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ABSTRACT

Reducing noise interference is crucial for automatic speech
recognition (ASR) in a real-world scenario. However, most
single-channel speech enhancement (SE) generates ”process-
ing artifacts” that negatively affect ASR performance. Hence,
in this study, we suggest a Noise- and Artifacts-aware loss
function, NAaLoss, to ameliorate the influence of artifacts
from a novel perspective. NAaLoss considers the loss of
estimation, de-artifact, and noise ignorance, enabling the
learned SE to individually model speech, artifacts, and noise.
We examine two SE models (simple/advanced) learned with
NAaLoss under various input scenarios (clean/noisy) using
two configurations of the ASR system (with/without noise
robustness). Experiments reveal that NAaLoss significantly
improves the ASR performance of most setups while preserv-
ing the quality of SE toward perception and intelligibility.
Furthermore, we visualize artifacts through waveforms and
spectrograms, and explain their impact on ASR.

Index Terms— single-channel speech enhancement,
noise-robust speech enhancement, processing artifacts

1. INTRODUCTION

The goal of speech enhancement (SE) is to enhance the qual-
ity and intelligibility of a speech signal contaminated by vari-
ous kinds of noise. Recent advances in machine learning and
deep neural networks have shown promise in improving SE
performance by learning to model the complex statistical re-
lationships between clean speech and noise. In particular,
many studies have shown that multi-channel SE behaves well,
even if cascaded with automatic speech recognition (ASR)
systems [1, 2]. However, multiple-array microphones are still
uncommon, and single-channel SE is essential in real-world
scenarios such as mobile devices and hearing aids.

It is noteworthy that while single-channel SE help reduces
the impact of noise on speech signals, it may also introduce
unnatural artifacts and distortions [3–6]. These issues could
result in mistakes during the feature extraction stage of the
ASR system, which relies on accurate representations of the
speech signal for classification. For example, suppose an SE
algorithm introduces artifacts that alter the timing or dura-

tion of speech sounds. It could lead to misaligned words or
phonemes, which lowers ASR performance. The discrepancy
in training objectives between SE and ASR could be a rea-
son for the presence of artifacts. Although joint training [4,7]
or data-augmentation techniques [5, 8] have been proposed
to address this issue, revising the ASR system is not always
practical. For SE-based robust ASR, it is crucial to eliminate
the detrimental artifacts that hinder recognition.

Since artifacts differ depending on the SE models used,
finding an explicit expression that formulates artifacts is
arduous. One endeavor along this direction is orthogonal
projection-based error decomposition [6, 9], which analyzes
signals by projecting them into the space occupied by speech
and noise. However, these formulations are somewhat inaccu-
rate because noise and source signals may not be orthogonal,
as in the babble noise scenario.

Is there a facile way to train an SE model that not only
maintains the already established enhancement quality but
also improves recognition accuracy? We reckon that the so-
lution lies in the employed objective function. Typically, the
loss function in SE minimizes the distance between the esti-
mated and target clean speech [10,11]. However, the learning
scheme that distinguishes between speech and noise signals
has yet to be comprehensively considered, making SE models
unable to discern between the speech and noise components
of a noisy speech. In particular, the mapping-based SE meth-
ods tend to produce false alarms or fake speech1, as their
initial design is not meant to separate speech and noise. Con-
sequently, we only focus on masking-based SE and attempts
to upgrade them.

We rethink the goal of SE and outline four expectations.
For a masking-based SE front-end with a noisy input:

1. the output should not include artifacts;

2. the noise component should be masked out while re-
taining clean speech;

3. speech quality and intelligibility should be optimized;

4. the SE should benefit the subsequent ASR of any form.

1as shown in supplementary file https://reurl.cc/01aOYY, un-
der directory ”wavs/false alarm”.
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Accordingly, we present a Noise- and Artifact-aware loss
function, NAaLoss, to learn the SE framework, aiming to
bridge the gap between reality and the above expectations.
An extensive set of experiments exhibit that the presented
NAaLoss benefits the SE method by providing significant
improvement toward ASR, demonstrating its superiority.

