
2023 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, SEPT. 17–20, 2023, ROME, ITALY

CODED DISTRIBUTED IMAGE CLASSIFICATION

Jiepeng Tang†, Navneet Agrawal‡, Slawomir Stanczak‡⋆, Jingge Zhu†

† University of Melbourne, Australia, ‡ Technische Universität Berlin, Germany,
⋆ Fraunhofer Heinrich Hertz Institute, Germany

ABSTRACT
In this paper, we present a coded computation (CC) scheme for
distributed computation of the inference phase of machine learn-
ing (ML) tasks, specifically, the task of image classification. Build-
ing upon Agrawal et al. 2022, the proposed scheme combines the
strengths of deep learning and Lagrange interpolation technique to
mitigate the effect of straggling workers, and recovers approximate
results with reasonable accuracy using outputs from any R out of N
workers, where R ≤ N . Our proposed scheme guarantees a mini-
mum recovery threshold R for non-polynomial problems, which can
be adjusted as a tunable parameter in the system. Moreover, unlike
existing schemes, our scheme maintains flexibility with respect to
worker availability and system design. We propose two system de-
signs for our CC scheme that allows flexibility in distributing the
computational load between the master and the workers based on
the accessibility of input data. Our experimental results demonstrate
the superiority of our scheme compared to the state-of-the-art CC
schemes for image classification tasks, and pave the path for de-
signing new schemes for distributed computation of any general ML
classification tasks.

1. INTRODUCTION

Cloud platforms provide distributed computation services over many
computing nodes for large-scale tasks. However, distributed com-
puting systems are susceptible to straggler effects caused by slow
or failing nodes, which can result in high latency in computation
tasks. A naı̈ve approach to address this issue is replication, which
involves executing task copies on several computing nodes (work-
ers) and returning the fastest-responding clones’ results. However,
this method incurs significant resource overhead. In this direction, a
class of techniques known as coded computation (CC) has emerged
as a prominent alternative. In CC schemes, redundancy is introduced
into the input data based on the coding theory, and the encoded data
is distributed to the workers for computation. This enables a mas-
ter node to recover full computation results by decoding the results
from only a few worker outputs, without waiting for all workers to
return their results. Thus, such a scheme requires fewer resources
to deal with the straggler effects compared to replication-based ap-
proaches [1].

Many existing CC schemes excel at recovering exact results
on distributed tasks, but they are generally tailor-made for spe-
cific classes of functions, such as matrix multiplication [2, 3]. To

JT and JZ acknowledge the support by the Australian Research Coun-
cil under Project DE210101497 and the UoM-BUA Partnership scheme.
NA is funded by the German Research Foundation (DFG) within their pri-
ority program SPP1914 “Cyber-Physical Networking”, and SS acknowl-
edges the support of joint project 6G-RIC with project identification numbers
16KISK020K and 16KISK030. (email: navneet.agrawal@tu-berlin.de)

provide a trade-off between accuracy and recover-threshold, some
researchers have proposed CC schemes for approximate recovery
of results [4, 5]. A notable example of CC scheme that covers a
general class of functions, namely, polynomial functions, is the La-
grange coded computation (LCC) [6]. The LCC uses Lagrange’s
interpolation technique to guarantee exact recovery of results using
outputs from a fixed minimum number of workers (known as the
recovery threshold of scheme) [1]. However, all above-mentioned
CC schemes are severely restricted in their application to several
popular machine learning (ML) tasks, which typically incorporate
deep neural networks (DNNs) with complex non-linear structures.

Several papers have proposed CC schemes for the training stage
of deep neural networks (DNNs),1 addressing the problem of strag-
glers as well as malicious attacks (seminal works include [7,8]). For
the inference stage of ML tasks, [9, 10] propose a CC scheme that
“learns” an appropriate erasure code via a supervised deep learning
technique. One approach jointly trains an auto-encoder for encod-
ing and decoding operations, while the other trains a deep neural
network (DNN) to perform the computation on the encoded data.
However, they are limited to a single straggler and their performance
degrades significantly with an increasing number of inputs.

In [11], the authors propose a CC scheme called AICC, that ad-
dresses the issues of exiting CC schemes by combining the powers
of deep learning and Lagrange’s interpolation technique, to provide
approximate results in distributed computation tasks. The AICC is
(1) applicable to general functions, including non-polynomials; (2)
guarantee a recover-threshold that does not rely on the number of
inputs; and (3) allows for a judicious trade-off between the accuracy
and the computation load. However, as a proof-of-concept in [11],
the AICC is applied only to certain non-polynomial matrix functions.

