
2023 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, SEPT. 17–20, 2023, ROME, ITALY

DISTRIBUTED DUAL COORDINATE ASCENT WITH IMBALANCED DATA ON A GENERAL
TREE NETWORK

Myung Cho⋆§ Lifeng Lai† Weiyu Xu‡

⋆ Department of Electrical and Computer Engineering, California State University, Northridge, CA, USA
§ Department of Electrical and Computer Engineering, Penn State Behrend, Erie, PA, USA

† Department of Electrical and Computer Engineering, University of California, Davis, CA, USA
‡ Department of Electrical and Computer Engineering, University of Iowa, Iowa City, IA, USA

ABSTRACT
In this paper, we investigate the impact of imbalanced data
on the convergence of distributed dual coordinate ascent in a
tree network for solving an empirical loss minimization prob-
lem in distributed machine learning. To address this issue, we
propose a method called delayed generalized distributed dual
coordinate ascent that takes into account the information of
the imbalanced data, and provide the analysis of the proposed
algorithm. Numerical experiments confirm the effectiveness
of our proposed method in improving the convergence speed
of distributed dual coordinate ascent in a tree network.

Index Terms— distributed machine learning, federated
learning, tree network, network topology, imbalanced data

1. INTRODUCTION

In the field of Machine Learning (ML) and Artificial Intelli-
gence (AI), the use of large amounts of data, known as big
data, plays a crucial role in the performance of ML and AI
techniques. Due to the exceptional performance of ML/AI
with big data, these techniques are becoming increasingly
popular and are being applied to many different applications.

However, in practice, processing ML/AI operations with
big data poses many challenges such as limited hardware re-
sources including storage space and processing power, and
privacy and security issues. Specifically, due to limited stor-
age space, big data is often stored in a distributed manner
over a network, raising questions about how to deal with these
distributed data when processing ML/AI operations. Further-
more, even though there are distributed algorithms that can
process distributed data for ML/AI operations, communica-
tion to share intermediate results such as learning parame-
ters can be a significant challenge due to constraints such as
limited communication bandwidth, delay, and power. Thus,
it is important to design efficient algorithms for distributed

Lifeng Lai’s research is supported by National Science Foundation
(NSF) under grant ECCS-2000415.

Weiyu Xu’s research is supported by NSF under grant ECCS-2000425
and ECCS-2133205.

ML/AI processes that take into account these communication
network constraints when dealing with distributed data.

To address the challenge of handling distributed data on
a network, many research were conducted to develop ef-
ficient distributed ML/AI algorithms. Researchers in [1–5]
studied synchronous Stochastic Gradient Decent (SGD). Syn-
chronous Stochastic Dual Coordinate Ascent (SDCA) and its
variations were investigated in [6–13]. Asynchronous SGD
was studied in [14–16]. Asynchronous SDCA was investi-
gated for handling distributed data on a network in [17–20].

However, most of the research in this area has focused on
designing distributed algorithms on a star network, which is
a very simple network topology. It’s worth noting that data
are not always stored on a star network. In reality, networks
can have various topologies such as star, tree, ring, bus, or
mesh, etc. Additionally, in a network, some nodes may not di-
rectly communicate with a central node. In this case, a line of
nodes may be considered as a virtual node directly connected
to a central node to apply distributed algorithms for a star net-
work. However, the system can easily suffer from significant
communication delays caused by passing intermediate results
through the line of nodes to a central node. Thus, it is impor-
tant to design efficient distributed ML/AI algorithms by con-
sidering different network topologies. To address this prob-
lem, the researchers in [12, 13] have designed a distributed
dual coordinate ascent for distributed ML process on a gen-
eral tree network, and provided the convergence analysis of
the algorithm on a general tree network under the assump-
tion that the dataset is evenly distributed on a tree network.
Since every connected network has its spanning tree, the dis-
tributed algorithm can be applied to various network topolo-
gies as long as there are no isolated nodes in the network.

In practice, however, due to different circumstances and
situations in data acquisition such as different frequency of
data acquisition in nodes, different sensitivity of sensors, and
noise or bias during data acquisition, we can have imbalanced
data on a network in distributed ML process. In this paper, we
investigate the effect of imbalanced data on distributed dual

979-8-3503-2411-2/23/$31.00 ©2023 IEEE

ar
X

iv
:2

30
8.

