
VERTEX-BASED NETWORKS TO ACCELERATE PATH PLANNING ALGORITHMS

Yuanhang Zhang Jundong Liu

School of Electrical Engineering and Computer Science
Ohio University

ABSTRACT

Path planning plays a crucial role in various autonomy
applications, and RRT* is one of the leading solutions in this
field. In this paper, we propose the utilization of vertex-based
networks to enhance the sampling process of RRT*, leading
to more efficient path planning.

Our approach focuses on critical vertices along the opti-
mal paths, which provide essential yet sparser abstractions of
the paths. We employ focal loss to address the associated data
imbalance issue, and explore different masking configura-
tions to determine practical tradeoffs in system performance.
Through experiments conducted on randomly generated floor
maps, our solutions demonstrate significant speed improve-
ments, achieving over a 400% enhancement compared to the
baseline model.

Index Terms— Path Planning, RRT*, Vertex, FCN

1. INTRODUCTION

Path planning aims to determine a feasible route for an au-
tonomous agent to travel from a starting point to a target lo-
cation within an environment while avoiding obstacles. This
process has a wide range of applications across various do-
mains. The common goal of path planning is to discover a
route that is safe, efficient, and smooth.

Traditional path planning algorithms can be grouped into
two primary categories: grid search-based and sampling-
based. Among grid-search algorithms, the A* algorithm [1]
is one of the most prominent solutions, capable of guarantee-
ing the finding of an optimal path if one exists; however, it
may encounter difficulties in high-dimensional state spaces.
Sampling-based algorithms, such as Rapid Random-exploring
Trees (RRT) [2] and Optimal Rapid Random-exploring Trees
(RRT*) [3], operate through randomly selecting states from
the state space, rather than investigating all possible states,
therefore speeding up the exploration process. RRT uni-
formly sample states within the state space while gradually
building a tree structure of these states. RRT* enhances RRT
by reorganizing the tree, granting it probabilistic complete-
ness and asymptotic optimality.

Thanks to Ohio University Research Committee (OURC) for funding.

Recently, machine learning-based approaches have been
proposed to address the intricate challenges associated with
path planning. These approaches can generally be catego-
rized into supervised learning (SL) and reinforcement learn-
ing (RL) methods. SL-based solutions perform perception
and decision-making simultaneously, predicting control poli-
cies directly from raw input images [4]. RL-based methods,
on the other hand, rely on human-designed reward functions,
allowing learning agents to explore policies through trial and
error [5]. While promising, learning-based path planning
solutions often lack theoretical guarantees on performance.
Moreover, SL requires annotated data, which can be difficult
or expensive to acquire.

The latest RRT-based solutions, including informed RRT*
[6] and connect RRT [7], while using traditional strategies,
are regarded as the state-of-the-art solutions in the field. This
can be attributed to their flexibility in handling changes in
the environment and their capability of to navigate high-
dimensional state spaces. Moreover, RRT* has the guarantee
of asymptotic optimality and probabilistic completeness,
which ensures that the solution achieves optimality under
specific conditions.

However, RRT* solutions suffer sensitivity to the ini-
tial solution and slow convergence to the optimal solution.
To overcome these limitations, several network-based solu-
tions have been proposed to speech up the sampling process.
Trained on optimal paths, Neural RRT* [8] and Motion Plan-
ning Networks [9] predict the probability distribution of the
path to achieving faster samplings. Neural Informed RRT*
[10] guides RRT* tree expansion using an offline-trained
neural network during online planning.

Although considerable speed-ups have been demonstrated
in comparison to the original RRT* algorithm, the aforemen-
tioned acceleration networks commonly take the entire A*
search space as the target area and estimate probabilities
based on the proximity to optimal paths. Moreover, they
may struggle with highly dynamic environments or those
with rapidly changing obstacles, as the planning may become
quickly outdated.

ar
X

iv
:2

30
7.

07
05

9v
1

 [
cs

.A
I]

 1
3

Ju
l 2

02
3

In this paper, we propose to enhance the speed-up of the
sampling process by shifting the target areas from the neigh-
borhood of optimal paths to that of vertices (corners or turn-
ing points). Our design is based on the rationale that critical
vertex points in the optimal paths provide an insightful and
adequate abstraction of the paths, while requiring much less
space. Focusing on vertices, however, results in a side effect
that the training data would be highly imbalanced. We ad-
dress this issue using focal loss [11] in this work. We also
explore different thresholding setups for the network outputs
to examine the system tradeoffs in performance.