2. FORMULATION

2.1. Problem

To propose a comprehensive solution, we must first identify
the problem. Despite their diversity and unpredictability, arti-
facts can be characterized as signals that 1) degrade the Word
Error Rate (WER), 2) are ignored in perception/intelligibility
metrics, 3) are produced by the SE module, and 4) are distor-
tions to natural signals. [6] We can then narrow down how the
artifacts can be formulated using these characteristics.

A noisy speech z ∈ RT can be modeled through a single
microphone as z = x+ y, where x ∈ RT is the clean speech,
and y ∈ RT is the noise. Let f denote a SE model, and θ
denotes artifacts. We hold three hypotheses:

1. f(x) = θc + x; an SE model f consumes clean speech
x and outputs a combination of clean-conditioned arti-
facts θc and clean speech x.

2. f(z) = θm + ỹ + x; an SE model f consumes noisy
speech z and outputs a mixture of multi-conditioned
artifacts θm, residual noise ỹ, and clean speech x.

3. f(y) = ỹ; residual noise ỹ is the outcome of an SE
model f fed with pure noise y.

Inspecting previous works, most do not explicitly define
artifacts introduced by non-linear transformations in SE mod-
els. From these hypotheses above, we can formulate artifacts
using two options:

α. θ = 1
2 (f(z) + f(x) − f(y) − 2x), referred to as

condition-invariant artifacts by assuming θc = θm = θ.

β. θc = f(x)−x and θm = f(z)−f(y)−x, which models
clean- and multiple-conditioned artifacts individually.

While option α is straightforward and the artifact term can
be determined by merely solving the equations in the three
hypotheses, it may not always be feasible. Contrarily, option
β asserts that artifacts are case-sensitive, and that is more re-
alistic. Moreover, the characteristics of the received signal
always change in a real environment, making it necessary to
model artifacts created by an SE module from a multi-aspect
perspective.

2.2. Proposed solution

Generally, the loss function utilized in an SE module is the
distance between the enhanced and target speech representa-

tions [11]. However, as previously indicated, artifacts gener-
ated by SE regarding different inputs have yet to be consid-
ered. As a consequence, we propose the Noise- and Artifacts-
aware Loss function (NAaLoss), which contains three com-
ponents as follows:

1. Loss of estimation, Lestim = dist(f(z), x), which cal-
culates the distance between the enhanced speech f(z)
and target clean speech x. This loss is employed in the
learning of most SE models.

2. Loss of de-artifact, Ldeatf. In particular, Ldeatf =
dist(θ,0) if we use option α, which treats artifacts
to be condition-invariant. On the contrary, Ldeatf =∑

i dist(θi,0), i ∈ {c,m} to consider artifacts com-
ing from different conditions as in option β. This loss
considers artifacts to learn an SE model.

3. Loss of noise ignorance, Lignor = dist(f(y),0), which
measures the magnitude of residual noise ỹ. This loss
reflects SE’s capacity for noise reduction.

Here, the symbol 0 indicates a tensor filled with zeros,
and the function dist(·) can be any type of distance metric,
such as L1 or L2, performed on any feature domain of signals.
Afterward, we build the NAaLoss as a weighted sum of these
three components:

LNAa = (1− α− β)Lestim + αLdeatf + βLignor,

where α = 0.1 and β = 0.1 are designated empirically.
We evaluate our proposed loss function on two SE mod-

els, one simple and one advanced. Each model is either pre-
trained (pre) or trained-from-scratch (scr). The pre-trained
type, in particular, implies that the initial parameter set has
been pre-optimized for gaining the best speech quality and
intelligibility. As for the two SE models, the simple one
is set to be the example recipe in Speechbrain [12], whereas
MANNER [13] is chosen as the advanced one. Both mod-
els are masking-based. However, the former operates in the
time-frequency domain, and the latter directly handles time
signals. With this setting, we can also test the generalizability
of the proposed loss function.