14
78

3v
1

 [
cs

.L
G

]
 2

8
A

ug
 2

02
3

coordinate ascent in a general tree network, and propose our
method called a generalized distributed dual coordinate as-
cent on a general tree network to mitigate the effect of imbal-
anced data on processing distributed data on a tree network.

Notations: We denoted the set of real numbers as R. We
use [k] to denote the index set of the coordinates in the k-th
coordinate block. For an index set Q, |Q| and Q represent
the cardinality of Q and the complement of Q respectively.
We reserve bold letters to represent vectors and matrices. If
an index set is used as a subscript of a vector (resp. matrix),
it indicates the partial vector (resp. partial matrix) over the
index set (resp. with columns over the index set). We use the
superscript (t) to denote the t-th iteration. For instance, α(t)

[k]

represents a partial vector α over the k-th block coordinate set
at the t-th iteration. The superscript ⋆ is reserved to denote the
optimal solution to an optimization problem.

2. PROBLEM FORMULATION

We perform an ML operation on a distributed dataset, de-
noted as {(xi, yi)}mi=1, where xi ∈ Rd represents the i-th
data point and yi is the measurement or label information
associated with it. Our dataset is distributed in a tree-shaped
network consisting of K local workers, as illustrated in Fig.
1. The k-th local worker holds a subset of the dataset, specif-
ically {(xi, yi)}i∈[k] where |[k]| < m and k = 1, 2, ...,K.
Our objective is to find the global optimal solution, w⋆, by
solving the following regularized loss minimization problem
with the distributed dataset:

minimize
w∈Rd

P (w) ≜
λ

2
∥w∥22 +

1

m

m∑
i=1

ℓi(w
Txi), (1)

where ℓi(·), i = 1, 2, ...,m, are loss functions, and λ ≥ 0
is a tuning parameter. Depending on the loss functions, the
optimization problem (1) can be a regression problem or a
classification problem. For instance, when the loss function
is ℓi(wTxi) = (wTxi−yi)

2 with measurement data yi ∈ R,
the problem can be interpreted as a regression problem. When
the loss function is ℓi(wTxi) = max(0, 1− yi(w

Txi)) with
label information yi ∈ R, (1) becomes a Support Vector Ma-
chine (SVM) classification problem. Furthermore, we assume
that the data points are normalized to ensure that the ℓ2 norm
of each xi is bounded, i.e., ∥xi∥2 ≤ 1, for i = 1, 2, ...,m.

By considering the conjugate function of the loss function
ℓi(a), defined as ℓi(a) = supb ab − ℓ∗i (b), we can derive the
following dual problem from the primal problem (1):

maximize
α∈Rm

D(α) ≜ −λ

2
∥Aα∥22 −

1

m

m∑
i=1

ℓ∗i (−αi), (2)

where A ∈ Rd×m is a data matrix whose i-th column is
1

λmxi, and αi is the i-th dual variable corresponding to the
i-th datum xi, i = 1, ...,m. By defining w(α) ≜ Aα, we
can have a duality gap as P (w(α)) − D(α) which can be
used as a measurable quantity for how close an estimated so-
lution is to an optimal solution. Remark that the weak du-
ality theorem [21] ensures that for all w, P (w) ≥ D(α).

Fig. 1. Illustration of a tree-structured network, which has two lay-
ers. In the network, a central station (root node) has three direct child
nodes, i.e., sub-central node, denoted by S. Each sub-central node
S has three direct child nodes, i.e., local workers, denoted by W .

When we substitute w with w(α), this condition still holds
with P (w(α)) ≥ D(α). If we can find a variable α⋆ such
that P (w(α⋆)) = D(α⋆), then, from the strong duality, α⋆

and w(α⋆) can be recognized as optimal solutions to the dual
problem (2) and the primal problem (1) respectively. This
paper aims to design a distributed algorithm that efficiently
solves (2) while considering the information of imbalanced
data, with the goal of mitigating the effect caused by data im-
balance.

