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ABSTRACT

Deep learning based image compressed sensing (CS) has achieved
great success. However, existing CS systems mainly adopt a fixed
measurement matrix to images, ignoring the fact the optimal mea-
surement numbers and bases are different for different images. To
further improve the sensing efficiency, we propose a novel semantic-
aware image CS system. In our system, the encoder first uses a fixed
number of base CS measurements to sense different images. Accord-
ing to the base CS results, the encoder then employs a policy network
to analyze the semantic information in images and determines the
measurement matrix for different image areas. At the decoder side,
a semantic-aware initial reconstruction network is developed to deal
with the changes of measurement matrices used at the encoder. A
rate-distortion training loss is further introduced to dynamically ad-
just the average compression ratio for the semantic-aware CS system
and the policy network is trained jointly with the encoder and the
decoder in an end-to-end manner by using some proxy functions.
Numerical results show that the proposed semantic-aware image CS
system is superior to the traditional ones with fixed measurement
matrices.

Index Terms— Compressed sensing, semantic sensing, deep
learning, image reconstruction

1. INTRODUCTION

The traditional image acquisition systems based on the Nyquist-
Shannon sampling theorem require the sampling ratio of image
sensors to be no less than twice the bandwidth of the original sig-
nal [1], which is unfriendly to the applications where inexpensive
sensors shall be used or oversampling may be harmful to the object
being sensed (e.g. medical imaging). Also, as many sensed images
will be compressed for storage or transmission purposes, the sensing
costs for pixels that will be discarded in the compressing process are
higher than needed in traditional sensors. Based on these consid-
erations, image compressive sensing (CS) that jointly implements
the sampling and compression processes has been proposed as a
new paradigm for image acquisition and reconstruction [2, 3]. The
CS theory [4] also shows the number of measurements required for
image CS is much fewer than suggested by the Nyquist-Shannon
sampling rate as images can be well sparsely represented.

Recently, deep learning based image CS methods have been de-
veloped to improve the sensing efficiency and reconstruction ac-
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curacy in image CS problem. For example, based on the block-
based image CS architecture [5, 6], Shi et al. [7] propose a con-
volutional neural network (CNN)-based image CS network architec-
ture, CSNet, where sensing matrices and reconstruction network are
jointly optimized. Motivated by the iterative algorithm, deep unfold-
ing networks, such as ADMM-Net [8] and AMP-Net [9], are intro-
duced as reconstruction networks for image CS, which balances re-
construction speed and network interpretation. To address the prob-
lem of CNN-based networks in modelling long distance relation-
ships, a cascaded visual transformer (ViT) architecture is developed
in [10]. The information bottleneck measurement in [11] can en-
hance the training process of sensing network by explicitly mod-
elling the importance level of different measurements.

Despite the fast development of image CS methods, existing
methods mainly use a fixed sensing measurement matrix for dif-
ferent images. Recent research on semantic communications has,
however, demonstrated that data transmission efficiency can be in-
creased if the communication policy is modified in accordance with
the semantic information in the data [12, 13, 14]. This inspires us to
think if data acquisition process can also be improved in a semantic-
aware manner. In fact, instead of using a fixed sensing matrix, im-
ages with varying types of semantic information shall be sensed and
compressed by different measurement matrices, including different
numbers of measurements and different measurement bases1. It is
well-known that different semantic information will have different
sparsity levels when they are represented sparsely under a sparse
transformation matrix. From CS theory, more measurements shall
be used for signals less sparse to satisfy the restricted isometric prop-
erty (RIP) requirement [15, 16]. Therefore, the sparse signal cannot
be well recovered if fewer samples than required are collected; but
the sensing costs are higher than needed if more samples are used.
This inspires us to adjust the number of measurements according to
the semantic information type.

Furthermore, it is also helpful to adjust the measurement bases
for different semantic information for image CS problem. Specif-
ically, the sparse representations of different semantic information
may have different support sets (or sparsity patterns)2. Without these
support information, one need to ensure that the correlations be-
tween all pairs of columns of measurement matrix are small enough
so that the sparse recovery methods, such as orthogonal matching
pursuit [17], can operate successfully. By contrast, if the support set
information can be roughly estimated by analysing the semantic in-
formation type and is available before CS process, we can enhance
the sensing and sparse signal recovery process by explicitly reduc-

1Each row of the measurement matrix is called as a measurement base in
this paper

2considering the case where different semantic information has different
frequency components and a discrete Fourier transform (DFT) matrix is used
as the sparse transformation matrix.
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ing the correlations of the columns belonging to the support set and
reducing the search space in recovery process.