Finally, we generate 7 combinations of models. The
original simple/advanced SE models without further learning
are denoted as f

S/A
org , and the simple/advanced models fur-

ther learned through NAaLoss option α/β from pre-trained
parameters/trained-from-scratch are denoted in the form of
f
S/A
pre/scr,α/β . For example, fA

pre,α describes the advanced
model with pre-trained parameters that is further learned with
NAaLoss using option α.

3. EXPERIMENTS

3.1. Experimental Settings

To validate the effectiveness of our proposed solution, we
conduct a series of experiments on the VoiceBank-DEMAND



Table 1: The baselines. The header indicates the input to
ASR, while the first and second rows show the WERs (lower
is better) using the ASR first column indicated. The PESQ
and STOI scores (greater is better) are in the third and fourth
rows. CCT/MCT-AM denotes the acoustic model trained in
the clean/multi condition mode.

x fS
org(x) fS

org(z) fA
org(x) fA

org(z) z

CCT-AM 5.04 5.97 10.21 5.28 7.37 23.76
MCT-AM 4.86 5.10 7.21 4.91 6.62 8.32

PESQ - 4.47 2.69 4.22 3.11 1.97
STOI(%) - 99.6 93.8 98.8 94.9 92.0

[14] benchmark dataset, a widely-adopted and open-source
benchmark corpus for SE. In the training set, 11,572 utter-
ances (from 28 speakers) are pre-synthesized with 10 types
of noise from the DEMAND database [15] at four different
signal-to-noise ratio (SNR) values: 0, 5, 10, and 15 dB, while
the test set contains 824 utterances (from 2 speakers) contam-
inated by five types of noise at SNR values of 2.5, 7.5, 12.5,
and 17.5 dB. In addition to training, we set aside around 200
utterances from the training set for validation. All speech data
have a sample rate of 16 kHz.

The configuration of simple SE remains unchanged, as
provided in the repository2. On the other hand, we use
MANNER-small for advanced SE along with the configura-
tion default in the repository3. We optimize SE models using
the Adam optimizer [16] with past momentum loaded.

To see whether NAaLoss alleviates artifacts under any
form of subsequent ASR, as outlined in Section 1, we prepare
two ASR systems, CCT-AM and MCT-AM, to recognize the
enhanced speech. The CCT-AM denotes the acoustic model
(AM) trained in the clean condition mode using all the clean
utterances. MCT-AM, on the other hand, indicates the AM
trained with utterances corrupted by multi-condition noises.
Both AMs are Kaldi-based hybrid DNN-HMM acoustic mod-
els [17] trained with lattice-free MMI objective function, and
their DNN components utilize time-delay neural networks.

3.2. Baselines

Tab. 1 shows the results of various SE and ASR baselines, in-
cluding clean speech x, noisy speech z, and enhanced speech
with respect to simple or advanced SE models. It is impor-
tant to realize that the WERs for clean speech x are supposed
to be the best possible ASR results for any SE model output,
regardless of input type. In addition, the perception (Percep-
tual Evaluation of Speech Quality, PESQ) and intelligibility
(Short-Time Objective Intelligibility, STOI) scores of various
SE are also reported.

2https://github.com/speechbrain/speechbrain/
tree/develop/recipes/Voicebank/enhance/spectral_
mask

3https://github.com/winddori2002/MANNER

Table 2: The results on simple SE. The performance superior
and equal to the baseline (fS

org) are in blue and green, respec-
tively.

fS
pre,α(x) fS

pre,α(z) fS
pre,β(x) fS

pre,β(z) fS
scr,β(x) fS

scr,β(z)

CCT-AM 5.44 9.63 5.33 9.53 6.36 14.12
MCT-AM 5.00 7.08 4.99 7.03 6.22 9.03

PESQ 4.43 2.66 4.43 2.68 3.50 2.41
STOI(%) 99.5 93.8 99.5 93.8 95.1 89.2

Ideally, a well-designed SE model should not introduce
significant changes to clean speech inputs. However, observ-
ing the CCT-AM WERs of x, fS

org(x), and fA
org(x), we can

identify the presence of clean-conditioned artifacts θc intro-
duced by the SE models. Comparing the CCT-AM WERs of
z, fS

org(z), and fA
org(z), on the other hand, can show that the

SE models reduce WERs when confronted with noisy input,
yet further tweaking on SE can lead to improved outcomes.
In this case, it is difficult to determine whether artifacts or
residual noise undermines the WERs of each SE output by
merely reading the statistics. As a remedy, Section 4 will
showcase the impact of artifacts through visualization. These
observations apply to MCT-AM as well, but with a shorter
performance range due to its robustness.