3. REVIEW OF DISTRIBUTED ALGORITHMS
WITH BALANCED OR IMBALANCED DATA

In previous studies, many researchers have addressed the is-
sue of handling balanced or imbalanced data in the design of
distributed algorithms for ML operations. For example, the
authors in [22, 23] used the Alternating Direction Method of
Multipliers (ADMM) technique to deal with various types of
imbalanced data on a star network for classification problems.
The authors in [24] considered a separable optimization prob-
lem on a star network with imbalanced data in the case when
the number of local workers is larger than the number of data
points. Unfortunately, most of the research focused on de-
signing distributed algorithms on a star network, which is a
very simple and special network topology.

To deal with different types of network topologies, the
researchers in [12, 13] extended the Distributed Dual Coor-
dinate Ascent method to a general tree network with p layers
(DDCA-Tree), where the root node is located in the 0-th layer
and local workers are located in the p-th layer. Under the as-
sumption that every node on the network has balanced data,
the design of the distributed algorithm was studied. However,
the design of an efficient distributed algorithm that considers
imbalanced data in a general tree network has not been fully
studied. This paper aims to address this research gap and in-
vestigate this topic.

4. GENERALIZED DISTRIBUTED DUAL
COORDINATE ASCENT IN A TREE NETWORK

We aim to investigate the effect of imbalanced data on the
convergence rate of DDCA-Tree when applied to a general
tree network. We will also propose an enhanced version of

DDCA-Tree that takes into account the imbalanced data to
improve its performance. Specifically, we will address the
following questions: (Q1) How does the convergence rate of
DDCA-Tree differ when applied to imbalanced data? (Q2)
How can we design DDCA-Tree to better handle imbalanced
data by incorporating information about the imbalance?

To mitigate the effect of imbalanced data distribution, we
can consider the information on the imbalanced data distri-
bution in the accumulation of global parameters, which is the
concept of Generalized distributed Dual Coordinate Ascent
on a general tree network (GDCA-Tree). In GDCA-Tree, de-
scribed in Algorithm 1, we propose to use different weights
for global parameters that local workers have in updating a
global parameter at the t-th iteration, w(t). More specifically,
in the accumulation of the global parameters, by considering
the information of imbalanced data, we use a weighted sum
updating scheme for global parameter w(t) in a general tree
node Q having K child nodes as

w(t) = w(t−1) +

K∑
k=1

βk △wk, (3)

where βk is a weight considering imbalanced data factor for
the k-th updating parameter △wk,

∑K
k=1 βk=1, 0 ≤ βk ≤ 1.

For the convergence analysis of GDCA-Tree, let us define
the local sub-optimality gap, ϵQ,k, at the k-th direct child
node of a general tree node Q as follows:

ϵQ,k(α) ≜ maximize
α̂[Q;k]

D(α[Q;1], ..., α̂[Q;k], ...,α[Q;K],αQ)

−D(α[Q;1], ...,α[Q;k], ...,α[Q;K],αQ), (4)

where [Q; k] is the set of indices of data points in the k-th di-
rect child node of Q, α[Q;k] is the partial vector of dual vector
α ∈ Rm that corresponds to the data points that the k-th di-
rect child node of Q has, and Q is complement of an index
set Q. This local sub-optimality gap represents the maximum
objective value gap that the k-th direct child node of Q can
achieve from the current α value. With this definition, we
introduce the following assumption.
Assumption 4.1 (Geometric improvement of GDCA-Tree at
a direct child node). For a tree node Q on the i-th layer, we
assume that for any given α at the k-th direct child node of
Q, the GDCA-Tree provides an update △α[Q;k] such that

E[ϵQ,k(α[Q;1], ...,α[Q;k−1],α[Q;k] +△α[Q;k], ...,α[Q;K],αQ)]

≤ Θi+1 · ϵQ,k(α), (5)

where Θi+1 ∈ [0, 1) is local improvement.
It represents that if this assumption holds, then, the expec-

tation of the local sub-optimality gap at the k-th direct child
node of a tree node Q is decreased by the factor of local im-
provement Θi+1. When using Local Stochastic Dual Coordi-
nate Ascent (LocalSDCA), with a local dataset in a leaf node
in the p-th layer of a tree network, it is possible to achieve the
following proposition concerning the parameter Θi+1:

Proposition 4.2. ([8]) Assume that loss functions ℓi(·) are
1/γ-smooth. For a tree node Q on the (p − 1)-th layer, its

