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ABSTRACT

Objects’ rigid motions in 3D space are described by rotations
and translations of a highly-correlated set of points, each with
associated x, y, z coordinates that real-valued networks con-
sider as separate entities, losing information. Previous works
exploit quaternion algebra and their ability to model rotations
in 3D space. However, these algebras do not properly encode
translations, leading to sub-optimal performance in 3D learn-
ing tasks. To overcome these limitations, we employ a dual
quaternion representation of rigid motions in the 3D space
that jointly describes rotations and translations of point sets,
processing each of the points as a single entity. Our approach
is translation and rotation equivariant, so it does not suffer
from shifts in the data and better learns object trajectories,
as we validate in the experimental evaluations. Models en-
dowed with this formulation outperform previous approaches
in a human pose forecasting application, attesting to the ef-
fectiveness of the proposed dual quaternion formulation for
rigid motions in 3D space.

Index Terms— Dual Quaternions, Rigid Motions, Trans-
lation and Rotation Equivariance, Human Pose Forecasting.

1. INTRODUCTION

Human pose forecasting (HPF) aims to predict the position
of human keypoints – such as head, limbs, torso, etc – in
the near future. Accurately estimating the position of human
joints and their orientations allows for a better understanding
of individuals moving in 3D space. By leveraging this under-
standing, it is possible to predict the motions of individuals
in the immediate future, which is invaluable for applications
in self-driving cars [1, 2], home healthcare [3], and security
surveillance [4], for example. The estimated keypoints can
also be used to faithfully reconstruct 3D human body mod-
els, having therefore notable applications in augmented and
virtual reality [5].

HPF data usually comprise a set of joint data points repre-
senting the poses in the space. Such kind of data is inherently
a multichannel signal since positions are represented by their
coordinates in 3D space. The sequence of positions of a joint

in several instants is therefore a time series with highly corre-
lated components. Moreover, joints are part of the same body
so they are also correlated among themselves, especially those
located in the same limb. Higher dimensional algebras can be
used to represent HPF data preserving such correlations.

Learning representations of multichannel data using
higher dimension algebras has been proved to outperform
real-valued approaches in several problems [6, 7, 8, 9].
Quaternion-valued networks already boast works on a sig-
nificant array of diverse tasks such as audio signal and image
processing, computer vision, and dynamic system modeling
[10, 11, 12, 13]. Human pose estimation using quaternion-
valued networks has been done in a few different manners
[14, 15, 16, 17]. Quaternions are often used since they are
able to encapsulate multiple spatial coordinates in one en-
tity and also efficiently represent rotations in 3D space [18].
However, the quaternion product is limited to describing ro-
tations around axes containing the origin. Such operations
are not robust to translations, which are extremely common
transformations in applications to augmented reality, 3D
space modeling, and computer vision.

This work considers an elegant representation for jointly
modeling rotations and translations of objects in the 3D space
using dual quaternions. Thanks to such representation, we can
enclose a full rigid motion, i.e., translation and rotation, in a
single entity [19], considering object movements in the space
as a combination of highly-correlated elements. Differently
from previous attempts that only focus on simulated tests
[20, 21], we model human skeleton motions in real-world
scenarios, showing the crucial role of the dual quaternion
representation in learning body translations in space. More-
over, we provide practical proof that our dual quaternion for-
mulation is both translation and rotation equivariant, which
are highly desirable properties for all applications involving
3D movement modeling. Thus, neural models described with
our approach significantly mitigate losses from translations
and rotations in the data. In the experimental evaluation,
we show that dual quaternion models outperform their real
and quaternion-valued counterparts according to every metric
considered, and visually display the translation and rotation
equivariance properties of our approach.
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This paper is structured as follows: Section 2 briefly re-
views quaternions and dual numbers. Section 3 encompasses
the definition of dual quaternions, a description of rigid mo-
tions, and the translation and rotation equivariance properties.
Section 4 presents the experimental validation, also showcas-
ing the equivariance of dual quaternions. Finally, Section 5
contains some concluding remarks.