There are two challenges for this semantic-aware CS process:
1) how to estimate the semantic information of an area and use it to
adjust the sensing process before sensing it; 2) how to dynamically
adjust the measurement matrix according to the semantic informa-
tion type without storing a matrix per type. To address the first chal-
lenge, we divide the CS process into two steps. In the first step, we
use a fixed measurement matrix for all areas and estimate the seman-
tic information from these observations for each area. The estimated
semantic information is then used to decide the measurement matrix
for different areas in the second step. To deal with the second chal-
lenge, we learn a relatively large measurement matrix and dynam-
ically select rows from this large matrix to construct the semantic-
aware measurement matrix for each individual area. The selection
process is done by a policy network, which is trained jointly with the
measurement matrix and the reconstruction network via some proxy
functions in an end-to-end manner. Note that the whole network fol-
lows the designs in block-based image CS problem (BCS)[5, 6, 7].

The most related work to ours is the content-aware scalable net-
work (CASNet) proposed in [18]. Our work differs from [18] in the
following three aspects: 1) Our method adjusts both the number of
measurements and the measurement bases; 2) Instead of using the
same compression ratio from different images, we adjust the com-
pression ratio for different images under the constraint that the aver-
age compression ratio over the the training/validation data-set meets
the requirement. 3) To reduce memory and computational costs for
sensor, our policy network works on the measurement space, which
is far smaller than the image signal space.

2. PROBLEM FORMULATION AND SYSTEM MODEL

In this section, we will introduce the problem formulation and
system models for existing network-based BCS and the proposed
semantic-aware BCS.

2.1. Block-based image compressive sensing

Given an image I ∈ RH×W×3, BCS first divides the image into
non-overlapping blocks of size B × B × 3 and reshapes the blocks
into vectors. Then, each block is sensed by a learned measurement
matrix ϕ of size n× 3B2. This process can be represented as,

yi,j = ϕxi,j , (1)

for i = 1, 2, · · · , H
B

, j = 1, 2, · · · , W
B

, where xi,j and yi,j are the
(i, j)-th block in 2D image space and corresponding measurements.
In this process, the compression ratios for each block and the whole
image are the same, i. e., n

3B2 . In this work, we set H = W = 224
and B = 32, resulting in 7× 7 blocks.

After sensing, the goal of BCS is to reconstruct the original im-
age from these CS measurements. In this work, we mainly focus
on network-based BCS methods [7]. In particular, after obtaining
CS measurements, network-based BCS first obtains an initial recon-
structed image via a trainable matrix θ of size 3B2 × n [7]. Given
CS measurement yi,j of the (i, j)-th block, its initial reconstruction
result x̂i,j can be represented as,

x̂i,j = θyi,j . (2)

To this end, the initial reconstruction result for each block is still a
vector. Network-based BCS methods will further reshape and con-
catenate these reconstructed vectors to get an initial reconstructed
image Î [7].
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Fig. 1. The basic idea of the proposed semantic-aware block-based
image compressed sensing system.

After initial reconstruction, a deep reconstruction network D(·)
is utilized to refine the initial reconstruction result,

Ĩ = D(Î), (3)

where Ĩ denotes the final reconstructed images. Depending on the
network architecture, the deep reconstruction network can be catego-
rized as model-driven networks [8, 9], data-driven networks [7, 10],
and hybrid networks [18].