Algorithm 1: Generalized distributed Dual Coordi-
nate Ascent in a general tree node Q (GDCA-Tree)
on the layer-i, i = 1, 2, ..., p− 1

Input: Ti ≥ 1, αQ, w
Initialization: α(0)

[Q;k] ← α[Q;k] for all direct child nodes k

of node Q , w(0) ← w
for t = 1 to Ti do

for all direct child nodes k = 1, 2, ...,Ki of Q in
parallel do

(△α[Q;k],△wk)←
GDCA-Tree(α(t−1)

[Q;k] ,w
(t−1))

α
(t)

[Q;k]← α
(t−1)

[Q;k] + βk △α[Q;k]

end
w(t)←w(t−1) +

∑Ki
k=1 βk △wk

end
Output: △αQ ≜ α

(Ti)
Q −α

(0)
Q , and△wQ ≜ AQ △αQ

Procedure P. Generalized Distributed Dual Coordi-
nate Ascent (GDCA-Tree) for a leaf node Q on the
layer-p

Input: Tp ≥ 1, αQ ∈ R|Q|, and w ∈ Rd consistent with
other coordinate blocks of α s.t. w = Aα

Data: {(xi, yi)}i∈Q

Initialization: △αQ ← 0 ∈ R|Q|, and w(0) ← w
for h = 1 to Tp do

choose i ∈ Q uniformly at random
find△α maximizing
−λm

2
||w(h−1)+ 1

λm
△αxi||2−ℓ∗i (−(α

(h−1)
i +△α))

α
(h)
i ← α

(h−1)
i +△α

(△αQ)i← (△αQ)i +△α
w(h)←w(h−1) + 1

λm
△ αxi

end
Output: △αQ and△wQ ≜ AQ △αQ

direct child node is a leaf node. Then, for the leaf node B
in the p-th layer using LocalSDCA, Assumption 4.1 holds with

Θp = (1− λmγ

1 + λmγ
· 1

mB
)Tp , (6)

where mB is the size of data points that the leaf node B has,
and Tp is the number of iterations in LocalSDCA.

From Proposition 4.2 and Assumption 4.1, over randomly
chosen data points in the LocalSDCA at a leaf node, we can
have guaranteed improvement at its parent’s node in terms of
the expectation of local sub-optimality gap.

For Algorithm 1, we have the following convergence the-
orem at a general tree node Q:

Theorem 4.3. For a tree node Q on the i-th layer, i =
0, ..., p − 1, having Ki direct child nodes satisfying Assump-
tion 4.1, with parameters Θ1

i+1, Θ2
i+1, ..., and ΘKi

i+1. Assume
that loss functions ℓi(·)’s are 1/γ-smooth. Then for any input

w to Algorithm 1 with Ti iterations, the following geometric
convergence rate holds for Q:

E[D(α∗
Q,αQ)−D(α

(Ti)
Q ,αQ)] (7)

≤
(

max
k=1,...,Ki

(
1−(1−Θk

i+1)βk

) λmγ

ρi+λmγ

)Ti

︸ ︷︷ ︸
Convergence bound

×
(
D(α∗

Q,αQ)−D(α
(0)
Q ,αQ)

)
,

where ρi is any real number larger than ρmin defined as

ρmin≜maximize
αQ∈R|Q|

λ2m2

∑Ki
k=1∥A[Q;k]α[Q;k]∥22−∥AQαQ∥22

∥αQ∥22
≥0.

Proof. The dual objective value for a tree node Q that has K
direct child nodes is bounded by the following equation:

D
(
α

(t+1)

[1:K] ,αQ

)
= D

(
α

(t)

[1:K] +

K∑
k=1

βk △α<[k]>,αQ

)
≥

K∑
k=1

βkD
(
α

(t)

[1:K] +△α<[k]>,αQ

)
, (8)

where α<[k]> is α[k] with zero-padding to increase the di-
mension, Q = [1 : K] = ∪K

k=1[k] is the index set correspond-
ing to the node Q, and αQ is the un-updated coordinate. The
inequality in (8) is obtained by using Jensen’s inequality.
Then, we have

E
[
D
(
α

(t+1)

[1:K] ,αQ

)
−D

(
α

(t)

