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ABSTRACT

Snoring is a common disorder that affects people’s social and
marital lives. The annoyance caused by snoring can be par-
tially solved with active noise control systems. In this con-
text, the present work aims at introducing an enhanced sys-
tem based on the use of a convolutional recurrent neural net-
work for snoring activity detection and a delayless subband
approach for active snoring cancellation. Thanks to several
experiments conducted using real snoring signals, this work
shows that the active snoring cancellation system achieves
better performance when the snoring activity detection stage
is turned on, demonstrating the beneficial effect of a prelimi-
nary snoring detection stage in the perspective of snoring can-
cellation.

Index Terms— snoring activity detection, active snoring
cancellation, convolutional recurrent neural network, adaptive
subband algorithm

1. INTRODUCTION

The noise caused by snoring activity is an important prob-
lem in our society. The snoring noise can reach a sound level
of 90 dB and have harmful implications, e.g., loss of produc-
tivity, attention deficit, and unsafe driving [1, 2]. Recently,
various studies have identified significant similarities between
snoring and vocal signal [3, 4]. In fact, both of them present
high-order harmonics preceded by a fundamental frequency
in the spectrum [4]. The snoring activity is composed of two
phases, i.e., inspiration and expiration. The power of the snor-
ing signal is mostly concentrated on lower frequencies of the
spectrum. In particular, the inspiration produces a signal be-
tween 100Hz and 200Hz, while the expiration is focused be-
tween 200Hz and 300Hz. Thus, the fundamental frequency,
which must be deleted, is located between 100Hz and 300Hz.

In the literature, several approaches can be found for snor-
ing attenuation. Passive solutions involve physical devices
such as earplugs or special pillows [5] that may be trouble-
some for the user. Moreover, these techniques are ineffective
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at low frequencies and can be very expensive. In contrast, ac-
tive noise control (ANC) systems can reduce low-frequency
noises that passive approaches cannot attenuate. In particular,
ANC techniques are based on the introduction of a secondary
source that produces a signal capable of generating destruc-
tive interference in a desired area controlled by one or more
microphones. ANC systems must be adaptive to follow the
variations of the noise recorded at the error and reference mi-
crophones. They are usually implemented using filtered-X
least mean square (FxLMS) [6] algorithm, where the estimate
of the secondary path is used to calculate the output signal at
the error microphone. Examples of FxLMS applications for
active snoring cancellation can be found in [1, 7, 8, 9, 10, 11].

However, snoring is a non-stationary signal that can cause
issues during the adaptation process. Specifically, its irreg-
ular nature can result in signal absence, which in turn can
negatively impact the performance of the adaptive algorithm.
Therefore, to ensure active snoring cancellation, it is crucial
to support it with a snoring activity detection algorithm that
can identify the presence of snoring.

In the literature, deep learning algorithms for sound event
detection and classification have also been applied to snor-
ing audio signals. To this end, several studies have employed
2D convolutional neural networks (2D-CNNs) that rely on
feature learning of time-frequency representations computed
from fixed-length audio segments [12, 13, 14]. In these stud-
ies, the high accuracy in snoring detection derives from both
the acoustic features chosen and the wide signal analysis win-
dows (≥ 1 s) that entail a slow decision response of the algo-
rithm. This issue can be solved by sequential models that an-
alyze the signal over short frames, such as 1D convolutional
neural networks (1D-CNNs) and recurrent neural networks
(RNNs). In [15, 16], 1D-CNNs proved to be less performing
than 2D-CNNs, but the low computational cost due to fea-
ture extraction from the raw audio signal makes them suitable
for end-to-end systems. In [17, 18], RNNs exploited the fea-
tures of past and present time-frequency representations of
the audio signal over reduced temporal windows (25−30ms)
for the snoring activity detection, confirming their effective-
ness in sequential data analysis. Promising results have also
been obtained from the combination of convolutional and se-
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quential models, which together form convolutional recurrent
neural networks (CRNNs). The studies described in [19, 20]
demonstrated that CRNNs with gated recurrent units (GRUs)
or long short-term memory (LSTM) layers outperform 2D-
CNNs in snoring detection. However, the performance of
each approach is not easily comparable due to the different
quantity, quality, and acquisition methods of the data used for
training and testing the algorithms.