2.2. Semantic-aware block-based image compressive sensing

Based on the BCS methods, we now give the pipeline of the pro-
posed semantic-aware BCS methods, which is also shown in Fig.
1. As aforementioned, the semantic-aware BCS is divided into two
steps. In the first step, a learned base measurement matrix ϕb of size
nb × 3B2 is utilized to sense each block as follows,

yb
i,j = ϕbxi,j , (4)

where yb
i,j is the CS measurements under base measurement matrix

for the (i, j)-th block.
After obtaining these base CS measurements, a policy network

P (·) will take these measurements as inputs, analyse its semantic
information type, and generate 0-1 row-selection vectors for each
block, which can be represented as,

m1,1,m1,2, · · · ,m⌈H
B

⌉,⌈W
B

⌉ = P (yb
1,1, y

b
1,2, · · · , yb

⌈H
B

⌉,⌈W
B

⌉),

(5)
where mi,j ∈ {0, 1}nmax and nmax is the number of rows of a
shared large measurement matrix ϕf ∈ Rnmax×3B2

. The sen-
sor then constructs semantic-aware measurement matrix ϕs

i,j ∈
Rns

i,j×3B2

by selecting rows from ϕf according to the locations of
values 1 in mi,j for each block, where ns

i,j is the number of values
1 in mi,j . Usually, ns

i,j will have a higher value for blocks where
the sparse representations are less sparse.

Next, each ϕs
i,j is utilized to sense the corresponding area in the

second step. This process can be represented as,

ys
i,j = ϕs

i,jxi,j , (6)

where ys
i,j is the CS measurements under the learned semantic-

aware measurement matrix for the (i, j)-th block. After these two
steps, there are nb + ns

i,j measurements for the (i, j)-th block.
The average compression ratio ravg for an image dataset with
N images can be calculated as ravg =

navg

3B2 , where navg =



1

N⌈HW
B2 ⌉

∑N
k=1

∑⌈ H
B2 ⌉

i=1

∑⌈ W
B2 ⌉

j=1 (ns,k
i,j + nb) denotes the average

number of measurements per block, where ns,k
i,j is the number of

measurements for the (i, j)-th block in image k at the second step.
Following BCS, semantic-aware BCS also has initial reconstruc-

tion and deep reconstruction stages. However, different from BCS,
semantic-aware BCS needs to tackle the changes of measurement
matrices used in the sensing stage. Specifically, since ys

i,j is gen-
erated through different ϕs

i,j in each block, it is hard to reconstruct
initial reconstruction result x̂i,j through a shared matrix θ for all
blocks. Therefore, in the initial reconstruction stage, we first gen-
erate a block-wise matrix θsi,j for each block using another weight-
generation network A(·), which takes base measurements obtained
from ϕb as inputs,

θs1,1, θ
s
1,2, · · · , θs⌈H

B
⌉,⌈W

B
⌉ = A(yb

1,1, y
b
1,2, · · · , yb

⌈ H
B2 ⌉,⌈ W

B2 ⌉), (7)

where θsi,j ∈ R3B2×ns
i,j is the generated initial reconstruction ma-

trix for block (i, j). After that, x̂i,j can be represented as,

x̂i,j =
[
θb, θ

s
i,j

] [ yb
i,j

ys
i,j

]
, (8)

where θb ∈ R3B2×nb is the initial reconstruction matrix for base
measurements. In this work, we do not directly learn the θsi,j due
to the large matrix size. We decompose θsi,j into a large matrix
θs ∈ R3B2×nmax , which is shared among blocks, and a small ma-
trix θ̃si,j ∈ Rnmax×ns

i,j , which is actually learned for each block.
Here, nmax(≪ 3B2) is a pre-defined value representing the maxi-
mum number of measurements for each block in step two. With this
decomposition, Eq. (8) is re-written as,

x̂i,j = [θb, θs]

[
Inb×nb 0

0 θ̃si,j

] [
yb
i,j

ys
i,j

]
, (9)

The deep reconstruction network should also be designed in a way
adaptive to the changes of ϕs

i,j in different blocks, which will be
considered in our future work. In this work, we use a memory-
friendly deep reconstruction network for simplicity. More details
will be given hereafter.

If we substitute semantic-aware block-wise matrices ϕs
i,j in

Eq.(6) with a fixed matrix ϕbf of size (navg −nb)×3B2 and θsi,j in
Eq.(8) with a fixed matrix θbf of size 3B2×(navg−nb) for different
blocks in the above architecture, the semantic-aware BCS can easily
degrade to the traditional BCS with the same average compression
ratio, enabling a fair comparison between semantic-aware BCS and
traditional BCS.