In this paper, we present a CC scheme based on AICC for the
distributed computation of tasks pertaining to the inference phase of
ML algorithms. Specifically, we apply the proposed CC scheme to
an image classification task on the Fashion-MNIST dataset [12]. Un-
like existing CC schemes for image classification [9,10], our scheme
allows for distribution of the tasks to any number of workers avail-
able, while still inheriting the recovery-through-interpolation prop-
erty of LCC to guarantee the recovery of results from a fixed (but
unspecified) subset of worker outputs. Furthermore, for applications
with privacy concerns of the input data, we present a novel variant
of AICC’s computation operation that, unlike the scheme proposed
in [11], only requires the encoded data, while showing only a small
degradation in performance. Another promising characteristic of the
proposed scheme is that most of its design parameters are tunable,
making it amenable to the system’s capabilities, and trade-off be-

1A supervised machine-learning algorithm consists of a training phase,
where model parameters are trained using a dataset, and an inference or test-
ing phase, where the pre-trained model is implemented over the new inputs,
providing approximate results.

979-8-3503-2411-2/23/$31.00 ©2023 IEEE

ar
X

iv
:2

30
7.

04
91

5v
1

 [
cs

.D
C

]
 1

0
Ju

l 2
02

3

tween desired accuracy and available computation resources. The
experimental results of this study verify that our scheme, using the
same DNN architectures as used in [10], outperforms the accuracy
achieved in [10] on the Fashion-MNIST dataset.

2. PRELIMINARIES

Consider a function f that maps any real-valued square matrix from
D ⊂ RM×M to an element of some finite dimensional Euclidean
space S. Note that the restriction of domain of f to square matrices is
not a limitation of the proposed scheme, but a choice that reflects the
application requirements, i.e. the images used in the classification
task are represented as elements in D. Define a set of K input ma-
trices (called dataset) X := {X1, . . . ,XK}, and the set of outputs
of function f on the dataset X as F := {f(X1), . . . , f(XK)}. The
objective is to obtain F , given X , with a minimum delay. The system
consists of N ≥ K workers and a master node, which is responsible
for collecting all the results in F . To reduce the delay in obtaining
the results, the computation task is distributed among the workers. A
naı̈ve approach is to distribute the K computations in F to any sub-
set K of N workers, and wait for them to return their results to the
master. Typically, such an approach is prone to unexpected delays
due to the so-called straggling effects such as worker-node failure
or slowdown. Moreover, some of the available worker resources are
not used in this approach. The coded computation (CC) refers to
a class of distributed computation schemes which use the available
resources more efficiently, and can mitigate the straggling effects by
using coding techniques to recover all desired results from a subset
of worker outputs.

In general, the CC schemes operate by encoding the dataset X
to generate N encoded data X̃n, n = 1, . . . , N . The worker n per-
forms some computation on the encoded data X̃n and returns the
result to the master. Then, the master recovers the desired results F
upon receiving the computation results from any subset R ≤ N of
workers. The smallest value of R for which the recovery of results
can be guaranteed is called the recovery threshold of the scheme. In
this way, the CC schemes can mitigate the impact of straggling.

The LCC [6] scheme is a CC scheme specifically designed only
for polynomial functions f , say, of degree d. The functioning prin-
ciple of the LCC can be summarized as follows (see [6] for de-
tails): The encoding operation amounts to the evaluation of a La-
grange polynomial at some distinct nonnegative scalars αn for n =
1, . . . , N . The Lagrange polynomial is of degree K − 1, and its
coefficients are linear functions of the input data X , making it com-
putationally inexpensive to implement. The worker n then computes
the polynomial f on the encoded data X̃n. The computation result
f(X̃n) can be viewed as a composition of the Lagrange polynomial
and the polynomial function f at a point αn, and hence, it is a polyno-
mial itself, of total degree (K − 1)d. Hence, by using the Lagrange
interpolation technique, this composite polynomial can be recovered
(exactly) using R = (K − 1)d + 1 results from the workers. The
desired function values F can then be obtained by evaluating the
polynomial at suitable points known to the master. Although LCC is
optimal in terms of the recovery threshold, it suffers from two cru-
cial limitations: (i) the function f is restricted to be a polynomial of
the matrix-valued inputs; and (ii) the recovery threshold R of LCC
grows proportionally with the number of inputs K and degree d of
the polynomial f .