Given these premises, requirements such as reliability in
signal classification and the capability to generalize in the
presence of different background noises are some of the de-
sired ones for an effective active snoring cancellation system.
In this context, an enhanced system for the detection and ac-
tive cancellation of snoring signals is presented. In particular,
starting from the use of a CRNN for snoring activity detec-
tion, a delayless subband approach for active snoring cancel-
lation has been improved, reporting good results in terms of
convergence time and cancellation quality achieved. The pa-
per is focused on the performance of the active snoring can-
cellation system with and without the aid of the snoring de-
tection stage; therefore, since our interest is to evaluate the
active snoring cancellation performance, the comparison of
our snoring activity detection system with others in the litera-
ture is not addressed here because out of our scope, but it can
be addressed in future work.

The paper is organized as follows. Section 2 and Section 3
describe the definition of the algorithm for both snoring ac-
tivity detection and active snoring cancellation, respectively.
Experimental results are reported in Section 4, where several
results obtained with snoring signals are presented. Finally,
conclusions are drawn in Section 5.

2. SNORING ACTIVITY DETECTION

In this study, we address the snoring activity detection (SAD)
methodology in three stages, as reported in Figure 1. The
first stage involves audio signal processing for acoustic fea-
ture computation. The second stage consists of data analysis
using a CRNN for a binary snoring/non-snoring classification
task, where a snoring event represents the positive class (label
1), and all non-snoring events constitute the negative class (la-
bel 0). Finally, in the third stage, the predictions produced by
the neural network are post-processed with the “Hangover”
algorithm. This pipeline - binary classifier plus output filter
(Hangover) - is common in Voice Activity Detection tasks.

More in detail, in the first stage, the stereo audio signal
is turned into monophonic by channel averaging. Log-Mel
spectrograms are computed, and 40 log-Mel coefficients are
extracted by using 30ms-windows with a shift of 10ms.

The second stage involves the classification and is per-
formed by the CRNN, which takes as input the log-Mel coef-
ficients computed in the previous step. The convolutional part
of the CRNN comprises three consecutive blocks, each con-
sisting of a convolutional layer, a batch normalization layer,
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Fig. 1. Scheme of the SAD system.

a dropout layer, and a max pooling layer. In each block, con-
volutional layers have 32 filters with size (3,3), and their out-
put is normalized and regulated by the Leaky Rectified Linear
Unit (Leaky ReLU) [21] activation function. All dropout lay-
ers are characterized by a rate equal to 0.3, while max-pooling
layers have filters decreasing with each block, from (5,1) to
(4,1) to (2,1). The output is then flattened and passed to the
recurrent part of the network, composed of two blocks. Each
consists of a 32-unit GRU layer with tanh and hard sigmoid
activation functions to update and reset the gates, respectively,
and a dropout layer with a drop rate of 0.3. Finally, a time-
distributed feed-forward output layer, with a single neuron
and sigmoid as activation function, returns predictions in the
range [0,1], each one representing the probability that a frame
is associated with a snoring event. Then, the predictions are
binary-encoded (“binarization”), using a threshold of 0.5, so
that they can be leveraged by the ASC algorithm.