3. SEMANTIC-AWARE IMAGE BCS NETWORK

In this section, we will introduce the network architectures of the
proposed semantic-aware image BCS network and the training de-
tails.

3.1. Network architecture

As shown in Fig. 2, the architecture of the proposed coding method
is composed of an encoder and a decoder. We first introduce the en-
coder. Given an image I of size H×W × 3, we first apply a B×B

convolution layer (Conv) with a stride size of B and nb output chan-
nels to I , generating features C ∈ R

H
B

×W
B

×nb . This process corre-
sponds to Eq.(4)3 and cij = C [i, j, :] ∈ Rnb , for i = 1, 2, · · · , H

B

and j = 1, 2, · · · , W
B

, denotes the base CS measurements for the
image area I[(i− 1)B : iB, (j − 1)B : jB, :], which is also called
as (i, j)-th block in previous section.

Next, a policy network, denoted as P-net, takes C as inputs and
generates an intermediate feature G ∈ R

H
B

×W
B

×nmax , which is
then quantified into a 0-1 mask matrix M by a binarizer. The de-
tailed architecture of P-net is shown in Fig. 2, where FEN denotes
a feature extraction network consisting of three 3 × 3 Convs with
stride 1 and 256 output channels, and sigm denotes sigmoid activa-
tion layer. The binarizer is used to conduct binary quantization to G.
It outputs 1 if the input is over 0.5; otherwise it outputs 0. Due to
binarizer, the backward gradient is zero almost everywhere, restrict-
ing the parameter update of the P-net. To solve this non-differentiate
issue, we use a straight-through estimator of the gradient [19] which
directly uses the gradients to M as the gradients to G. The genera-
tion of mi,j = M [i, j, :] ∈ {0, 1}nmax corresponds to Eq.(5).

After that, we apply a B ×B Conv layer with stride size B and
nmax output channels to I and obtain features D ∈ R

H
B

×W
B

×nmax .
This process is equivalent to sense each block using the shared large
measurement matrix ϕf mentioned before. We then multiple D and
0-1 mask matrix M element-wisely to get E. ei,j = E[i, j, :] ∈
Rnmax can be regarded as a zero-padded version of ys

i,j in Eq.(6),
where the values of unimportant measurements indicating by the val-
ues 0 in mi,j are set as 0.

Note that in the training process, we first sense each block with
the maximum number of measurements and then set unimportant
ones to 0. In this way, the number of measurements generated by
each block is the same, making it easier to implement the batch
training method. However, during the test phase, we first need to
construct ϕs

i,j by considering mi,j and ϕf stored in the Conv layer
and then sense each block with ϕs

i,j to get ys
i,j . Only in this way

can we reduce the actual sensing costs. The differences between the
training phase and the testing phase are shown in Fig. 2.

At the decoder side, base CS measurements C are first fed into
the P-net, which shares the same architecture and parameters as the
one in the encoder. And then, the outputs of FEN in the P-net are
used as the inputs of a weight-generation network, A-net, which
generates weights W ∈ R

H
B

×W
B

×(nmax×nmax). Here, wi,j =

W [i, j, :] ∈ Rnmax×nmax is similar to the θ̃si,j in Eq.(9). The only
difference is that more columns are generated in wi,j than θ̃si,j for
zero-padded values in ei,j . The redundant columns will not affect
the final results. In the training phase, for block (i, j), we con-
duct matrix multiplication between wij and eij , and repeat this pro-
cess for all blocks. This process corresponds to operation θ̃isyis in
Eq.(9). The results are features F ∈ R

H
B

×W
B

×nmax . After obtain-
ing F , we concatenate F and C along the channel dimension, which
equals forming the [Iyib; θ̃isyis] in Eq.(9). Following that, we in-
put them into a 1 × 1 Conv with stride 1 and 3B2 output channels.
The convolution operation represents multiplying [θb, θs] by the left
in Eq.(9). In the testing phase, operations are slightly different. We
first select columns from W under the guidance of M and obtain
θ̃si,j , which is then used to multiply with ys

i,j .
At last, a D-net is used for deep reconstruction. We show the

architecture of the D-net in Table 1, where Depth-to-Space layer is
used to rearrange features from the channel dimension into spatial
dimension and Resblock layer is a cascaded of Conv-relu-Conv with

3More details for this step are explained in [7]
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Fig. 2. The architecture of the proposed semantic-aware block-based image compressed sensing system. In the figure, K-A, S-B, C-n Conv
denotes a convolution layer with A× A kernels, stride B, and n output channels. The convolution layers with blue color are trained without
bias parameters while the convolution layers with yellow color have bias parameters.