2. BACKGROUND

Rapidly-Exploring Random Trees (RRTs) comprise a family
of path planning algorithms that depend on incremental sam-
pling. The RRT algorithm [2] starts with a single-vertex tree
that represents the initial state and has no edges. Over each
iteration, the algorithm generates a state xrand from a uniform
sampling of the search space and tries to link it to the near-
est vertex xnearest in the tree. If this linkage is feasible, the
Steering function manipulates xrand to produce xnew. The new
state xnew and new edge (xnearest, xnew) are then added to the
growing tree.

The RRT* algorithm [3] introduces two additional pro-
cedures: Extend(G, xnew) function and the Rewire(G) pro-
cess. During the Extend procedure, RRT* searches for opti-
mal parent vertices around xnew within a certain radius. After
integrating xnew into the tree, RRT* rewires neighbor vertices
to assess whether a path through xnew can provide a lower cost
than the current path. The procedure of the RRT* algorithm is
illustrated in Algorithm 1. ObstacleFree(xnearest, xnew) func-
tion determines if the line segment connecting xnearest and
xnew is obstacle-free. RRT* is asymptotically optimal, which
means that as the sampling iterations approach infinity, the
path converges to the optimal path.

Algorithm 1: RRT*
Input: xinit, xgoal,Map
Output: G = (V,E)

1 V ← {xinit};E ← ∅ ;
2 for i = 1, · · · , n do
3 xrand ← UniformSample() ;
4 xnearest ← Nearest(G = (V,E), xrand) ;
5 xnew ← Steer(xnearest, xrand) ;
6 if ObstacleFree(xnearest, xnew) then
7 Extend(G, xnew) ;
8 Rewire(G) ;

9 return G = (V,E) ;

The Neural RRT* algorithm [8] trains a CNN model on
successful path planning cases to generate a nonuniform sam-
pling distribution. For a given task, the trained network can

predict the probability distribution of the optimal path for on
the map, which can guide and speed up the sampling process.

3. METHOD

In this work, we propose a method to improve the Neural
RRT* category by redirecting the sampling guidance from the
neighborhoods of optimal paths to key vertices. To achieve
this, we train a neural network called VertexNet, and subse-
quently integrate it with the RRT* algorithm.

3.1. VertexNet

Our VertexNet is designed to predict the likelihood of each
pixel being a vertex on the optimal path, which we refer to
as vertex-ness. We approach this task as an image mapping
problem and address it using a fully convolutional network, as
depicted in Fig. 1. The input to VertexNet consists of an RGB
image representing a floor map, where obstacles, source, and
target points are differentiated by distinct colors. The ground-
truth is a corresponding vertex map extracted from the A*
optimal path. The output of VertexNet is a vertex-ness map,
which will subsequently be integrated into the RRT* algo-
rithm to guide the sampling process.

Fig. 1. Illustration of the proposed VertexNet. Best view on
screen.

VertexNet is modified from the U-Net [12], primarily by
adopting ResNet34, a residual network [13] as the backbone
for the encoder. This modification aims to enhance the net-
work’s ability to capture important features from the input
images and facilitate effective training. The updated encoder
consists of basic blocks as described in [13], each of which
contains two 2-dimensional convolutional layers, two batch
normalization layers, and one Rectified Linear Unit (ReLU)
activation. In total, our network has 54 weighted layers and
41,221,168 parameters, among which, 19,953,520 are train-
able. The network takes floor map images of size 200 × 200
as inputs.

3.1.1. Ground Truth and Training Objective

The ground-truth images in our work are generated following
a three-step process. In the first step, we employ the A* algo-
rithm to determine the optimal path for a floor map. Next, we

extract a number of vertex points on the optimal path based
their vertex-ness (being corners or turning points). Finally,
we create the ground-truth images by setting the pixels of the
selected vertices to 0s, while the remaining pixels are set to
1s.