Furthermore, something interesting is that fS
org(x) ex-

hibits worse WERs but higher PESQ than fA
org(x). This

could demonstrate two points: 1) an SE module may not
always handle a clean input appropriately, hindering its po-
tential to adapt to new scenarios; 2) exceeding a certain
level of PESQ/STOI (contribution by denoising), a higher
PESQ/STOI does not fully translate to a lower WER (deteri-
oration by artifacts).

3.3. Simple enhancement

Tab. 2 shows the results of employing NAaLoss on simple
SE. As we can see, except for the trained-from-scratch model
fS
scr,β , further learning with NAaLoss makes the model out-

performs the baseline fS
org (scores in blue) with a cost of triv-

ial degradation in perception/intelligibility metrics. In par-
ticular, using option beta with pre-trained parameters leads to
the best result among various settings, approving its effective-
ness of reducing artifacts in a multi-conditioned perspective.

Furthermore, we calculate the relative WER reduction
(WERR) rate to provide more insight, which is defined as:

WERR = (1− WERNAa − WERuc

WERorg − WERuc
)× 100%,

where WERuc, WERorg, and WERNAa are the WERs of un-
processed clean speech, the speech enhanced with the origi-
nal SE model, and the speech enhanced with the NAaLoss-
adopted SE. A higher WERR score signifies that applying
NAaLoss can further reduce the noise and artifacts left over
from the original SE model.

https://github.com/speechbrain/speechbrain/tree/develop/recipes/Voicebank/enhance/spectral_mask
https://github.com/speechbrain/speechbrain/tree/develop/recipes/Voicebank/enhance/spectral_mask
https://github.com/speechbrain/speechbrain/tree/develop/recipes/Voicebank/enhance/spectral_mask
https://github.com/winddori2002/MANNER


Table 3: The results on advanced SE. While the color settings
are the same in Tab. 2, those WERs better than the perfor-
mance of clean speech x are in red.

fA
pre,α(x) fA

pre,α(z) fA
pre,β(x) fA

pre,β(z) fA
scr,β(x) fA

scr,β(z)

CCT-AM 5.16 7.06 5.17 6.83 5.02 7.45
MCT-AM 4.89 6.39 4.88 6.41 4.81 6.46

PESQ 4.18 3.13 4.22 3.11 4.21 2.97
STOI(%) 98.6 94.6 98.8 94.8 99.0 94.6

When the input is x, using the WERs of x, fS
org(x), and

fS
pre,β(x) to compute WERRs gives 33.3% and 51.2% for

CCT-AM and MCT-AM, respectively. The WERRs of the
input z for CCT-AM and MCT-AM are 61.4% and 53.9%,
respectively, using the WERs of x, fS

org(z), and fS
pre,β(z).

We have found that the presented NAaLoss helps the simple
SE achieve better ASR results, and even helps more with
noisy speech z than with clean speech x (33.3% to 61.4%
and 51.2% to 53.9% in WERR). This attributes to individual
modeling of speech, artifacts, and noise in NAaLoss. Fur-
thermore, since MCT-AM outperforms CCT-AM in ASR,
using NAaLoss to reduce artifacts in enhanced clean speech
fS
pre,β(x) can achieve higher WERR in MCT-AM than in

CCT-AM (51.2% vs. 33.3% in WERR).