Table 1. Detailed architecture of D-net.
Layer Type Parameters Output shape

0 Input - (H/B)x(W/B)x3B2

1 Depth-to-Space block-size=B/8 (H/8)x(W/8)x192
2 Conv K-3,S-1,C-256 (H/8)x(W/8)x256
3 Resblock K-3,S-1,C-256 (H/8)x(W/8)x256
4 Conv K-3,S-1,C-192 (H/8)x(W/8)x192
5 Depth-to-Space block-size=2 (H/4)x(W/4)x48
6 Conv K-3,S-1,C-128 (H/4)x(W/4)x128
7 Resblock K-3,S-1,C-128 (H/4)x(W/4)x128
8 Conv K-3,S-1,C-48 (H/4)x(W/4)x48
9 Depth-to-Space block-size=4 HxWx3

10 Conv K-3,S-1,C-64 HxWx3
11 Resblock K-3,S-1,C-64 HxWx3
12 Conv K-3,S-1,C-3 HxWx3

skip connections. The parameters of the Convs used in Resblock
are shown in Table 1. Note that as the main goal of this work is to
verify the semantic-aware operations introduced in the encoder and
the initial reconstruction process in the decoder, we do not spend
much effort in designing the deep reconstruction network, whose
designs, however, are important for comparison with state-of-the-
arts BCS works and will be left for our future work. In this work,
the adopted D-net has comparable performance with the one used in
CSNet [7]. Different from CSNet whose D-net operates on image
signal space and thus has a high memory and computational costs,
the D-net shown in Table 1 extracts features mainly in feature space
with low spatial dimension and has faster speed and lower memory
consumption.

3.2. Rate-distortion trade-off

Here, we will describe the training process of the whole network.
In this semantic-aware BCS, we hope the number of CS measure-
ments to be small while at the same time the peak signal-to-noise
ratio (PSNR) to be high. Under this design goal, we can formu-

late the training loss as the well-known rate-distortion trade-off [20],
which can be defined as follows,

L =
∑
I∈I

L2(I, Î) + γLR(I), (10)

where I denotes the training dataset, L2 = ||I − Î||22 denotes the
distortion, and LR(I) =

∑H/B
i=1

∑W/B
j=1

∑nnmax
k=1 G(I)[i, j, k] de-

notes the rate loss, and G(I) is the outputs of P-net when I is the
network input. As G(I) determines the number of values 1 in M ,
minimizing G(I) equals minimizing the number of measurements.
Besides, γ is an introduced trade-off parameter between rate loss and
reconstruction accuracy. Increasing the value of γ will penalize more
on the number of measurements and reduce the average compression
ratio of I sets.

4. EXPERIMENTS

In this section, we compare the proposed semantic-aware image BCS
methods with fixed-ratio image BCS methods under the same num-
ber of average compression ratio. We name our method as SemBCS.
The fixed-ratio version of SemBCS, FixBCS, can be obtained by us-
ing a B × B Conv with strides B and navg output channels as the
encoder and a 1× 1 Conv with stride 1 and 3B2 output channels as
the decoder, followed by the same D-net used in the SemBCS.

4.1. Dataset

We use two different datasets in our experiments. The first one, the
MS-COCO 2014 [21] dataset, is composed of all kinds of images in
human life and contains rich semantic information. The second one,
the MPI-INF-3DHP [22] dataset, is widely used for human mesh re-
covery task and contains the video sequences where some human
objects are doing some specific actions in an indoor environement
with a green screen background. Therefore, the semantic informa-
tion in this dataset is quite limited.
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As discussed above, all images are scaled to the size of 224 ×
224 × 3 for experiments. For the MS-COCO 2014 dataset, we use
82, 783 training samples, 2, 000 validation samples, and 2, 000 test-
ing samples. For the MPI-INF-3DHP dataset, we first extract images
from the training video sequences and then randomly choose 5% for
validation, 5% for test, and the rest for training.