2. OVERVIEW OF QUATERNIONS, DUAL
NUMBERS, AND DUAL QUATERNIONS

Quaternions, denoted by H, are one of the most well-known
hypercomplex algebras. Commonly seen as an extension to
complex numbers C, this algebra was introduced in 1843 by
W. R. Hamilton while searching for a domain that could en-
capsulate operations in three-dimensional space. A quater-
nion is a number of the form

q = qW + qX ı̂+ qY ȷ̂+ qZ κ̂ ∈ H, (1)

where qW , qX , qY , qZ are real numbers. The symbols ı̂, ȷ̂, κ̂
denote the hyperimaginary units and follow the multiplication
rules ı̂2 = ȷ̂2 = κ̂2 = ı̂ȷ̂κ̂ = −1, known as the Hamilton
rules.

A quaternion given by (1) efficiently describes a rotation
in 3D space. Formally, qW is called the real part and q =
qX ı̂+ qY ȷ̂+ qZ κ̂ is referred to as the vector part of q. Hence,
a quaternion can be written as q = qW +q. We say that q is a
pure quaternion if qW = 0. The conjugate of q = qW + q is
easily expressed in this notation as q∗ = qW − q. Moreover,
we can write a quaternion in polar form

qθ = ∥q∥
(
cos

(
θ

2

)
+ sin

(
θ

2

)
u

)
, (2)

for θ ∈ [0, 2π) and a pure quaternion u = uX ı̂ + uY ȷ̂ +
uZ κ̂, where ∥q∥ =

√
q2W + q2X + q2Y + q2Z is the absolute

value of q. The rotation of a 3D vector (pX , pY , pZ) by an
angle θ around the axis determined by (uX , uY , uZ) can be
efficiently determined by

prot = qpq∗, (3)

where p = pX ı̂+ pY ȷ̂+ pZ κ̂ and u = uX ı̂+ uY ȷ̂+ uZ κ̂ are
pure quaternions encoding the position and axis vectors, and
q is the quaternion given by (2).

We would like to remark that, if q is not a unitary quater-
nion, then prot given by (3) is scaled by ∥q∥2. Therefore,
it is common to normalize q, that is, q ← q

∥q∥ . Moreover,
the representation in (3) is unique due to the domain of θ.
Thus, a quaternion uniquely defines a rotation-dilation and
vice-versa.

Dual numbers yield a hypercomplex algebra of dimension
2 over R. A dual number has the form â = a0 + εaε, where
a0, aε ∈ R and ε, called the dual unit, satisfies ε2 = 0. Using

distributivity, we conclude that the product of two dual num-
bers satisfies (a0 + εaε)(b0 + εbε) = a0b0 + ε(a0bε + aεb0).
In particular, (εaε)(εbε) = 0 even if aε, bε ̸= 0.

The so-called dual quaternions, denoted by D, are quater-
nions whose components are dual numbers. In mathemati-
cal terms, a dual quaternion is given by q̂ = q̂W + q̂X ı̂ +
q̂Y ȷ̂ + q̂Z κ̂, where q̂W , q̂X , q̂Y , q̂Z are dual numbers. Inter-
estingly, the dual unit ε commutes with the quaternion hyper-
imaginary units ı̂, ȷ̂, κ̂. Thus, the set of dual quaternions D
can be defined equivalently as dual numbers in which each
part is a quaternion, i.e., a dual quaternion can be represented
by q̂ = (q0 + εqε), where q0, qε ∈ H. The norm of a dual
quaternion is defined by ∥q̂∥ =

√
∥q0∥2 + ∥qε∥2 and q̂ is a

unit dual quaternion if ∥q̂∥ = 1.
In this work, we will represent dual quaternions as bold-

face letters with a hat q̂, while dual numbers will be regular
letters with hat q̂.