In [11], a learning-based approximate CC scheme is pro-
posed, called AICC, to tackle the limitations of the LCC. The
AICC scheme can be applied to a large class of functions, including
non-polynomial functions, and provide approximate results which

can be tuned to a desired accuracy based on the application require-
ments and system capabilities. The AICC scheme is shown in [11]
to provide reasonably accurate results for certain matrix-valued
functions, namely, computation of eigenvalues, dominant eigenvec-
tor, determinant, and exponential of a matrix, that are of interest in
wireless communications.

The main objective of this paper is to extend the AICC scheme to
functions that amount to evaluation of the inference stage of an ML
algorithm. Specifically, we propose a CC scheme, based on AICC,
for the problem of image classification over a given dataset. The
ML algorithm for image classification task is structured so that most
of its computations in the inference stage can be distributed to the
workers. By carefully designing the encoding and computation op-
erations such that their composition has a polynomial structure, we
ensure that the desired results can be decoded from any subset of R
worker results, as in the AICC scheme. It is worth noting that the
image classification task considered in this paper requires different
design approach compared to the approximate function computation
tasks tackled in [11]. For example, the output of the function in
image classification problem is the predictive probability of a cer-
tain class, while the target is one of the classes. Hence, the learning
framework must be modified to support the problem and the avail-
able data. Moreover, the learning capabilities of DNNs involved in
AICC can be enhanced by embedding the knowledge about the prob-
lem into design of DNNs.

As AICC is an essential part of this study, we dedicate Section
3 to its introduction. In Section 4, we formulate the image classifi-
cation problem, provide details of the design choices for the DNNs
involved in AICC encoder and computation operations, and describe
the training procedure that achieves desired accuracy of results. The
details of simulation, and the results comparing the proposed method
with existing approaches, are provided in Section 5.

3. AI-AIDED CODED COMPUTATION (AICC)

In this section, we give a brief overview of the AICC scheme as
proposed in [11]. Similar to the LCC scheme, the basic operations
involved in the AICC scheme are encoding, computation, and decod-
ing operations. The AICC enjoys the recover-through-interpolation
property of the LCC, with guarantees of a recovery threshold that,
in contrast to LCC, depends solely on tunable design parameters. At
its core, the AICC scheme involves DNNs into its operations, whose
learnable parameters are trained a priori using a training dataset. In-
deed, the design and architecture of the DNNs in AICC influences
its overall performance, and hence, they need to be carefully de-
signed for a given problem. Most importantly, the recover-through-
interpolation property of AICC rely on the polynomial structure of
composition of AICC operations. This design aspect is highlighted
in this section.

3.1. Encoding operation E

In CC schemes, encoding injects redundancy into the data before it
is distributed to workers, aiming to obtain desired results with sim-
ple decoding. For example, LCC employs a linear function for en-
coding, resulting in a simple linear decoder [6]. Given the dataset
X ∈ (D)K , the encoding operation in AICC is is a degree G poly-
nomial E : R+ → RM×M given by E(α) :=

∑G
g=0 Cgα

g , where
the coefficients Cg ∈ RM×M , for g = 0, . . . , G, are generated us-
ing the function Γg : (D)K → RM×M , that involves pre-trained
DNNs taking X as input. Each worker n = 1, . . . , N obtains the
matrix X̃n = E(αn), where αn > 0 is a distinct for each worker n,

and it is known to the master for decoding. We remark that the co-
efficients (Cg), or equivalently the functions (Γg), are identical for
all workers. It is also worth noting that DNNs involved in functions
(Γg) can be arbitrary, as they do not affect the polynomial struc-
ture of the encoder E. Specific DNN designs for (Γg) for the image
classification problem will be discussed in Section 4.

3.2. Computation operation H

The computation is performed by each worker n on the encoded data
X̃n := E(αn), and the results are sent to the master as soon as they
become available. The computation operation H : RM×M → RV is
given by H(X) :=

∑P
p=0 Vp Vec(Xp), where Vec(X) vectorizes

the matrix X by stacking its columns, and the coefficients Vp :=
Λp(X), for p = 0, . . . , P , are generated using the function Λp :

(D)K → RV ×M2

. The output dimension V and the degree P ∈ N
are design parameters.