Vertices are chosen among the pixels on the path based on
specific criteria. Specifically, only the end-points of line seg-
ments are considered as vertices, while intermediate points
are excluded. Since the paths are generated within discrete
image domains, the identification of straight lines becomes
crucial. Straight lines can consist of line segments with
consistent directions, as in Fig. 2(a). The red dash-lines in
Fig. 2(b) could also be straight under a continuous domain,
as their directions are not changed. Fig. 2(c) shows a similar
case where we look ahead for three steps. It should be noted
that the points xi in all three cases should not be classified as
turning points.

(a) 0-degree and 90-degree lines. (b) 45-degree straight lines.

(c) 22.5-degree straight lines.

Fig. 2. Three cases of straight lines within the pixel domain.

Let Xpath = {x0, x1, · · · , xT } be a path going through a
sequence of positions within an image domain. To determine
whether a point x ∈ Xpath should be considered as a turning
point, we examine if there is a change in direction for any of
the three step sizes in Fig. 2. In essence, we define a vertex as
follows:

Xvertex = {x ∈ Xpath |∆(xi − xi−1) ∧∆(xi − xi−2)

∧∆(xi − xi−3)}

where ∆ denotes the presence of a change in direction with a
certain step size.

3.1.2. Loss Function

As very few pixels in each ground-truth image are selected
as vertices, the ground-truth images tend to be predominately
blank as vast majority (over 99%) of the pixels have intensity
of 1s. This intensity imbalance would create a challenge for

image mapping problems. To tackle this issue, we adopt the
focal loss [11] as the objective function for our VertexNet.

FL(pt) = −(1− pt)
γ log(pt)

Compared to the cross-entropy loss, the focal loss adds
a modulating factor (1 − pt)

γ . This factor assigns varying
weights to samples based on their difficulty of classification.
Easy samples, which are more likely to be correctly classified,
receive reduced weights, while harder samples are assigned
higher weights. In our dataset, as the non-vertex pixels con-
stitute the majority, they are categorized as easy samples, re-
sulting in reduced contributions through the modulating fac-
tor. The focusing hyperparameter γ is adjustable, and based
on empirical observations, we set it to 2 in our experiments.

3.2. VertexNet RRT*

After VertexNet is trained, it is integrated into the RRT* algo-
rithm to enhance the sampling process. The integration pro-
cess follows a similar design to that of Neural RRT* [8]. Tak-
ing a floor map as the input, the non-uniform sampler gener-
ated by VertexNet works together with the uniform sampler
from RRT* to make informed sampling decisions. VertexNet
plays a crucial role by providing probabilistic guidance for
selecting the next sampling point, thus improving the overall
sampling efficiency. Meanwhile, the uniform sampler ensures
that the integrated algorithm retains its original properties of
probabilistic completeness and asymptotic optimality.

The resulting algorithm is referred to as VertexNet RRT*,
as outlined in Algorithm 2. Each sampler is assigned a
50% probability of being invoked, which is determined by
the Rand() function. The Nearest function, Extend, Rewire
and Steer function are all the same as in the original RRT*
algorithm.

Algorithm 2: VertexNet RRT*
Input: xinit, xgoal,Map,VetexNet
Output: G = (V,E)

1 O = VertexNet(Map, xinit, xgoal) ;
2 V ← {xinit};E ← ∅ ;
3 for i = 1, · · · , n do
4 if Rand() > 0.5 then
5 xrand ← VertexNetSample(O) ;
6 else
7 xrand ← UniformSample() ;

8 xnearest ← Nearest(G = (V,E), xrand) ;
9 xnew ← Steer(xnearest, xrand) ;

10 if ObstacleFree(xnearest, xnew) then
11 Extend(G, xnew) ;
12 Rewire(G) ;

13 return G = (V,E) ;

3.2.1. Masked VertexNet RRT*

To explore different configurations, we develop a masked ver-
sion of the VertexNet RRT* algorithm. In this variant, a mask
is applied to the sampling probability distribution generated
by VertexNet. The mask functions by setting probabilities
below a specific threshold value, denoted as τ , to zero. In
the original VertexNet RRT* algorithm, even pixels with low
probabilities have a chance of being chosen as vertex points.
However, with the applied mask, probabilities below the
threshold value are disregarded, leading a higher likelihood
of sampling actual vertex points.

4. EXPERIMENTS

Data We generated a total of 10,000 maps for our experi-
ments. Each map consists of 12 randomly chosen start points
and 12 randomly chosen goal points, resulting in a dataset of
1,440,000 maps in total. Fig. 3 shows five maps with differ-
ent levels of complexity. In our experiments, 70% of the maps
were used for training, and 30% for testing.