4.2. Experimental settings

The values of nb and nmax are different in the two datasets. For MS-
COCO 2014 dataset, we choose nb from {150, 250, 350, 450, 550},
set nmax = 200, and ensure navg ≈ nb + 100 by tuning the value
of γ. For MPI-INF-3DHP dataset, we set nb = 20, nmax = 200
and ensure that navg changes from around 50 to 140 by changing γ.
The main reason for these setting difference is that the growth speed
of PSNR value alongwith the increasement of compression ratio in
MPI-INF-3DHP is much higher than MS-COCO 2014 dataset. In
both experiments, we train the networks until the PSNR value in
validation datasets stops increasing under the specific navg values.

4.3. MPI-INF-3DHP experiment

We show the PSNR versus the average compression ratio ravg of dif-
ferent BCS methods in the MPI-INF-3DHP dataset in Fig. 3. From
the figure, the SemBCS works significantly better than the FixBCS.
For example, the SemBCS uses 23% fewer samples than the FixBCS
when the targeted PSNR value is 27 dB. This experiment shows the
superiority of the proposed semantic-aware BCS system over tradi-
tional BCS systems.

To further understand the P-net learned in the SemBCS, we show
some examples of the learned number of measurements at stage 2
and the underlying sparsity levels for each block in Fig. 4. To esti-
mate the sparsity level of each block, we solve a sparse linear inverse
problem, y = Ax, where y ∈ R3B2

is the vectorized version of the
pixels in each block, A ∈ R3B2×12B2

is a predefined overcom-
plete discrete cosine transform (DCT) dictionary, x is the underly-
ing sparse representation. We calculate the number of elements in x
whose absolute value is larger than 10 and use it as the sparsity level
of each block. Note that as the D-Net is used to fuse the information
from different blocks in the deep reconstruction stage, the number
of measurements for one block will be affected by the neighbour-
ing blocks. From Fig. 4, more measurements are generally used for
blocks containing richer semantic information, such as human areas,
light areas, and green screens with folds. Also, more measurements
are used for blocks that are less sparse, which means the P-net is
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Fig. 4. Examples of the learned number of measurements at stage
2 (brown color) and the underlying sparsity levels (yellow color) for
each block in the MPI-INF-3DHP dataset when the average com-
pression ratio is 0.0325.
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Fig. 5. PSNR versus average compression ratio for different methods
in the MS-COCO2014 dataset.

able to estimate the sparsity level and assign the measurement ma-
trix accordingly by analysing the semantic information contained in
the base CS measurements. This experiment is a very good verifica-
tion of our design concept.

4.4. MS-COCO2014 experiment

We also show the PSNR versus the average compression ratio ravg
of different BCS methods in the MS-COCO2014 datatset in Fig. 5.
From the figure, the SemBCS still has a steady performance gain
over the FixBCS, indicating the generality of the proposed semnatic-
aware operations on different datasets. However, we find the per-
formance gain is not as large as the previous experiment. This is
because the P-net in SemBCS only has five Convs and is not deep
enough to conduct semantic reasoning for datasets with rich seman-
tic contents.

Some examples of the learned number of measurements at stage
2 and the underlying sparsity levels for each block are shown in Fig.
6. We can see that more measurements are allocated to the human
areas while fewer to the floor and the wall. However, we also notice
the learned number of measurements is not strictly allocated along-
with the amount of semantic information and the sparsity levels for
some blocks, which means this version of SemBCS can be further
improved for datasets containing rich semantic information.
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Fig. 6. Examples of the learned number of measurements for each
block at stage 2 in the MS-COCO2014 dataset when the average
compression ratio is 0.148.

5. CONCLUSION

In this work, we have proposed a novel semantic-aware image com-
pressive sensing system, where the best measurement matrices for
different images are decided by the images’ semantic information.
We also verify the effectiveness of the proposed method in MPI-INF-
3DHP and MS-COCO2014 datasets. Improving the architecture of
the policy network and the deep reconstruction network will be left
as our future work.
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