3.3. Decoding operation

The decoding operation essentially involves the following two steps:
First, the coefficients of the composite polynomial D := H ◦ E :
R+ → RV of degree GP are obtained using the Lagrange inter-
polation technique via any R = GP + 1 input-output pairs from
the set of worker outputs {(α1,D(α1)), . . . , (αN ,D(αN))}, where
R ≤ N is one more than the degree of the polynomial D. Then, the
polynomial D is evaluated at K distinct scalars β1, . . . , βK to obtain
the desired results. Each scalar βk, k = 1, . . . ,K, is chosen prior to
the training procedure (as described in the following section), such
that the output D(βk) either corresponds to the approximate result
f̂(Xk) ≈ f(Xk) itself, or it can be easily transformed into one. An
advantage of using the Lagrange’s interpolation technique for the
decoding operation is that both steps, the polynomial interpolation
and the evaluation of results, involve only linear matrix operations,
which are computationally inexpensive.

Remark 1 (Placement of operations). In systems where the dataset
X is available to all worker (e.g. shared memory), the workers can
essentially implement both the encoding and the computation op-
erations, and send the results, along with corresponding αn, to the
master. In this case, the master only needs to perform the computa-
tionally inexpensive decoding operation. However, when the dataset
X is not available to the workers, the master must also perform the
encoding operation. In addition, the dataset X or coefficients (Vp)
must be shared among the workers. Instead, to save communication
and computation resources, we present a novel design of the com-
putation operation H that only relies on the encoded data X̃n (see
Section 4.2.2). In Section 5, we present CC schemes for both cases
described above, and compare the performance with different design
parameters.

3.4. Training procedure

The parameters of DNNs involved in encoding and computa-
tion operations in the AICC scheme are trained such that, for all
k ∈ {1, . . . ,K}, the cost of approximating the true value f(Xk)

with the approximate output of the CC scheme f̂ffk := D(βk) over
the training dataset is minimized. The distinct real-valued scalars
βk, for k = 1, . . . ,K, are chosen at the beginning, and they re-
main fixed during the entire training and test phases. In [11], the
mean square loss function is used for the training. The training
consists of forward and backward passes. In each forward pass,
for each k = 1, . . . ,K, for every data pair (X , βk), the output

f̂ffk := D(βk) = H(E(βk)) is obtained. Then, in the backward pass,
the parameters are updated based on the loss function between the
output f̂ffk and the target value f(Xk).

4. CODED DISTRIBUTED IMAGE CLASSIFICATION

The DNN based ML approaches to the image classification prob-
lems are known to perform very well [13]. However, for most prob-
lems, the DNNs that provide sufficiently accurate results consist of
a large number of parameters, and hence, their implementation re-
quires significant computational resources. Moreover, in many ap-
plications, the image classification problem is required to be solved
for numerous images at once, and with minimum latency. There-
fore, distributed computation is often desirable in such applications
to reduce latency.

In this section, we propose a CC scheme based on AICC that
allows distributed computation of the image classification tasks. We
describe the encoding, computation, and decoding operations in Sec-
tions 4.1, 4.2, and 4.3, respectively. In addition to ensuring the poly-
nomial structure of the composite function D := H◦E in our design,
we also adopt DNN architectures that are known to enhance learning
over image data. We compare our scheme with the state-of-the-art
CC scheme proposed in [9] for such tasks, and present results from
conventional (centralized) DNN-based approaches as a benchmark.
We remark that, in addition to being superior in performance com-
pared to [9], our scheme is inherently more flexible in terms of sys-
tem requirements (i.e. accuracy and complexity of the algorithm, as
well as recovery threshold, are design parameters), and guarantee a
fixed recovery threshold for any number of workers.

4.1. Encoding operation design

The encoding operation follows the same structure as described in
Section 3.1, i.e. E is a polynomial of degree G, with pre-trained co-
efficients Cg := Γg(X), for all g = 0, . . . , G. The two architectures
employed for the DNNs in function Γg , for all g = 0, . . . , G, are
given in Table 1 (activation functions are omitted from the Table).
One involves the multilayer perceptrons (MLPs), which makes use
of fully-connected (FC) NN layers, and another is based on the con-
volution layers (CLs), which are known to perform well on image
data. Both architectures use the ReLU activation functions in all but
the final layer, and CLs use dilated convolution, as described in [14].

4.1.1. MLP for encoding polynomial E

For all g = 0, . . . , G, the coefficient Cg in the encoding operation
E is output of the function Γg . The function Γg is an MLP with the
same architecture, but with different learned parameters. For MLP in
Γg , the input is the KM2 dimensional vector obtained by flattening
each image in the dataset X and concatenating them together. The
output of Γg (dimension M2) is transformed into a M×M matrix to
obtain the gth coefficient Cg of the encoding polynomial. Note that
the learnable parameters in the MLP grow proportional to the size of
the input KM2, which could lead to overfitting in ML tasks [10].