In the third stage, the predictions output by the CRNN are
post-processed with the Hangover algorithm presented in Al-
gorithm 1. It works with an input buffer, buffIn, which acts as
a FIFO (First-In First-Out) register that is automatically up-
dated with a new sample every 10ms, and takes as input the
number of predictions in the input audio file L, the size of the
input buffer X , and the number of predictions k that we would
like to use to characterize a snoring event. When the input
buffer is filled with the first X samples, buffInFull() returns



the execution of the code to the caller; then the input buffer is
read and a majority voting scheme is applied. In particular, if
the input buffer contains more zeros than ones, its content is
copied into the output buffer, buffOut. On the other hand, if it
contains more ones than zeros, the Hangover algorithm con-
siders the beginning of a snoring event by setting k consecu-
tive predictions to one. In this way, a snoring event is more
likely to be characterized by all predictions equal to one. This
method aims to decrease the number of sporadic false nega-
tives (FNs) predictions (i.e., snoring occurrences erroneously
classified as non-snoring) within a snoring sequence, which
could degrade the ASC performance. Although this method
is not robust against false positives (FPs), it is able to reduce
FNs, which are those to which the ASC algorithm is most
susceptible.

Algorithm 1 Hangover algorithm
Input: L, k, X
Output: buffOut // output buffer
outIdx← 0 // index output buffer
buffInFull(X) // returns when buffIn full
while outIdx ≤ (L− 1) do

buffIn← readbuffIn()
zeros← FindZeros(buffIn) // Find n° of 0s
ones← FindOnes(buffIn) // Find n° of 1s
if ones > zeros then

startIdx = outIdx
buffOut[startIdx−X : startIdx+ 1]← I(X, 1)
i← 1
while 1 do

← readbuffIn() // Discard reading
if (i ≤ k −X) and (outIdx ≤ L− 1) then

outIdx← startIdx+ i
buffOut[outIdx]← 1
i← i+ 1

else
outIdx← outIdx+ 1
break

else
if outIdx = 0 then

buffOut[outIdx : outIdx+X]← buffIn
outIdx← outIdx+X

else
buffOut[outIdx]← buffIn[−1]
outIdx← outIdx+ 1

3. ACTIVE SNORING CANCELLATION

Active Snoring Cancellation (ASC) is developed considering
a feed-forward filtered-X configuration and a subband imple-
mentation as reported in [11]. Figure 2 shows the scheme of
the algorithm. There is a reference microphone that picks up

the snoring source x(n) and an error microphone that picks
up the noise in the area to be quiet e(n). Then, a loudspeaker
reproduces the interference signal y(n) generated by x(n) fil-
tered with the adaptive filter w(n) that represents the estima-
tion of the primary path p(n). The coefficients of this filter
are produced by the subband adaptive filtering (SAF) block
on the basis of x(n) filtered with the estimation of the path
between the loudspeaker and the error microphone, i.e., the
secondary path s(n), the error e(n), and snoring detection
block predictions.

The SAF block has been developed considering a delay-
less subband adaptive filter algorithm as first proposed in [22]
and efficiently implemented in [11, 10]. In particular, the
signal x′(n) and the error e(n) are decomposed in subband
by an analysis filter-bank, as x′

k(n) and ek(n) for each k-
th subband, respectively. The weights of the k-th subband
wSAF

k (n) are updated following the normalized least mean
square (NLMS) algorithm as

wSAF
k (n+ 1) = wSAF

k (n) + µw
x′∗k (n)ek(n)
α+ ||x′k(n)||2

, (1)

where x′∗
k (n) is the complex conjugate of the input signal of

the k-th subband x′
k(n), µw is the step size, and α is a small

coefficient that avoids division by zero. The fullband filter
w(n) of length N is obtained by stacking all the subband
weights following the steps below:

• the subband weights are reported in the frequency do-
main by (N/D)-point fast Fourier transform (FFT),
with D = M/2 the decimation factor and M the num-
ber of subbands;

• the first half of the array representing the fullband filter
is calculated by stacking the complex samples of FFT;

• the rest of the array is obtained by the complex con-
jugate reversed version of the first half and the central
point is set to zero.

• the fullband filter is computed by a N -point inverse
FFT of the array.

The SAF algorithm is activated when the SAD algorithm
provides a prediction of snore presence.