To ensure the simulation of diverse map scenarios, our
map generator randomly selects a variable number of obsta-
cles, including shapes like triangles, circles, squares, bars,
and U-shaped obstacles. The orientation of each obstacle is
also chosen randomly. Each map has a dimension of 200x200
pixels, and integer values are assigned to each pixel based on
their respective classes. Traversable space is denoted by 0,
obstacles are represented by 1, start points are labeled as 2,
and goal points are labeled as 3.

(a) Map 1 (b) Map 2 (c) Map 3

(d) Map 4 (e) Map 5

Fig. 3. Five floor maps with different complexities. In each
map, green star denotes the start state and the red cross is the
destination.

4.1. Sampling Probability Comparisons

The key design of our VertexNet RRT* lies in the modifica-
tion of the training objective to focus on the turning points
of the optimal paths. This modification is aimed to reduce
the sampling space required for the RRT* algorithm. By
comparing the resulting probability distribution predictions
from models trained with distribution predictions from mod-
els trained with the vertex-based objective versus the path-
based objective, we can assess the effectiveness of our ap-
proach.

Fig. 4 illustrates a representative example, where the opti-
mal path and the extracted vertices are displayed in Fig. 4(a)
and (b), respectively. Fig. 4(c) shows the probability distribu-
tions trained using the optimal paths in Neural RRT*, while
Fig. 4(d) show the probability distributions trained using our
VertexNet. As evident, the latter has much fewer bright ar-
eas, indicating that the sampling space of VertexNet RRT* is
greatly reduced compared to the Neural RRT*.

(a) Optimal path (b) Vertices in optimal path

(c) Neural RRT* (d) VertexNet RRT*

Fig. 4. Sampling distributions of Neural RRT* and VertexNet
RRT*. Dark area depicts high probabilities, light area shows
low probabilities. (a) Blue line is the optimal path. (b) Blue
dots are the vertices in the optimal path. (c) Sampling proba-
bility distribution from Neural RRT*. (d) Sampling distribu-
tion from our VertexNet RRT*.

4.2. Path Planning Results and Analysis

We performed experiments on four different algorithms,
namely RRT*, Neural RRT*, our VertexNet RRT* and

Table 1. Path Length comparisons of the initial solutions
Map 1 Map 2 Map 3 Map 4 Map 5 Random Maps

RRT* 250.93±46.98 322.02±24.06 284.38±19.93 222.33±26.05 373.03±28.89 153.07±83.77
NRRT* 214.49±47.46 316.9±26.02 282.62±18.39 210.23±18.8 364.38±30.6 142.71±80.65

VNRRT* 215.85±47.96 312.17±23.2 283.94±18.57 212.53±19.55 361.57±30.98 145.75±81.38
M-VNRRT* τ=0.5 164.18±35.44 304.33±23.00 293.17±21.17 205.7±17.52 351.48±32.01 134.25±79.92
M-VNRRT* τ=0.9 154.02±24.01 313.67±25.77 296.76±22.96 202.30±16.42 344.03±29.34 133.98±80.73

M-VNRRT* τ=0.99 163.62±32.51 302.72±23.08 306.46±29.52 198.09±18.85 346.61±24.52 136.55±82.49
Optimal 135.14 255.68 264.71 190.20 319.58 119.35

Optimal: Optimal path length

Table 2. Time Cost of finding initial solutions
Map 1 Map 2 Map 3 Map 4 Map 5 Random Maps

RRT* 0.19±0.20 0.7±0.52 33.42±46.82 6.76±13.47 8.06±11.09 1.84±14.72
NRRT* 0.23±0.24 0.53±0.38 23.24±28.81 4.57±9.54 6.93±8.9 0.77±6.07

VNRRT* 0.18±0.19 0.64±0.44 11.15±14.83 2.29±3.57 5.69±7.23 0.45±2.17
M-VNRRT* τ=0.5 0.15±0.17 0.62±0.43 5.56±5.83 1.20±1.63 6.22±8.36 0.85±5.09
M-VNRRT* τ=0.9 0.10±0.08 0.76±0.53 5.22±6.82 1.83±2.49 8.81±11.89 0.62±3.60

M-VNRRT* τ=0.99 0.20±0.19 0.88±0.83 10.36±32.27 3.56±4.77 4.58±4.38 1.44±12.27
Time cost to find the initial solution in seconds.