3. DUAL QUATERNION REPRESENTATION OF
RIGID MOTIONS: EQUIVARIANCE PROPERTIES

Any rigid motion in 3D space can be reduced to a rotation-
translation with respect to a screw axis

−→
h . Using a proper

dual quaternion representation, we can characterize a full
rigid motion as a unique entity and leverage algebra proper-
ties to build a more robust model [19].

Let us take a unit dual quaternion q̂ = q̂W + q̂X ı̂+ q̂Y ȷ̂+
q̂Z κ̂. On the one hand, the real part q̂W of q̂ yields a dual
number θ̂ = arccos (q̂W ) = θ

2 + ε s
2 , with θ ∈ [0, 2π). Here,

θ
2 is the rotation angle around the screw axis

−→
h and s

2 is the
translation distance along that axis [19]. On the other hand,
the imaginary part of q̂ contains information regarding the
direction of

−→
h , which consists of a vector through the origin

−→u translated by a vector
−→
d . Formally, we have

q̂ = q̂W + q̂X ı̂+ q̂Y ȷ̂+ q̂Z κ̂,

where

q̂W = cos
θ

2
− ε

2
−→u ·
−→
d sin

θ

2

q̂X = ux sin
θ

2
+

ε

2

[
dx cos

θ

2
− sin

θ

2
(uydz − uzdy)

]
q̂Y = uy sin

θ

2
+

ε

2

[
dy cos

θ

2
− sin

θ

2
(uzdx − uxdz)

]
q̂Z = uz sin

θ

2
+

ε

2

[
dz cos

θ

2
− sin

θ

2
(uxdy − uydx)

]
(4)

Here, u = ux ı̂+uy ȷ̂+uzκ̂ and d = dx ı̂+dy ȷ̂+dzκ̂ are purely
imaginary quaternions, and −→u ·

−→
d = uxdx + uydy + uzdz

on the first equation denotes the dot product.
Equation (4) highlights an interesting property: the dual

part is responsible for the translation of the rigid motion. In-
deed, if there is no translation the vector representing the
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translation of the screw axis is
−→
d = 0ı̂+ 0ȷ̂+ 0κ̂. By setting

dx = dy = dz = 0 in the above equations we find that the
dual part becomes null, and the resulting equation is equiva-
lent to (2). This is a straightforward fact: a rigid motion with
no translation is simply a rotation around an axis that contains
the origin, a motion fully described by a quaternion.

On the other hand, if we take a rigid motion without rota-
tion, i.e., θ = 0 then (4) yields q̂t = 1 + ε

2

−→
d . This further

reinforces that the dual part is responsible for the translation
and shows that the imaginary part of the non-dual part is as-
sociated to the rotation operation. This elegant formulation
puts in evidence the role played by the dual part and formally
shows why dual quaternions can encapsulate both operations
while quaternions are restricted to representing rotations.

Lastly, a unit dual quaternion q̂ can be written as

q̂ = cos

(
θ̂

2

)
+ ĥ sin

(
θ̂

2

)
, (5)

where ĥ is a unit dual quaternion with zero scalar part. Note
that this equation is similar to the quaternion polar form (2),
except that θ̂ = θ0 + εθε is a dual number and ĥ = h0 + εhε

is a dual quaternion. Indeed, this representation yields the
screw motion parameters directly: θ0/2 is the rotation an-
gle around the axis defined by h0 and θε/2 is the translation
along that same axis. hε is the so-called moment of the axis
and provides an unambiguous representation of the axis in
space. It is defined as hε = −→p × h0 where −→p is a vec-
tor from the origin pointing to any point of the axis h0. We
note that any choice of vector yields the same moment, since
(−→p + αh0) × h0 = −→p × h0 = hε, ∀α ∈ R. This illustrates
one very desirable property: dual quaternions express rigid
motions based on an unambiguous representation of the screw
axis [22] and thus are independent of the coordinate system,
therefore equivariant, as opposed to quaternions whose rota-
tions around axes containing the origin are deformed by trans-
lations.