[1:K],αQ

)]
≥ E

[K∑
k=1

βk

(
D
(
α

(t)

[1:K] +△α<[k]>,αQ

)
−D

(
α

(t)

[1:K],αQ

))]

= E
[K∑

k=1

βk

(
ϵQ,k(α

(t)

[1:K],αQ)− ϵQ,k(α
(t)

[1:K] +△α<[k]>,αQ)
)]

=

K∑
k=1

βk

(
E[ϵQ,k(α

(t)

[1:K],αQ)]− E[ϵQ,k(α
(t)

[1:K] +△α<[k]>,αQ)]
)

≥
K∑

k=1

βk(1−Θk)
(
ϵQ,k(α

(t)

[1:K],αQ)
)

≥
(

min
k=1,2,...,K

(1−Θk)βk︸ ︷︷ ︸
imbalanced data factor

and its compensation parameter

) K∑
k=1

(
ϵQ,k(α

(t)

[1:K],αQ)
)

︸ ︷︷ ︸
(A)

The lower-bound of (A) can be obtained in Appendix A of
[13], which leads to (7). Due to space limitation, we omit the
remaining proof.

This theorem indicates that for a tree node Q, if its child
nodes satisfy the local sub-optimality gap with local improve-
ment, then, at the node Q, GDCA-Tree can have the con-
vergence rate shown in (7). From Proposition 4.2, we know
that Assumption 4.1 holds at leaf nodes using LocalSDCA.
Then, for the convergence of GDCA-Tree in a general tree
network, the left hand side of (7) can be considered as the lo-
cal sub-optimality gap that the tree node Q can achieve from

(α
(Ti)
Q ,αQ), and the convergence bound in (7) can be thought

of as local improvement Θ from the parent node of Q. In this
way, the convergence of GDCA-Tree in a whole tree network
can be understood in a recursive manner.

4.1. Impact of imbalanced data on the convergence speed
From Proposition 4.2, among all leaf nodes, with the same
number of local iterations, Tp, in LocalSDCA, the leaf node
having the largest number of data points will have the largest
Θp (i.e., close to 1) due to 1/mB term in (6), and become a
bottleneck in the convergence speed. Thus, 1/mB in (6) (or
broadly (1−Θk)) can be thought of as imbalanced data factor
in a leaf node, while βk can be considered as a compensation
parameter for the imbalanced data factor at the k-th leaf node
by providing more weights on a bottleneck node. Note that in
the case of balanced data, βk = 1/K, k = 1, ...,K.

Furthermore, the parameter ρmin is a value indicating the
similarity of global parameter w’s among the K child nodes.
If we have a smaller ρ value, i.e., smaller similarity between
the global parameters w in child nodes, then we will have a
larger convergence bound. In other words, as the global pa-
rameters among child nodes become similar, the convergence
speed will decrease.

4.2. Determining the compensation parameter βk for im-
balanced data
In order to determine the weight parameter βk that compen-
sates imbalanced data effect, we consider the case where
each node on a network has different numbers of data points.
Suppose we have a general node Q which has K direct child
nodes. The k-th child node has a partial dataset, where the
set of indices of data points is denoted by [Q; k]. Due to
the scenario that we consider here, the cardinality of the set
[Q; k], i.e., the number of data points in the k-th direct child
node of Q, is different from each other. By considering the
imbalanced numbers of data scenario, we propose the follow-
ing weight calculation for βk in the weighted sum updating
scheme (3): βk = |[Q;k]|/|Q|, (9)
where the cardinality of the set of indices of data points in
the k-th direct child node of Q is represented by |[Q; k]|. The
weighted sum updating scheme is used to put more weight
on local updating parameters obtained from processing more
data. The intuition behind this is that if one local worker (e.g.,
WA) has most data and other workers (e.g., WB) have only a
few, then, the solution obtained from WA is prone to be closer
to the global solution w⋆. Thus, the global parameter w(t) is
updated based on the portion of data in each local worker or
sub-central node. The computation of βk can be done as a
preprocessing step and is negligible when compared to the
coordinate ascent operation.