4.1.2. Convolution layers (CLs) for encoding polynomial E

The CL has the advantage of processing the image in its original 2D
structure, and hence, it can learn complex patterns in the image that
are usually lost when the image is flattened. The CLs, representing
the function Γg for g = 0, . . . , G, takes K images in the dataset

Table 1. DNN architectures used in the proposed CC scheme.
MLP CLs Base-MLP

KM2 ×KM2 kern:3×3, dilation 1 M2 × L1

KM2 ×M2 kern:3×3, dilation 1 L1 × L2

kern:3×3, dilation 2 L2 × V
kern:3×3, dilation 4
kern:3×3, dilation 8
kern:3×3, dilation 1
kern:3×3, dilation 1

X as K input channels in the first CL. In every CL, a kernel of di-
mension 3 × 3 is used with dilation (see [14]), and between each
pair of CLs, there is a ReLU activation function (omitted in the table
1). The dilation increases the receptive field of the image without
increasing parameters, captures features at multiple scales, and re-
duces spatial resolution loss compared to regular convolutions with
larger filters [14]. Even though the DNN architecture with CLs re-
quires more layers to combine all input pixels, it consists of fewer
parameters compared to the MLP architecture, since the parameters
are only required for defining the 3×3 kernel in a CL. This helps the
CL architecture to be computationally inexpensive, and also avoid
overfitting. Hence, employing CL architecture provides a better per-
formance than MLP architecture on the image classification task,
which is also confirmed via simulation in Section 5.

4.2. Computation operation design

For the computation operation H, as described in 3.2, we set the de-
sign parameter V as the number of classes in the image classification
task. The worker computation H must be carefully designed to en-
sure that each component of its output H(X̃) = H(E(α)) ∈ RV is
a polynomial in α. In light of remark 1, we propose two designs for
the computation function H in the following: the first design HS , as
described in 3.2, requires the dataset X as input, and the second, HB

is designed to implemented without X .

4.2.1. Computation function HS

The computation function HS : RM×M → RV , illustrated in Figure
1, is defined as follows:

HS(X̃) := Ω

(
P∑

p=0

Vp (X̃⊙p)

)
, (1)

where P ∈ N is a design parameter. The coefficients Vp ∈ RM×M ,
p = 0, . . . , P , are obtained via the functions (involving DNNs)
Λp : (D)K → RM×M such that Vp := Λp(X). The notation
X̃⊙p denotes the output of taking p times the Hadamard or element-
wise product of the matrix X̃ with itself. Note that the Hadamard
product does not modify the polynomial structure of the output with
respect to α in components of the encoded matrix X̃, but raises the
degree by p times. For the function Λp, we use the same MLP and
CL architecture (including the activations) as in function Γ of the
encoding operation, as shown in Table 1. The function Ω, defined as
Ω : RM×M → RV , has the Base-MLP architecture (with no activa-
tion functions) in Table 1 with parameters L1 = 200 and L2 = 100.
In this design, it is assumed that either the dataset X is available
to the workers, or the master node (with access to the dataset) com-
putes coefficients Vp and broadcast them to the workers (coefficients
(Vp) are the same for all workers).

Fig. 1. The computation function HS has a polynomial structure
whose coefficients are functions of the input dataset X . On the other
hand, the function HB has a linear structure, and it does not depend
on the input dataset X .

4.2.2. Computation function HB

The computation function HB is designed to only depend on the
inputs X̃, and hence, workers implementing HB do not need access
to the dataset X or any other information from the master, except
the encoded input X̃. The function HB : RM×M → RV applies a
sequence of linear transformations on the input matrix X̃, keeping
the polynomial structure of the composite function D := H ◦ E. The
linear operator HB is essentially a cascade of matrix multiplications
on the input X̃, and it can be seen as applying a DNN (MLP or
CNN), without any non-linear activation functions, to the input X̃.
In other words, the function HB simply applies some linear matrix
operations to the input X̃, which does not change the degree of the
composite polynomial.

We employ two DNNs architectures for the function HB as
shown in TABLE 1: (1) MLP-HB : the Base-MLP only and (2)
CNN-HB : CLs followed by the Base-MLP. Note that both architec-
tures MLP-HB and CNN-HB are without any activation functions.