4. EXPERIMENTAL EVALUATION

4.1. Lorenz System: Equivariance Properties

The Lorenz system is an ordinary differential equations
(ODE) system that describes the movement of a free particle
in atmospheric domain effects. This movement is character-
ized by rigid motions since the particle is under effects of
translation at all times with its direction constantly rotating.
The equations system is

dx
dt = σ(y − x),

dy
dt = x(ρ− z)− y,

dz
dt = xy − βz,

(6)

where σ, β, ρ are constants. This system exhibits chaotic be-
havior for certain values of these constants, such as σ = 10,
β = 8/3, and ρ = 28, meaning that a slight deviation in the
initial position results in a large deviation in the particle tra-
jectory. Using these constant values we generate a time series
of 10k consecutive positions, 10% of which are used for train-
ing, and the remaining 90% are used for testing. By strongly
limiting the size of the training set we ensure that the perfor-
mance of the network is more closely related to how well it
learns the rigid motions rather than overfitting.

We employ single-hidden-layer MLPs with ReLU activa-
tion in the hidden layer and identity in the output layer in this
example. The networks were trained for a one-step-ahead pre-
diction task using a 2-step sliding window, i.e., the network
received as inputs two consecutive positions and the desired
output is the immediate third one. The inputs and outputs for
the real-, quaternion-, and dual quaternion-valued models are
formatted as follows:

• Real-Valued Model: 6 input values containing the 2
positions as (xt−1, yt−1, zt−1, xt, yt, zt), 3 output val-
ues as (xt+1, yt+1, zt+1).

• Quaternion-Valued Model: 2 quaternion inputs, one
for each position, as (0 + xt−1 ı̂ + yt−1ȷ̂ + zt−1κ̂, 0 +
xt ı̂ + ytȷ̂ + ztκ̂), 1 output quaternion as (0 + xt+1 ı̂ +
yt+1ȷ̂+ zt+1κ̂).

• Dual Quaternion-Valued Model: 1 dual quaternion
input containing the 2 positions as (0+xt−1 ı̂+yt−1ȷ̂+
zt−1κ̂) + ε(0 + xt ı̂ + ytȷ̂ + ztκ̂), one dual quaternion
output (0+xt+1 ı̂+yt+1ȷ̂+zt+1κ̂)+ε(0+0ı̂+0ȷ̂+0κ̂).

The real network is an MLP with a 6-128-3 architecture, i.e.,
6 inputs, 128 neurons in the hidden layer, 3 units in the out-
put layer. Analogously, the quaternion model is an MLP with
a 2-80-1 architecture, and the dual quaternion model is an
MLP with a 1-53-1 architecture. Networks architectures were
chosen to feature an equal number of total trainable param-
eters, namely 1280. Each model was trained for 250 epochs
with the SGD optimizer, a learning rate of 0.0003 for the real
model and 0.0009 for the other two models, and a single batch
consisting of the entire training set.

We use the prediction step to showcase the translation and
rotation equivariance properties. We generate a random trans-
lation and a random rotation. After training on the original
training set, the networks are tested on 4 different test sets: i)
the original test set; ii) the translated test set; iii) the rotated
test set; and iv) the translated+rotated test set. Sets ii-iv) are
obtained by applying the aforementioned randomly generated
operations. We reiterate that there is no retraining between
the tests. Hence only the original training set was presented
to the networks during training. Figure 1 shows the predicted
trajectories for the original, translated, and translated+rotated
test sets. From the left column, it is clear the models are able
to solve the prediction task, albeit with visible flaws from the
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Original Translated Translated + Rotated

Fig. 1. Predicted trajectories in red, expected in blue. Rows
contain real-, quaternion- and dual quaternion-valued outputs,
respectively. Columns show outputs for the original, trans-
lated, and translated+rotated test sets, respectively.

real and quaternion models (Fig. 1 (a)(b)). In the middle col-
umn, it can be seen that the translation barely affects the dual
quaternion model, while the other two fail to adapt. Finally,
the right column shows the real and quaternion models utterly
fail to predict the translated+rotated test set, outputting a tra-
jectory not even close to the expected (Fig. 1 (g)(h)). On the
other hand, the dual quaternion model (Fig. 1(i)) shows an ac-
curate prediction, correctly outputting a rotated and translated
trajectory.

