rows 2-4 represent the
synthesized images for BOSS-C, BOSS-B, and BOSS-T, respec-
tively. The rounded percentage values of the confidence level, c, of
the BOSS-C samples are placed at the bottom of each image along
with the predicted label. For BOSS-B, the first pair at the bottom of
every image represents the highest two predicted labels along with
their rounded classification scores (second pair). Predicted labels are
placed at the bottom of each BOSS-T example. The percentage of
the rounded similarity measure (I) is placed on top of each generated
example.

if l = f∗, and (1− cd)/(M − 1) otherwise. In addition to the
samples from BOSS-T and BOSS-C, we also show instances
of boundary adversarial examples. In this case, a value of
0.5 is assigned to the two class labels on both sides of the
boundary.

We use D as the JS distance to compare PMFs (desired
and actual) and the SSIM index I as a measure of similarity
between examples. We define σJS and σs as the average of D
and I , respectively, over the set of observationsX . In addition
to the aforementioned metrics, for BOSS-T, we utilize the at-
tack success rate α =: Ns/|X |, where Ns is the number of
times a generated adversarial sample is classified as the pre-
defined target label. Further, we use σ2 and σ∞ to denote the
average l2 and l∞, respectively. For BOSS-C, we compute
σcon, defined as the average confidence level of prediction of
the true label over the set of interest X .

The random vector z of dimension Q = 100 is generated
from a uniform distribution over the interval [0, 1], and 80 re-
peated samples are used for training. The initial loss weights
are chosen as λ0 = λ0v = 0.001. The parameters are updated
using the ADAM optimizer [23] with initial step size 0.025.
The details of the pre-trained classifiers and the generative
networks, and our code are available online1.

1https://github.com/ialkhouri/BOSS



Table 2: BOSS-T attack overall comparison with state-of-the-art attack methods using the CIFAR-10 dataset. For targets, all labels other
than the predicted ones are considered.

Attack α(%) σ2 σ∞ σs Average Adversarial Confidence Average Run Time (sec)
CW-l2 (κ = 0) [11] 99.55 0.4195 0.0519 0.9966 0.4371 97.0982

CW-l2 (κ = 10) [11] 95.2381 0.7755 0.0907 0.9889 0.9964 95.5681
CW-l∞ (κ = 0) [11] 99.55 1.0761 0.1188 0.9780 0.7126 0.1744

CW-l∞ (κ = 10) [11] 96.82 1.91 0.1676 0.9999 0.9966 0.8912
EAD (EN decision) [18] 100 0.4419 0.0885 0.9961 0.3951 141.971
EAD (l1 decision) [18] 100 0.5618 0.173 0.9938 0.3754 142.394

BOSS-T (MSE) 100 1.1589 0.1046 0.9818 0.9879 16.5554
BOSS-T (Huber) 100 1.1454 0.1075 0.9799 0.9806 21.6079

BOSS-T (log cosh) 100 1.1055 0.1042 0.9828 0.9785 21.1732
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Fig. 4: Clean samples from some classes of the ImageNet dataset
on VGG16. The first row shows the original examples. Rows 2 and 3
show the synthesized images for BOSS-T and BOSS-B, respectively.
The labels are given at the bottom of each example along with the
classification confidence. The SSIM and JS measures are reported
on the right of each BOSS image.

For BOSS-C, Table 1 presents the results for σcon, σs, and
σJS. For NewtonFool, we use 50 iterations and set the small
perturbations parameter as η = 0.01. For an average confi-
dence of σcon ≈ 67%, BOSS-C (with cd = 0.6) and New-
tonFool are successful in reducing the average confidence of
the model from the original value σcon = 99.1%. This is
accomplished with very high level of similarity measure of
σs ≈ 88% and σs ≈ 97% for BOSS-C and NewtonFool, re-
spectively. While NewtonFool attack produces examples with
higher σs, it fails to maintain the classification accuracy CA
which drops from 98.1% to 75.5%, and yields a large distance
σJS from the desired PMF.

The results for BOSS-T are presented in Table 2 and com-
pared to the state-of-the-art CW [11] and elastic nets attacks
(EAD) [24]. We choose these baselines since their formula-
tions admit any differentiable loss function, unlike the well-
known Projected Gradient Descent method [25] where the
distance between x and xd is limited to the lp norm. For
each testing example, all labels other than the predicted one
are used as targets. Results of the average adversarial con-
fidence and average run time are reported for each case in

the last two columns. The parameters for CW and EAD on
CIFAR10 are selected from the reported parameters in their
respective papers. It is important to note that both of these
methods apply their attacks based on the pre-softmax output
(sometimes called logits), and hence, cannot specify an exact
pd. However, in the CW formulation, the parameter κ was in-
troduced to represent the desired logit value to achieve higher
adversarial confidence. While setting κ = 0 in the CW attack
returns the best result in terms of imperceptibility, it does not
yield the best adversarial confidence. Therefore, we report re-
sults for κ = 10, which yields a better tradeoff between both
measures. Furthermore, we implement BOSS-T with differ-
ent surrogate loss functions in x and xd.

While some variant of EAD and CW achieve a relatively
lower imperceptibility (as seen from σ2 and σ∞), in terms of
adversarial confidence, all variants of BOSS-T return the best
results. CW, with κ = 10, reports similar adversarial confi-
dence, but the attack success ratio does not achieve 100%, and
requires 5 times the run time for l2 and nearly 50% increase
in imperceptibility (presented in σ2 and σ∞) are observed.

Figures 1, 3, and 4 show BOSS-C, BOSS-T, and BOSS-B
samples. As observed, BOSS is successful in generating ad-
versarial examples given the desired input specification, rep-
resented the original images in the first row, and output spec-
ification as represented in the corresponding application.

5. CONCLUSION

We introduced BOSS, a framework for one-shot synthesis
of adversarial samples that satisfy input and output specifi-
cations for pre-trained classifiers. We formulated the BOSS
problem and proved that the problem is NP-Complete. We
developed an approximate solution using generative networks
and surrogate loss functions. The flexibility of BOSS is
demonstrated through various applications, including synthe-
sis of boundary examples, targeted attacks, and reduction of
confidence samples. A set of experiments verify that BOSS,
in general, performs on par with state-of-the-art methods and
generates the highest adversarial confidence examples.
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