Figure 2 illustrates the general data transformation process
of our approach during the encoding and computation operations,
where the function H could be either HS or HB . The dotted line
connecting the input dataset X and function H represents the two
design strategies HS and HB , indicating whether the input dataset
X is used in the computation operation or not. As a baseline for
comparison, we use two centralized DNN based algorithms for the
image classification task: (1) MLP-baseline, and (2) CNN-baseline,
by respectively adding ReLU activation function between each pair
of layers in MLP-HB and CLs of the CNN-HB . Note that the base-
line algorithm is not distributable, and does not apply any encoding
or decoding operation.

Fig. 2. Encoding and Computation process

Fig. 3. Decoding process

4.3. Decoding operation design

The decoding operation is essentially the same as described in Sec-
tion 3.3, except that after recovering, we apply a Softmax operation
to convert the vector ỹyy ∈ RV to a probability mass function for each
of the V classes. The recovery is ensured by the polynomial struc-
ture of the composite polynomial D := H ◦ E. Using computation
operation HS or HB results in the polynomial D of degree GP or
G, respectively. Thus, the recovery threshold for the schemes corre-
sponding to HS and HB is R = GP+1 and R = G+1, respectively.
After interpolating the polynomial D, we apply the Softmax function
to the result D(βk) to obtain ýyyk := Softmax(D(βk)), and select the
index with the highest probability as the prediction label Lk for the
input image Xk.

4.4. Training procedure

We follow the same training procedure as described in Section
3.4, except that the loss function is different in our scheme. In
the training dataset, we are given multiple data with the inputs
X := {X1, . . . ,XK} and corresponding true labels f(Xk) ∈
{eee1, . . . , eeeV }, for each v = 1, . . . , V , where eeev ∈ RV is the one-
hot vector with all elements zero except one at position v. At each
forward pass of the scheme with input βk, where (β1, . . . , βK) are
distinct scalars that are fixed, we obtain ýyyk := Softmax(D(βk)) via
the encoding, computation, and decoding operations, as described
above. The backward pass updates the DNN parameters using an
iterative algorithm based on the cross entropy loss function between
the true labels f(Xk) and the estimated probability mass ýyyk.

5. SIMULATIONS

We implemented our learning-based CC model using PyTorch,
which enabled us to experiment with different DNN architectures
for the encoding and computation operations. We use the Fashion-
MNIST dataset [12] for the image classification task, which has
images of dimension RM×M with M = 28, and V = 10 target
classes. We train our model for 20 epochs in two settings: (1) a batch
size of 64 samples with K = 2 inputs in dataset X , and (2) a batch
size of 32 samples with K = 4 inputs in dataset X . Each minibatch
sample has K images drawn randomly without replacement, and no
image was sampled more than once per epoch. We used the Adam
optimizer with a learning rate of 0.001 to update the DNN parame-
ters. The scalar values {β1, β2, . . . , βK} are fixed to βk = k/K for
k = 1, . . . ,K throughout the experiment. During the testing phase,
we fix the scalar values {α1, α2, . . . , αN} to αn = n/(N + 1)
for n = 1, 2, . . . , N . We evaluate the performance of our model
based on its accuracy in reconstructing the results on a separate test
dataset. The evaluation criteria is the accuracy of predictions on the
test dataset, defined as the proportion of correctly predicted labels to
the total number of images in the test dataset.

5.1. Results

In the following, we denote the proposed CC schemes with the com-
putation functions HB and HS as HB and HS , respectively. We com-
pare the performance of our scheme in Section 5.1.1 for different
DNN architectures used in encoding and computation operations, as
well as with [10] and centralized baseline models. Furthermore, in
Section 5.1.2, we investigate our scheme for different selections of
encoder and computation polynomial degrees G and P , respectively,
and discuss how one can select these free parameters in our scheme
to make a judicious trade-off between accuracy and computational
complexity.

5.1.1. Comparison of different DNN architectures

For fair comparison, in our simulation, we use the architecture of
MLPencoder and CNNencoder from [10] for our encoding and com-
putation operations (except that in HB activations are not imple-
mented). Table 2 presents results for a system (the same as in [10])
with workers N = 3, input size K = 2 and recovery threshold
R = 2. Note that, in both our schemes HB and HS , to ensure the
recovery threshold R = 2, we use the degrees (G = 1, P = 1),
respectively, for the encoding and computation operations. Our CC
scheme outperforms the schemes presented in [10] in terms of accu-
racy, regardless of whether we use HB or HS . Moreover, the encoder
using CL architecture (see Section 4.1.2) outperforms the MLP en-
coder in both models. Compared to the baselines, the degradation in
accuracy of our scheme based on MLP and CNN encoders is around
5% and 7%, respectively, which is an acceptable degradation consid-
ering the fact that the baseline algorithm cannot be distributed. Most
notably, these results demonstrate that CL architecture performs bet-
ter than MLP, concurring with the discussion in Section 4.1.2.