4.3. Number of iterations considering imbalanced data
The convergence bound in (7) is a function of the number of
iterations as well as the imbalanced data factor. Therefore,

the question raised is that is there any relationship between
the number of local iterations and the imbalanced data? Let
us answer this question here. For clarity and simplicity, we
consider a cluster shown in Fig. 1, where the sub-central node
is denoted by Q. For the optimal number of local iterations to
have minimum execution time in convergence, as in [13], we
consider the following optimization problem:

minimize
Tp≥0

(
1−(1−Θk

p)βk
λmγ

ρi+λmγ

)Tp−1

, (10)

where Tp and Tp−1 are the numbers of local iterations in a
leaf node and its parent node respectively. Θp is introduced
in (6). Since the total time, ttotal, for distributed ML process
in a cluster can be expressed as ttotal = (tlpTp+tdelay+tcp)·
Tp−1, where tlp is local processing time per one iteration in a
leaf node, tdelay is time for communication delay in round trip
between a leaf node and its parent node, i.e., sub-central node
in Fig. 1, and tcp is time for accumulation at a sub-central
node. Then, by plugging (6) into (10), denoting λmγ

1+λmγ as c1,

and λmγ
ρi+λmγ as c2, we have

minimize
Tp≥0

(
1−(1− (1− c1

|[Q; k]|)
Tp)c2 ·

|[Q; k]|
|Q|

) ttotal
tlpTp+tdelay+tcp

.

From [13], the optimal number of local iterations Tp at the
leaf node can be obtained as follows:

Tp =
1

ln(1− c1
|[Q;k]|)

W

(
(1− c1

|[Q; k]|)
r ln(1− c2 ·

|[Q; k]|
|Q|)

)
− r,

where c1, c2 ∈ [0, 1), communication delay severity level be-
tween the local processing time and the communcation delay
is denoted by r, i.e., r = (tdelay+tcp)/tlp, and W (·) is the Lam-
bert W-function [25]. If the delay severity r is zero or small
enough to ignore, then, the Lambert W-function term can be
expressed as a small negative constant, and ln(1 − x) ≈ −x
for small x, we have

Tp ∝ |[Q; k]|. (11)

Namely, the number of local iterations need to be increased
proportionally to the number of data points in a node in order
to minimize the execution time during convergence. There-
fore, by taking into account the size of the data in the bottle-
neck node, we propose the delayed GDCA-Tree, where the
number of local iterations is determined by the size of the lo-
cal dataset in a bottleneck node. In the delayed GDCA-Tree
method, the sharing of information between local workers and
the sub-central node is delayed, but with a larger number of
local iterations. This results in faster convergence speed.

5. NUMERICAL EXPERIMENTS

To validate the performance of the delayed GDCA-Tree, we
conduct simulations and compare it to the standard DDCA-
Tree when dealing with imbalanced data on a tree network.

We test the method on various machine learning tasks includ-
ing regression and classification using the following datasets:
wine quality dataset1 and Covtype dataset2.

In the wine quality dataset, there are 6493 data points with
12 attributes. The twelfth attribute, quality, is used as the
measurement y. Each instance is normalized with ℓ2 norm
to ensure ∥xi∥2 ≤ 1, i = 1, ...,m. To distribute the dataset
over a tree network, we organize a two-layered tree network
with one central node, two sub-central nodes (denoted by S1

and S2), and four local workers (denoted by Wi, i = 1, ..., 4).
Each sub-central node has two local workers. The tuning pa-
rameter λ in (2) is set to 1. We consider the case where each
local worker has a different number of data points. To simu-
late this scenario, we unevenly distribute the wine quality data
into four local workers. 30% of the total dataset are allocated
to three local workers, W1, W2, and W3 (10% each, which
is 649 data points). The remaining 70% of the total dataset
(4546 data points) is allocated to one local worker, i.e., W4,
without overlapping the data among local workers.

In the delayed GDCA-Tree, we use (9) to calculate βk for
each local worker. Therefore, for each updating global param-
eter △wk that each local worker has from its local dataset,
β1 = β2 = 0.5(= 649/(649 + 649)), β3 = 0.1249(=
649/(649+4546)), and β4 = 0.8752(= 4546/(649+4546)).
At the sub-central nodes S1 and S2, 0.2(= (649+649)/6493)
and 0.8(= (649 + 4546)/6493) are used for βk respectively.