4. EXPERIMENTAL RESULTS

4.1. Dataset

The A3-Snore dataset [19] has been selected for the exper-
imental phase. It is a collection of audio files containing
snoring events emitted by two male volunteers aged 48 and
55 during overnight sleep. The recording setup is a ZOOM-
H1 Handy Recorder with two unidirectional microphones ori-
ented perpendicularly. Acquisitions were made in a single
room measuring 4 × 2.5 m with the sensors positioned near
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Fig. 2. Scheme of the ASC algorithm with SAD.

the snorer’s head. The corpus includes almost 7 h of audio
material split into 10-minute segments, selected according to
the highest frequency of snoring events associated with each
volunteer (“snorer 1” and “snorer 2”). All audio files, charac-
terized by wav format, are stereophonic with a sampling rate
of 44.1 kHz and 16-bit encoding. A metadata file reports an-
notations of the start and end timestamps of snoring events
with a resolution of 1 second. The dataset is organized into
two folders, each associated with a snorer, with an unbalanced
distribution between snoring and non-snoring events. Table 1
summarizes the composition of the A3-Snore audio collec-
tion. Files associated with Snorer 1 have been used for the
training set, whereas Snorer 2’s files have been split with a
ratio of 50% and used for validation and test sets.

4.2. Snoring Activity Detection

In the experiments, training was performed in a supervised
manner for 500 epochs by monitoring the Average Preci-
sion (AP) - also known as the area under the precision-recall
curve (AUC-PR) - on the validation set, and exploiting the
early-stopping strategy to arrest the learning process when
the model does not improve for 20 consecutive epochs.

An adaptive learning rate according to the AdaDelta [23]
optimization algorithm was selected, with an initial value
equal to 1 and a decay rate of 0.95. The binary cross-
entropy was used as the loss function. The experiments
were carried out on an NVIDIA DGX Station A100 with dual
64-Core AMD EPYC 7742 @3.4 GHz and eight NVIDIA
A100-SXM4-40 GB GPUs. The server was running Ubuntu
20.04.3 LTS. The neural network has been implemented with
the Tensorflow [24] deep learning framework.

Table 1. Statistics of the A3-Snore dataset.

Snorer
Number
of files

Total
duration

[s]

Snoring
duration

[s]

Snoring
ratio
[%]

1 18 10 800 1127 10.4
2 23 13 800 2017 14.6

Total 41 24 600 3144 12.8
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Fig. 3. Predictions post-processed by the Hangover algo-
rithm of an audio signal (a), and their difference with respect
to raw predictions before the processing stage (b).

CRNN classification performance was evaluated consid-
ering the AP, obtaining a value equal to 77.54%.

For what concerns the Hangover algorithm, the size X
of the input buffer has been chosen in order to reduce the
number of FNs while keeping the latency as low as possi-
ble. Moreover, since the Hangover algorithm applies a ma-
jority voting scheme, X should be an odd number. We found
the right trade-off by setting X = 3; in this way, the post-
processing algorithm is able to improve the CRNN output
while maintaining a relatively low latency (i.e., 30 ms). Since
for a 10-minute audio file we have 60 001 predictions, we set
L = 60 001, whereas k has been set equal to 100.

In order to evaluate the performance of the overall active
snoring detection system also from a graphical perspective,
we report in Fig. 3(a) a 100-second excerpt of an audio sig-
nal employed in testing and the associated predictions gen-
erated by the overall snoring activity detection system, after
the post-processing stage. Moreover, in order to also visu-
alize the Hangover Algorithm performance, Fig. 3(b) shows
the binary predictions output of the CRNN before and after
the post-processing stage; the time interval is more limited to
better highlight the difference.