Table 2. Evaluating accuracy of schemes for R = 2 and K = 2.
Enc+Comp HB HS [10] model Baseline
MLP+MLP 83.93 84.34 81.96 89.12CNN+MLP 85.81 84.52 82.53
MLP+CNN 84.11 85.37 –2

92.01
CNN+CNN 85.94 86.62 –2

5.1.2. Performance trade-off in selection of design parameters

We conduct additional experiments to evaluate the impact of two pa-
rameters on the performance of our two models, namely, the degree
of composite function D := H ◦ E, denoted by D in the following,
and input size K. Table 3 shows results for computation operations
HS and HB , with D = GP and D = G, respectively, where we
have implemented CL architecture for both operations (see Section
4 for details). The column ‘# of params’ denotes the total number of
learnable parameters (scaled such that 100% ≡ 2218197) in all the
DNNs involved in our scheme, and it is one of the indicators of com-
putational complexity of the inference using such model. Within the
same parameter setting for K and R, the model HS performs better
than the model HB , as the former benefit from the nonlinear acti-
vations involved in coefficients Vp := Λp(X), for p = 0, . . . , P ,
of the computation operation. Moreover, the accuracy gap between

2Some of the results of [10] cannot be compared directly with our scheme
because they correspond to the ResNet18 model in the computation operation,
while our schemes HB and HS uses the CL architecture presented in Table
1 (also see Section 4). Nonetheless, even though the ResNet18 model is
specifically designed CNN architecture that is well-trained for this problem,
our schemes, with a simple training procedure and design, only show 2−4%
degradation in performance w.r.t. [10].

the two models widens as the number of inputs K in the dataset in-
creases, which in turn provides more parameters for learning to HS

compared to HB .
For a given K, increasing the value of D enhances the accu-

racy, which suggests that one can improve model performance by
tuning the parameters G and/or P . Also, increasing the value of P
in the computation function HS results in a better performance. For
instance, for K = 4 and D = 4, the accuracy of the model HS is
75.6% with G = 4 and P = 1, but it improves to 82.3% with G = 1
and P = 4, even though both models have the same number of pa-
rameters. In addition to the improved accuracy, for schemes with
the same recovery threshold R, a lower value of G (or higher value
of P) means less computation for the encoding operation, which is
usually implemented by the master node. Hence, for model HS , by
increasing the degree of computation operation and reducing the de-
gree of encoding operation, we can reduce the overhead of the master
as well as improve the accuracy. However, to improve the accuracy
of the model HB , we can only increase the value of G in the encod-
ing function E, which would increase the workload of the master.
Nonetheless, the model HB does not require sharing input data X
with each worker, which enhances data privacy and minimizes net-
work communication. Hence, our scheme provides flexibility of the
choice of model, based on the specific system requirements and ca-
pabilities.

Table 3. Varying degrees G,P and number of inputs K.
K R HB /HS G, P accuracy # of params

HB 2, 1 87.3 21 %
2 3

HS
2, 1 88.5 23 %
1, 2 88.7 23 %

HB 2, 1 71.2 50 %
3

HS
2, 1 71.3 75 %
1, 2 76.8 75 %

4 HB 4, 1 75.6 80 %
5 4, 1 75.6 100 %

HS 2, 2 78.0 86 %
1, 4 82.3 100 %

6. CONCLUSION

In conclusion, this paper proposes a novel coded computation
scheme for distributed computation of inference phase of machine
learning algorithms based on AICC [11]. The proposed scheme
allows for the distribution of tasks to any number of workers while
ensuring the recovery-through-interpolation property of LCC for an
approximate recover of results with desired accuracy. Moreover, a
novel variant of AICC’s computation operation is presented to ad-
dress privacy concerns of input data, with only a small degradation
in performance. The proposed scheme’s tunable design parameters
make it amenable to systems with varying capabilities, and allows
for a judicious trade-off between accuracy and available computa-
tion resources. Experimental results for image classification on the
Fashion-MNIST dataset demonstrate that the proposed scheme is
superior (in terms of accuracy) and more flexible (in adaptation to
various systems) than the existing schemes.