Table 3. Time Cost of finding optimal solutions
Map 1 Map 2 Map 3 Map 4 Map 5 Random Maps

RRT* 1034.98±1055.17 50.97±35.56 47.20±57.36 28.55±17.03 36.19±23.21 29.62±102.66
NRRT* 36.48±37.57 16.45±8.27 35.28±30.45 9.62±10.92 19.63±14.10 19.38±62.62

VNRRT* 34.57±33.43 17.34±8.36 18.24±15.00 5.99±3.67 15.09±10.51 10.96±62.67
M-VNRRT* τ=0.5 2.46±2.21 13.41±7.39 16.14±9.63 2.88±3.12 16.12±12.02 3.71±11.58
M-VNRRT* τ=0.9 4.86±7.95 19.09±12.30 21.97±13.28 2.89±2.13 15.37±14.86 18.40±96.41

M-VNRRT* τ=0.99 29.4±65.28 46.14±46.16 36.77±40.06 4.95±4.48 19.68±26.66 85.40±400.62
Time cost to find the optimal solution in seconds.

Masked VertexNet RRT*. We use the abbreviations RRT*,
NRRT*, VNRRT* and M-VNRRT* in the upcoming pre-
sentation. The evaluations were conducted for both initial
solutions, where each algorithm terminates upon reaching
the destination, and optimal solutions, where each algorithm
terminates after finding the optimal path.

We conducted experiments to find initial solutions on the
five individual maps in Fig. 3, as well as 1,000 random maps
selected from the test set. Each individual map underwent
1,000 trials for each algorithm to find an initial solution.
The results for the random maps were averaged across the
1,000 maps. The performance of the algorithms was eval-
uated based on Path Length and Time Cost, as summarized
in Table 1 and Table 2. Among the models, our VNRRT*
algorithm demonstrated the fastest performance in finding
the initial solution in the Random Maps settings, as indicated
in Table 2. Moreover, the path length achieved by VNRRT*
was comparable to that of the baseline Neural RRT*.

We further evaluated the performance of the algorithms
in finding optimal solutions. Due to the time-consuming na-
ture of finding optimal solutions, we reduced the number of
experimental trials to 100. Among the algorithms tested, the
M-VNRRT* τ=0.5 algorithm consistently delivered the best
results in experiments conducted on Map 1-4 and Random
Maps. On the other hand, our VNRRT* algorithm achieved

the best performance on Map 5, as summarized in Table 3.
Fig 5 shows the speed improvements of the algorithms

over RRT* on finding optimal solutions. Our VNRRT* out-
performed NRRT* in almost all the experiments, except for
Map 2, where its performance was 5% worse. However, the
M-VNRRT* demonstrated relative improvements compared
to NRRT* in all experiments, particularly in Map 3, Map 4,
and Random Maps, where the improvements were 118.59%,
234.03%, and 422.37%, respectively.

As models’ performance vary on individual maps, the
Random Maps experiment provides a more objective eval-
uation by averaging results of 100 maps. The results are
summarized in the rightmost column of Table 3. On average,
the proposed VNRRT* algorithm shows an acceleration of
76.82% over the baseline NRRT* algorithm when converging
to optimal paths. The M-VNRRT* with τ=0.5 demonstrates
an impressive improvement of 422.37% when compared to
NRRT*.

In summary, our VNRRT* algorithm demonstrates a sig-
nificant improvement of over 70% compared to NRRT* when
converging to both the optimal and initial solutions. On the
other hand, our M-VNRRT* τ=0.5 exhibits superior perfor-
mance in finding the optimal solution, being over 400% faster
than NRRT*. However, it is 9.41% slower than NRRT* when
finding initial solutions.

Fig. 5. Time improvements over RRT* on finding optimal solutions. Data are Maps 2-5 and Random Maps and the improve-
ments are shown in percentage.