In order to obtain statistical results, we run 100 random
trials. From the 100 trials, we calculate the average execution
time at each outer iteration and compute the average duality
gap P (w(α(t)))−D(α(t)) at the central station. For the num-
ber of local iterations Tp in Procedure P, we use Tp = 100.
And for delayed GDCA-Tree, we use 300 local iterations for
Tp by considering the increased number of data points in W4.
As shown in Fig. 2(a), the delayed GDCA-Tree (red solid
line) can improve the convergence speed, compared to the
standard DDCA-Tree [13] with imbalanced data (blue dotted
line). The figure illustrates that by using the delayed GDCA-
Tree, we can mitigate the effect of imbalanced data on dis-
tributed dual coordinate ascent in a tree network.

Additionally, we run binary classification with Covtype
dataset having a total of 581012 instances and 12 attributes.
The dataset is normalized and the labels are set to be in the
set {-1,1}. A standard hinge loss and ℓ2 regularization are
used for a linear SVM. The tree network used has one central
node, two sub-central nodes, and eight local workers, where
each sub-central node has four local workers. The data is dis-
tributed in an imbalanced way, with 5% of the total dataset go-
ing to seven local workers, and 65% going to one local worker
with no overlap. The number of communications between
the local workers and the sub-central node is set to 10. The

1https://archive.ics.uci.edu/ml/datasets/wine+
quality

2https://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/
datasets/binary.html#covtype.binary

https://archive.ics.uci.edu/ml/datasets/wine+quality
https://archive.ics.uci.edu/ml/datasets/wine+quality
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#covtype.binary
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#covtype.binary

(a) Wine quality (b) Covtype

Fig. 2. Comparison between standard DDCA-Tree (blue) and de-
layed GDCA-Tree (red) with imbalanced data.

numbers of local iterations in local workers in the standard
DDCA-Tree and the delayed GDCA-Tree are set to 1000 and
4000 respectively. Fig. 2(b) demonstrates that under the im-
balanced data scenario, the delayed GDCA-Tree can improve
the convergence speed of the DDCA-Tree by considering the
information of imbalanced data.

6. REFERENCES

[1] M. Teng and F. Wood, “Bayesian distributed stochastic gradi-
ent descent,” in Proceedings of Advances in Neural Informa-
tion Processing Systems, 2018, vol. 31.

[2] N. Ferdinand and S. C. Draper, “Anytime stochastic gradient
descent: A time to hear from all the workers,” in Proceed-
ings of Allerton Conference on Communication, Control, and
Computing (Allerton). IEEE, 2018, pp. 552–559.

[3] G. Cong, O. Bhardwaj, and M. Feng, “An efficient, distributed
stochastic gradient descent algorithm for deep-learning appli-
cations,” in Proceedings of International Conference on Par-
allel Processing. IEEE, 2017, pp. 11–20.

[4] S. Shi, Q. Wang, X. Chu, and B. Li, “A DAG model of syn-
chronous stochastic gradient descent in distributed deep learn-
ing,” in Proceedings of IEEE International Conference on Par-
allel and Distributed Systems. IEEE, 2018, pp. 425–432.

[5] N. Ferdinand, B. Gharachorloo, and S. C. Draper, “Anytime
exploitation of stragglers in synchronous stochastic gradient
descent,” in Proceedings of IEEE International Conference
on Machine Learning and Applications. IEEE, 2017, pp. 141–
146.

[6] C.-J. Hsieh, K.-W. Chang, C.-J. Lin, S. S. Keerthi, and S. Sun-
dararajan, “A dual coordinate descent method for large-scale
linear SVM,” in Proceedings of International Conference on
Machine Learning. ACM, 2008, pp. 408–415.

[7] T. Yang, “Trading computation for communication: Dis-
tributed stochastic dual coordinate ascent,” in Proceedings of
Advances in Neural Information Processing Systems, 2013, pp.
629–637.

[8] M. Jaggi, V. Smith, M. Takác, J. Terhorst, S. Krishnan, T. Hof-
mann, and M. I. Jordan, “Communication-efficient distributed
dual coordinate ascent,” in Proceedings of Advances in Neural
Information Processing Systems, 2014, pp. 3068–3076.

[9] S. Shalev-Shwartz and T. Zhang, “Stochastic dual coordinate
ascent methods for regularized loss minimization,” Journal of
Machine Learning Research, vol. 14, pp. 567–599, 2013.