3.4. Advanced enhancement

The results of employing NAaLoss on advanced SE can be
seen in Tab. 3. Excluding the case of CCT-AM for fA

scr,β(z),
the advanced SE consistently achieves lower WERs (scores
in blue) if it is further adopted by NAaLoss. Again, using
option β with pre-trained parameters guides to the best re-
sult on average (blue in WER, green in PESQ/STOI), con-
firming the stability of this arrangement. Additionally, we
spot that some enhanced versions of speech get higher per-
ception/intelligibility scores than the baseline, e.g., PESQ of
fA
pre,α(z) and STOI of fA

scr,β(x), hinting at the synergistic
capacity of integrating MANNER and NAaLoss in SE. Inter-
estingly, fA

scr,β(x) obtains lower WERs than clean speech x
(5.02% vs. 5.04% under CCT-AM and 4.81% vs. 4.86% un-
der MCT-AM), showing that this SE setup can further benefit
clean speech in ASR.

Similarly, we use the WERR metric to evaluate the ef-
fect of NAaLoss on advanced SE. The WERRs for CCT-AM
and MCT-AM are 45.8% and 60.0% in input x, and 23.2%
and 11.9% in input z. Again, for the clean speech input x,
using NAsLoss can decrease the artifacts caused by the ad-
vanced SE, resulting in a more significant reduction in WERs
for MCT-AM than for CCT-AM (60% vs. 50%), a tendency
also found in the simple SE case. However, NAaLoss con-
tributes less to noisy speech input z than to clean speech x in
WERR (23.2% vs. 50.0% for CCT-AM and 13.1% vs. 60.0%
for MCT-AM), particularly for MCT-AM. The underlying ex-
planation could be that MCT-AM can deal with the artifact

Table 4: The comparison between OA and NAaLoss.

fS
org(z) + 0.5z fS

pre,β(z) fA
org(z) + 0.5z fA

pre,β(z)

CCT-AM 15.01 9.53 8.84 6.83
MCT-AM 7.09 7.03 6.92 6.41

and residual noise left by advanced SE to some extent, and
the effect of utilizing NAaLoss is less significant.

3.5. Comparison

Here, we evaluate the observation-adding (OA) method [6]
and compare it with our presented NAaLoss-wise framework,
which WER results are listed in Tab. 4. OA is utilized in
multiple research fields [18, 19], with the intuition to lessen
nonlinear audio distortion, such as artifacts. Simply adding
a portion of the noisy speech z to the enhanced speech f(z)
defines the OA method. What we have observed in Tab. 4 is
fourfold: 1) NAaLoss outperforms OA in each circumstance;
2) for CCT-AM, which is sensitive to noise, adding back
noise as in OA is destructive (causing WER from 10.21%
to 15.01% for simple SE and from 7.37% to 8.84% for ad-
vanced SE); 3) the effectiveness of OA is counterproductive
on advanced SE, compared to baselines (8.84% v.s. 7.37%
for CCT-AM, and 6.92% v.s. 6.62% for MCT-AM); 4) in
the instance of fS

org(z) + 0.5z with MCT-AM, OA performs
closest to NAaLoss (7.09% vs. 7.03% in WER), which co-
heres with the experiments in [6]. Although OA is beneficial
to a noise-robust ASR, it may not serve as a SE front-end
since it could deteriorate the quality and intelligibility of en-
hanced speech. In comparison, NAaLoss fine-tunes the SE
model parameters with the objective of minimizing artifacts
while maintaining enhancement quality in various scenarios,
accentuating its comprehensiveness.

4. DISCUSSION

This section seeks to further analyze the characteristics of the
presented NAaLoss in light of the evaluation results offered in
the previous section. Regarding the outcomes of simple and
advanced SE, it appears necessary to compromise on some
perception/intelligibility scores in order to achieve a higher
ASR result (a lower WER). However, since NAaLoss consid-
ers multiple aspects within three constituent losses described
in Section 2, the resulting SE model is supposed to provide
a better trade-off between SE and ASR performance. More-
over, it is widely accepted that perceptually degraded speech
has little effect on human recognition, albeit the human au-
ditory system is susceptible to noise. Furthermore, we find
that the perception/intelligibility scores of fA

pre,β(x) are lower
than that of fS

pre,β(x), implying that a more complicated SE
model tends to be less capable of handling clean speech input.
To mitigate this problem, we suggest tuning the weight for the



(a) Overall waveform of clean input. Clean speech x are in red.