Table 1 shows the mean squared error (MSE) and the
prediction gain per model for each of the 4 test sets. The
prediction gain expresses the ratio between a reference level
(σs) and the signal error (σe). Formally, the prediction gain
is defined by R = 10 log10

σ2
s

σ2
e

, where σ2
s is the estimated

variance of the input signal and σ2
e denotes the estimated

variance of the prediction error. It is clear from the table
that the dual quaternion model wins every scenario, adapt-
ing to the transformations in the test set seamlessly. Since
there is no retraining at all, this constitutes strong evidence
that the model learns the rigid motions of the Lorenz system
rather than mimicking a local behavior. In fact, since a dual
quaternion number uniquely describes a rigid motion, the
dual quaternion MLP learns the correct rigid motions of the
Lorenz system by fine-tuning its dual quaternion parameters.
Moreover, this shows that the equivariance properties are a
natural consequence of endowing the model with the dual
quaternion algebra, which in turn is simply the replacement
of sum and product by the respective operations.

The possibility to train a network on a dataset and achieve
roughly the same performance on translated and/or rotated
objects is invaluable and a direct consequence of the rotation
and translation equivariance properties of the underlying al-
gebra.

4.2. Human Pose Forecasting

We present a variational autoencoder endowed with dual
quaternion numbers (DQVAE) that leverages both global and
local information by means of dual quaternion representa-
tion of rigid motions to more accurately predict the pose of
individuals [23]. Global information is contained in the cen-
ter of mass coordinates since a human moving is essentially
described by a translation applied to each point of the body.
Local information, instead, is more accurately described as
joint positions relative to the center of mass and more closely
related to the action being executed. Indeed, the global trajec-
tory information is contained in the coordinates xc, yc, zc of
the center of mass, while the local information is given by the
relative position of joints with respect to the center of mass
coordinates as (x− xc) , (y − yc) , (z − zc).

We consider as baseline the decoupled representations for
pose forecasting (DeRPoF) [23] that involves two different
models for trajectory and local pose estimation separately,
with an LSTM autoencoder and an LSTM variational autoen-
coder, respectively. Leveraging the higher-dimensional nature
of hypercomplex numbers, we propose the quaternion and
dual quaternion coupled representation for pose forecasting
models, referred to as Quaternion CoRPoF and Dual Quater-
nion CoRPoF, respectively. Thanks to the high-dimensional
nature of the dual quaternions, the latter model is able to en-
close both global and local information in a single entity as

q̂ = xc ı̂+ycȷ̂+zcκ̂+ε ((x− xc) ı̂+ (y − yc) ȷ̂+ (z − zc) κ̂) .
(7)

We carry out a validation experiment in the 3D Poses in
the Wild (3DPW) dataset. The task is predicting short-term
immediate future poses for human bodies based on joint in-
formation. The 3DPW dataset contains over 51k registered
frames from 60 short videos portraying humans performing
basic activities such as hugging, arguing, playing basketball,
and dancing, among others. Data is provided in 2 forms: RGB
images and structured data. We focus on the latter, which
comprises the 3D coordinates of the center of mass and of
13 key joints of individuals. Hence, this task consists of pre-
dicting rigid motions of sets of points, similar to the Lorenz
system task above.

The proposed Dual Quaternion CoRPoF has an encoder
composed of single-layer dual quaternion LSTM (DQLSTM)
blocks of hidden dimension 64, along with two fully con-
nected (DQFC) layers with latent dimension 32, which en-
code the mean and variance of the latent vector. The decoder
of the proposed dual quaternion variational autoencoder (DQ-
VAE) comprises two DQLSTM layers with the same hidden
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Table 1. MSE and Prediction Gain for the Lorenz system prediction task with the original, translated, rotated and trans-
lated+rotated test sets, respectively.