[10] Y. Deng and M. Mahdavi, “Local stochastic gradient descent
ascent: Convergence analysis and communication efficiency,”
in Proceedings of International Conference on Artificial Intel-
ligence and Statistics. PMLR, 2021, pp. 1387–1395.

[11] A. Devarakonda, K. Fountoulakis, J. Demmel, and M. W. Ma-
honey, “Avoiding communication in primal and dual block co-
ordinate descent methods,” SIAM Journal on Scientific Com-
puting, vol. 41, no. 1, pp. C1–C27, 2019.

[12] M. Cho, L. Lai, and W. Xu, “Generalized distributed dual co-
ordinate ascent in a tree network for machine learning,” in
Proceedings of the IEEE International Conference on Acous-
tics, Speech and Signal Processing, 2019, pp. 3512–3516.

[13] M. Cho, L. Lai, and W. Xu, “Distributed dual coordinate ascent
in general tree networks and communication network effect on
synchronous machine learning,” IEEE Journal on Selected Ar-
eas in Communications, vol. 39, no. 7, pp. 2105–2119, 2021.

[14] S.-Y. Zhao and W.-J. Li, “Fast asynchronous parallel stochas-
tic gradient descent: A lock-free approach with convergence
guarantee,” in Proceedings of the AAAI Conference on Artifi-
cial Intelligence, 2016, pp. 2379–2385.

[15] R. Zhang, S. Zheng, and J. T. Kwok, “Fast dis-
tributed asynchronous SGD with variance reduction,” CoRR,
abs/1508.01633, 2015.

[16] X. Lian, W. Zhang, C. Zhang, and J. Liu, “Asynchronous
decentralized parallel stochastic gradient descent,” in Pro-
ceedings of International Conference on Machine Learning
(ICML). PMLR, 2018, pp. 3043–3052.

[17] Z. Huo and H. Huang, “Distributed asynchronous dual free
stochastic dual coordinate ascent,” in Proceedings of the IEEE
International Conference on Data Mining, 2018.

[18] C.-J. Hsieh, H.-F. Yu, and I. S. Dhillon, “PASSCoDe: Paral-
lel asynchronous stochastic dual co-ordinate descent,” in Pro-
ceedings of the International Conference on Machine Learn-
ing, 2015, vol. 15, pp. 2370–2379.

[19] J. Liu, S. Wright, C. Ré, V. Bittorf, and S. Sridhar, “An asyn-
chronous parallel stochastic coordinate descent algorithm,” in
Proceedings of International Conference on Machine Learn-
ing. PMLR, 2014, pp. 469–477.

[20] T. Sun, R. Hannah, and W. Yin, “Asynchronous coordinate
descent under more realistic assumptions,” in Proceedings
of Advances in Neural Information Processing Systems, 2017,
vol. 30.

[21] S. Boyd and L. Vandenberghe, Convex optimization, Cam-
bridge university press, 2004.

[22] H. Wang, Y. Gao, Y. Shi, and H. Wang, “A fast distributed
classification algorithm for large-scale imbalanced data,” in
Proceedings of IEEE International Conference on Data Min-
ing. IEEE, 2016, pp. 1251–1256.

[23] H. Wang, M. Xiao, C. Wu, and J. Zhang, “Distributed classi-
fication for imbalanced big data in distributed environments,”
Wireless Networks, pp. 1–12, 2021.

[24] J. Konečnỳ, B. McMahan, and D. Ramage, “Federated op-
timization: Distributed optimization beyond the datacenter,”
arXiv preprint arXiv:1511.03575, 2015.

[25] R. M. Corless, G. H. Gonnet, D. EG. Hare, D. J. Jeffrey, and
D. E. Knuth, “On the LambertW function,” Advances in Com-
putational Mathematics, vol. 5, no. 1, pp. 329–359, 1996.

	 Introduction
	 Problem Formulation
	 Review of Distributed Algorithms with Balanced or Imbalanced Data
	 Generalized distributed dual coordinate ascent in a tree network
	 Impact of imbalanced data on the convergence speed
	 Determining the compensation parameter k for imbalanced data
	 Number of iterations considering imbalanced data

	 Numerical Experiments
	 References