Our VNRRT* algorithm demonstrates superior speed in
finding initial solutions (Table 2), possibly because it does
not incorporate a mask that restricts the sampling points to
optimal vertices. In contrast, the inclusion of a mask in the
M-VNRRT* algorithm imposes more constraints on the sam-
pling probability, therefore speed up convergence to the op-
timal solution. This is evident from the performance of M-
VNRRT* τ=0.5 in the optimal solution experiments (Table
3). Points with a probability prediction below 50% are less
likely to be vertex points but still have a chance of being sam-
pled. The masking process may have excluded these points,
resulting in faster convergence to the optimal solutions.

5. CONCLUSION

In this work, we present a novel approach to improve the
learned heuristic for path planning algorithms. Rather than
using the entire optimal path line segment as the objective, we
focus solely on the turning points of the optimal paths in our
proposed VertexNet. This modification significantly enhances
the speed of the path planning algorithms. We also introduce
a mask to the sampler of VertexNet RRT*, which boosts the
sampling probability of the actual vertices in the optimal path.
This further accelerates the convergence speed to the optimal
path. Overall, our approach provides a more efficient method
for learning heuristics, which is important for future machine
learning applications in path planning problems.

6. REFERENCES

[1] Peter E Hart, Nils J Nilsson, and Bertram Raphael, “A formal
basis for the heuristic determination of minimum cost paths,”
IEEE transactions on Systems Science and Cybernetics, vol. 4,
no. 2, pp. 100–107, 1968.

[2] Steven M LaValle et al., “Rapidly-exploring random trees: A
new tool for path planning,” 1998.

[3] Sertac Karaman and Emilio Frazzoli, “Sampling-based algo-
rithms for optimal motion planning,” The international journal
of robotics research, vol. 30, no. 7, pp. 846–894, 2011.

[4] Ahmed H Qureshi, Anthony Simeonov, Mayur J Bency, and
Michael C Yip, “Motion planning networks,” in 2019 Interna-
tional Conference on Robotics and Automation (ICRA). IEEE,
2019, pp. 2118–2124.

[5] Aviv Tamar, Yi Wu, Garrett Thomas, Sergey Levine, and Pieter
Abbeel, “Value iteration networks,” Advances in neural infor-
mation processing systems, vol. 29, 2016.

[6] Jonathan D Gammell, Siddhartha S Srinivasa, and Timothy D
Barfoot, “Informed rrt*: Optimal sampling-based path plan-
ning focused via direct sampling of an admissible ellipsoidal
heuristic,” in 2014 IEEE/RSJ International Conference on In-
telligent Robots and Systems. IEEE, 2014, pp. 2997–3004.

[7] Jonathan D Gammell, Siddhartha S Srinivasa, and Timothy D
Barfoot, “Batch informed trees (bit): Sampling-based optimal
planning via the heuristically guided search of implicit random
geometric graphs,” in 2015 IEEE international conference on
robotics and automation (ICRA). IEEE, 2015, pp. 3067–3074.

[8] Jiankun Wang, Wenzheng Chi, Chenming Li, Chaoqun Wang,
and Max Q-H Meng, “Neural rrt*: Learning-based optimal
path planning,” IEEE Transactions on Automation Science and
Engineering, vol. 17, no. 4, pp. 1748–1758, 2020.

[9] Tingguang Chen, Tingxiang Huang, Xiao Xu, Gilbert Laporte,
and Yang Liu, “Motion planning networks,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2019, pp. 8537–8546.

[10] Xinyu Xie and Danyang Yang, “Neural informed rrt*: A
learning-based approach to motion planning,” in 2019 Interna-
tional Conference on Robotics and Automation (ICRA). IEEE,
2019, pp. 2845–2851.

[11] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and
Piotr Dollár, “Focal loss for dense object detection,” in Pro-
ceedings of the IEEE international conference on computer vi-
sion, 2017, pp. 2980–2988.

[12] Olaf Ronneberger, Philipp Fischer, and Thomas Brox, “U-net:
Convolutional networks for biomedical image segmentation,”
in International Conference on Medical image computing and
computer-assisted intervention. Springer, 2015, pp. 234–241.

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun,
“Deep residual learning for image recognition,” in Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, 2016, pp. 770–778.

	 Introduction
	 Background
	 Method
	 VertexNet
	 Ground Truth and Training Objective
	 Loss Function

	 VertexNet RRT*
	 Masked VertexNet RRT*

	 Experiments
	 Sampling Probability Comparisons
	 Path Planning Results and Analysis

	 Conclusion
	 References