Model Test MSE↓ Test Prediction Gain↑
Original Translated Rotated T+R Original Translated Rotated T+R

Real-valued 0.433 4.648 118.719 192.766 57.187 31.050 14.024 10.360
Quaternion-valued 0.756 7.952 178.102 263.051 51.918 24.841 6.847 3.729
Dual Quaternion-valued 0.272 0.183 2.140 3.617 63.606 52.722 43.797 40.108

Table 2. Results for 3D human pose estimation on the 3DPW
dataset. VIM scores are in centimeters, as suggested in [23].
Model VIM↓ FDE↓ Val Loss↓
SC-MPF [24] 46.28 - -
Nearest Neighbour [25] 27.34 - -
Zero Velocity [26] 29.35 - -
DeRPoF [23] 19.07 ± .005 0.360 ± .007 -
CoRPoF [23] 16.76 ± .003 0.317 ± .001 0.118 ± .004

Quaternion CoRPoF 16.35 ± .009 0.271 ± .002 0.105 ± .010

Dual Quaternion CoRPoF 15.23 ± .002 0.266 ± .001 0.103 ± .006

dimension and the final DQFC layers to output the predicted
pose. This decoder does not merely reconstruct the input but
instead aims at generating future estimations while optimiz-
ing the following variational bound:

L =

tobs+tfut∑
t=tobs+1

∥pt − p̂t∥2 + βKL (p(z)∥N (0, I)) , (8)

where pt is the future ground truth pose, p̂t is the predicted
one, p(z) is the latent distribution, and β is the hyperparame-
ter that balances the two elements. The first term of (8) cares
about the trajectory estimation, while the second element is
crucial for local poses. The model is trained for 1000 epochs
by the Adam optimizer with a learning rate of 0.01 and an
adaptive scheduler, as suggested in [23]. It is worth men-
tioning that due to the properties of the Hamilton product,
the quaternion and dual quaternion models reduce the number
of parameters of the network with respect to the real-valued
baseline CoRPoF by 75% and 88%, respectively.

To assess the performance of our model and to be consis-
tent with the previous literature we compute the visibility ig-
nored metric (VIM), which is the average of the distances be-
tween each predicted joint and the corresponding point in the
ground truth, and the final displacement error (FDE), which
is instead an L2 distance. Table 2 reports these objective met-
rics as average scores and standard deviations over multiple
runs. As expected, there is notable improvement operated by
our dual quaternion formulation due to the effectiveness of
higher-dimensional representations for movements in the 3D
space. The comparisons with SC-MPF, Nearest Neighbours,
and Zero velocity are performed with the scores reported in
their papers, as their code is not available. Figure 2 dis-
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Fig. 2. Estimated poses at different time steps. The dual
quaternion CoRPoF models the translations, while the real-
and quaternion-valued networks fail to do so.

plays a ground truth sample and the corresponding predicted
skeletons by the Dual Quaternion CoRPoF and its quaternion-
and real-valued counterparts. Although real CoRPoF tries to
model local poses, it fails to learn the right movement tra-
jectory and skeletons are stuck in the same coordinates. The
quaternion model on the other hand shows little translation
of the skeletons but fails to model their fine movements. In
the last row, the dual quaternion CoRPoF learns the correct
trajectory of both skeletons while also displaying some of the
expected fine movements. This showcases the natural ability
of the proposed dual representation to model translations in
3D space.
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5. CONCLUDING REMARKS

In this paper, we present a formulation of dual quaternions
that puts in evidence its connection to modeling rigid motions
in 3D. We formally explain how a dual quaternion jointly
encases information regarding translations and rotations, and
provide a practical example of the translation and rotation
equivariance properties using the Lorenz system. We pro-
ceed to show how models endowed with this formulation
outperform other approaches in an application to human
pose forecasting, proving our theoretical claims that the dual
quaternion-valued models are robust to data shifting and more
adequate to such tasks.
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