4.3. Active Cancellation with Snoring Activity Detection

The presented ASC algorithm has already been validated in
[11, 10], by comparing its performance with the state-of-the-
art algorithm of [25], considered as reference. In this paper,
the ASC algorithm is improved by applying the SAD, and
the experiments are mainly focused on evaluating the perfor-
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Fig. 4. Comparison between the measured primary path, the
primary path estimated in the case of SAD OFF and SAD
ON, (a) in the time domain and (b) in the frequency domain,
considering an input signal with SNR = 10 dB.

mance of the system with and without SAD. Starting from
the snoring signals of the dataset described in Section 4.1,
primary path p(n) and secondary path s(n) are simulated
considering responses measured in a semi-anechoic chamber
from the setup of [9]. Since p(n) and s(n) are modeled as FIR
filters with a length of 256 samples, the length of the adaptive
filter w(n) is set to 512 taps. For the subband structure, the
length of the prototype filter is 256 samples, the number of
subbands is M = 64, and the step size is µ = 0.03. The
performance of the proposed system has been evaluated in
terms of primary path estimation, varying the signal-to-noise
ratio (SNR) of the signal d(n) (cf. Figure 2).

The primary path estimated by the ASC with the SAD is
compared with the one estimated without SAD and with the
measured primary path. Figure 4 shows the obtained results
considering SNR = 10 dB. The difference between the es-
timated responses and the measured one is evaluated by the
log-spectral distance (LSD), in the frequency domain, and
by the misalignment, in the time domain. The LSD evalu-
ates the spectral difference between two frequency responses
[26]. Similarly, the misalignment evaluates the difference be-
tween the measured and the estimated path in the time domain
and gives a measure of the convergence rate [10, 11]. Denot-
ing the measured primary path as p(n), the estimated primary
path as w(n), and their respective transfer functions as P (k)
and W (k), the LSD is computed as

LSD =

√√√√ 1

k2 − k1 + 1

k2∑
k=k1

[
10 log10

∣∣P (k)
∣∣2∣∣W (k)
∣∣2
]2

, (2)

Table 2. Values of the LSD and the misalignment obtained
considering SAD OFF and SAD ON for different SNR values
of the input signal. The LSD is calculated in the frequency
range of [100Hz–20 kHz].

SNR [dB] LSD [dB] Misalignment [dB]
SAD OFF SAD ON SAD OFF SAD ON

10 0.79 0.72 -4.05 -6.05
15 0.49 0.37 -10.11 -12.51
20 0.25 0.21 -16.20 -14.86

where k1 and k2 delimit the frequency range within which
the LSD is estimated, defined as B = [k1

fs
K , k2

fs
K ] =

[100Hz, 20 kHz], with K = 4096 the number of frequency
bins for the FFT computation, and fs = 44.1 kHz the sam-
pling frequency. The misalignment is calculated as

MIS = 20 log10
||p(n)− w(n)||
||p(n)||

. (3)

Table 2 shows the values of the LSD and the misalignment
considering signals with different SNR levels. The estimation
performance improves with the SNR increase both with and
without SAD and in terms of both LSD and misalignment.
The lowest values of the LSD are obtained when the SAD is
applied, i.e., when the adaptation algorithm of the ASC is ex-
ecuted only when the snoring signal is detected by the SAD.
This result is confirmed by Figure 4(b), where the magnitude
frequency response of the primary path is well estimated up
to 10 kHz with SAD, while the frequency response estimated
without SAD deviates from the measured one for all the fre-
quency spectrum. Differently, the difference in the misalign-
ment of the two cases is more difficult to recognize. In fact,
looking at Figure 4(a), the main peak of the impulse response
is rightly detected both with and without SAD, but both cases
introduce some late reflections not present in the measured
impulse response.

5. CONCLUSIONS

In this paper, an enhanced system that combines detection
and active cancellation of snoring signals has been proposed.
For snoring activity detection, a convolutional recurrent neu-
ral network fed by log-Mel coefficients has been implemented
to classify snoring and non-snoring events. For active snoring
cancellation, a feed-forward filtered-X configuration based on
a delayless subband adaptive filter algorithm has been devel-
oped. The combined use of the two algorithms results in
a single improved system for ASC. This work is a prelimi-
nary study that offers large room for improvement. For the
SAD, more performing neural architectures based on unsu-
pervised or semi-supervised deep learning strategies coupled
with larger and more challenging datasets can be explored.
The ASC can be improved by introducing non-uniform sub-
band structures and different environments with different re-



verberations could be taken into account to test the proposed
system.
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