7. REFERENCES

[1] Songze Li and Salman Avestimehr, “Coded computing: Miti-
gating fundamental bottlenecks in large-scale distributed com-
puting and machine learning,” Foundations and Trends in

Communications and Information Theory, vol. 17, no. 1, pp.
66–96, 2020.

[2] Qian Yu, Mohammad Maddah-Ali, and Salman Avestimehr,
“Polynomial codes: an optimal design for high-dimensional
coded matrix multiplication,” Advances in Neural Information
Processing Systems, vol. 30, 2017.

[3] Sanghamitra Dutta, Mohammad Fahim, Farzin Haddadpour,
Haewon Jeong, Viveck Cadambe, and Pulkit Grover, “On
the optimal recovery threshold of coded matrix multiplication,”
IEEE Transactions on Information Theory, vol. 66, no. 1, pp.
278–301, 2019.

[4] Vipul Gupta, Shusen Wang, Thomas Courtade, and Kannan
Ramchandran, “Oversketch: Approximate matrix multiplica-
tion for the cloud,” in 2018 IEEE International Conference on
Big Data (Big Data). IEEE, 2018, pp. 298–304.

[5] Tayyebeh Jahani-Nezhad and Mohammad Ali Maddah-Ali,
“Codedsketch: A coding scheme for distributed computation
of approximated matrix multiplication,” IEEE Transactions on
Information Theory, vol. 67, no. 6, pp. 4185–4196, 2021.

[6] Qian Yu, Songze Li, Netanel Raviv, Seyed Moham-
madreza Mousavi Kalan, Mahdi Soltanolkotabi, and Salman A
Avestimehr, “Lagrange coded computing: Optimal design for
resiliency, security, and privacy,” in The 22nd International
Conference on Artificial Intelligence and Statistics. PMLR,
2019, pp. 1215–1225.

[7] Lingjiao Chen, Hongyi Wang, Zachary Charles, and Dimitris
Papailiopoulos, “Draco: Byzantine-resilient distributed train-
ing via redundant gradients,” in International Conference on
Machine Learning. PMLR, 2018, pp. 903–912.

[8] Mohammad Mohammadi Amiri and Deniz Gündüz, “Compu-
tation scheduling for distributed machine learning with strag-
gling workers,” IEEE Transactions on Signal Processing, vol.
67, no. 24, pp. 6270–6284, 2019.

[9] Jack Kosaian, KV Rashmi, and Shivaram Venkataraman,
“Learning a code: Machine learning for approximate non-
linear coded computation,” arXiv preprint arXiv:1806.01259,
2018.

[10] Jack Kosaian, KV Rashmi, and Shivaram Venkataraman,
“Learning-based coded computation,” IEEE Journal on Se-
lected Areas in Information Theory, vol. 1, no. 1, pp. 227–236,
2020.

[11] Navneet Agrawal, Yuqin Qiu, Matthias Frey, Igor Bjelakovic,
Setareh Maghsudi, Slawomir Stanczak, and Jingge Zhu, “A
learning-based approach to approximate coded computation,”
in 2022 IEEE Information Theory Workshop (ITW). IEEE,
2022, pp. 600–605.

[12] Han Xiao, Kashif Rasul, and Roland Vollgraf, “Fashion-mnist:
a novel image dataset for benchmarking machine learning al-
gorithms,” arXiv preprint arXiv:1708.07747, 2017.

[13] Shivam S Kadam, Amol C Adamuthe, and Ashwini B Patil,
“Cnn model for image classification on mnist and fashion-
mnist dataset,” Journal of scientific research, vol. 64, no. 2,
pp. 374–384, 2020.

[14] Fisher Yu and Vladlen Koltun, “Multi-scale context
aggregation by dilated convolutions,” arXiv preprint
arXiv:1511.07122, 2015.

	 Introduction
	 Preliminaries
	 AI-aided Coded Computation (AICC)
	 Encoding operation E
	 Computation operation H
	 Decoding operation
	 Training procedure

	 Coded Distributed Image Classification
	 Encoding operation design
	 MLP for encoding polynomial E
	 Convolution layers (CLs) for encoding polynomial E

	 Computation operation design
	 Computation function HS
	 Computation function HB

	 Decoding operation design
	 Training procedure

	 Simulations
	 Results
	 Comparison of different DNN architectures
	 Performance trade-off in selection of design parameters

	 Conclusion
	 References