(b) Clean-conditioned artifacts θc.

(c) Spectrogram of θc in fA
org(x) (left), and in fA

pre,β(x) (right).

Fig. 1: Case studies on Hypothesis 1. This is an example of
the ground truth ”to speak” recognized correctly in fA

pre,β(x)

but falsely as ”has been” in fA
org(x). Blue and green lines

denote production related to fA
org(x) and fA

pre,β(x), respec-
tively. For sub-figure (a) and (b), we underline the timeline of
the respective phoneme, and the false recognitions are in red.
The bounding boxes in (c) indicate the frequency range of the
specified phoneme.

loss of de-artifact (Ldeatf) in NAaLoss, especially in the clean-
conditioned scenario, whereas we leave this to future works.

Regarding the transcription results, we further analyze
some instances of wrong-recognized words in fA

org and ex-
plicitly reveal the impact of artifacts on ASR. First, in the case
of input x, fA

org tends to wipe out or change the consonants,
e.g., ”hores” misrecognized as ”ores” or ”if” misrecognized
as ”is.” Second, in the case of input z, multiple samples have
reported misaligned and thus misrecognized words because
of the artifacts that alter the timing of speech. For example,
”the same” is misaligned by timing artifacts, leading to mis-
recognition as ”*** plain,” where ”***” denotes an unknown
symbol.

Since enumerating all the WERs is impossible, we visual-
ize two samples, one analyzing hypothesis 1 and another an-
alyzing hypotheses 2 and 3, as shown in Fig. 1 and Fig. 2,
respectively. As Fig. 1 (a) displays, the waveforms of x,
fA
org(x), and fA

pre,β(x) are too close to tell the difference;

(a) Overall waveform of noisy input.

(b) Multi-conditioned artifacts θm.

(c) Spectrogram of θm in fA
org(z) (left), and in fA

pre,β(z) (right).

(d) Residual noise ỹ. The waveform of pure noise y is in yellow.

Fig. 2: Case studies on Hypothesis 2 and 3. This is an exam-
ple of the ground truth ”we think all” recognized correctly in
fA
pre,β(z) but falsely as ”were a goal” in fA

org(z). The color
settings are identical to that of Fig. 1.

however, plotting the clean-conditioned artifacts, as in Fig. 1
(b), it is evident that both signals have distinct characteristics.
We then draw the respective spectrogram in Fig. 1 (c) to better
identify their frequency components and annotate the misrec-
ognized part. Because some artifacts (1.1∼1.3 s) distribute on
the primary frequency ranges of consonant /h/ (0∼1000 Hz)
and vowel /æ/ (800∼1500 Hz) [20, 21], they interfere with
the ASR to choose ”has” rather than ”to.” This also affects
the language model in ASR to select the next word, ”been,”
which is reasonable but wrong. Additionally, we can observe
that artifacts distribute widely and densely in Fig. 1 (c) and
Fig. 2 (c), which may give rise to the false transcription. Last,
we plot the residual noise in Fig. 2 (d) and show that NAaLoss



is also better in noise reduction as fA
pre,β(y) contains smaller

residual noise than fA
org(y).

5. CONCLUSION

This study proposes a novel objective function NAaLoss
adapting SE models toward ideal performance. We exper-
imentally reveal the effectiveness of NAaLoss in 1) elim-
inating artifacts, 2) enhancing noisy speech, 3) preserving
perceptual quality and intelligibility, and 4) generalizing to
subsequent ASR of any form. The waveforms and their corre-
sponding spectral visualizations to show the effectiveness of
NAaLoss can be found in supplementary files. In the future,
we plan on creating an automatic mechanism to determine the
weights of the three constituent losses in NAaLoss. We also
intend to encourage more instantiations in future research that
studies single-channel SE front-ends considering the specific
requirements and constraints of the ASR task.
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