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Domain Adaptation (DA) has recently received significant attention due to its potential to adapt a
learning model across source and target domains with mismatched distributions. Since DA methods
rely exclusively on the given source and target domain samples, they generally yield models that
are vulnerable to noise and unable to adapt to unseen samples from the target domain, which calls
for DA methods that guarantee the robustness and generalization of the learned models. In this
paper, we propose DRDA, a distributionally robust domain adaptation method. DRDA leverages
a distributionally robust optimization (DRO) framework to learn a robust decision function that
minimizes the worst-case target domain risk and generalizes to any sample from the target domain
by transferring knowledge from a given labeled source domain sample. We utilize the Maximum
Mean Discrepancy (MMD) metric to construct an ambiguity set of distributions that provably
contains the source and target domain distributions with high probability. Hence, the risk is shown
to upper bound the out-of-sample target domain loss. Our experimental results demonstrate that
our formulation outperforms existing robust learning approaches.

I. INTRODUCTION

The performance of conventionally trained machine learning models can significantly degrade when the distribution
of the data at the time of inference is different from that at the time of training. Domain adaptation (DA) is
concerned with adapting learning algorithms trained in a source domain using samples from a given distribution
to a target domain where the test samples are drawn from a different distribution [35]. These distributions are
referred to as the source and target domain distribution, respectively. Given its ability to mitigate the distributional
mismatch, DA has made significant strides in diverse application domains, including but not limited to computer
vision [10, 25, 33, 36], natural language processing [14, 15, 23], and regression analysis [7, 8].

The key challenge underlying DA is to reduce the discrepancy between the source and target domain distributions,
which has been tackled using a number of approaches. One main approach is instance weighting in which the source
sample instances are re-weighted to minimize the distribution mismatch while learning a decision function [5, 16, 30].
An alternative strategy is to find across-domain feature representations that simultaneously minimize the discrepancy
between distributions and preserve intrinsic statistical and structural properties of the data [20, 21, 37]. The main
shortcoming of the foregoing approaches is that the decision function they learn is often insufficiently robust to
generalize to unseen samples from the target domain. This is largely because they minimize the discrepancy between
the empirical distributions associated with the given source and target samples rather than the true population
distributions. In turn, the learned decision function has propensity for unpredictable performance in the presence of
noise or with out-of-sample data. This could have drastic impact on AI systems for autonomous driving, automation,
and surveillance which, in addition to knowledge transfer across disparate (but related) domains, prioritize the safety
and robustness to perturbations that disrupt normal operation. This motivates our work on developing robust versions
of DA methods with out-of-sample performance guarantees.
Distributionally Robust Optimization (DRO) is the problem of finding the optimal decision function that minimizes

the worst-case risk over an uncertainty (or ambiguity) set of distributions. The DRO framework has gained attention
in the context of robust optimization [2, 3] and more recently adversarial learning [22, 28]. Several ways have been
proposed in the literature to construct such ambiguity sets. One approach uses moment-based ambiguity sets, which
include all distributions that satisfy certain statistical properties in the form of some moment constraints [9, 12].
An alternative approach – the focus of this work – constructs distance-based ambiguity sets, which define a ball of
distributions that are within a certain distance with respect to some discrepancy metric from an empirical distribution.
A key result of the latter is that, if the ambiguity set is large enough to contain the true population distribution with
high probability, then the DRO objective (i.e., the worst-case risk) gives a high-probability upper bound on the
population risk.
Different discrepancy metrics have been used to construct the ambiguity set such as the Wasserstein distance [11, 26]

and the Kullback–Leibler divergence [1, 17]. While this choice of metrics is motivated by a number of structural re-
sults that facilitate the solution to the DRO formulation, the resulting ambiguity sets have main drawbacks. The
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Kullback–Leibler divergence set contains only discrete distributions with the same finite support as the empirical
distribution, which makes it unsuitable when the true population distribution is continuous. The Wasserstein am-
biguity set is computationally expensive and, more importantly, its radius has to scale with the data dimension to
certify out-of-sample performance. To address these limitations, [29] defines the ambiguity set with respect to the
Maximum Mean Discrepancy (MMD) [13], resulting in an optimization over embedding means of distributions. The
MMD DRO averts the aforementioned drawbacks since the MMD ambiguity set contains both discrete and continuous
distributions and its radius is independent of the data dimension. The unifying work of [38] introduces a wide range
of kernel-based ambiguity sets and relaxes the assumptions on the loss function in the DRO formulation.
Here, we propose a Distributionally Robust Domain Adaptation (DRDA) framework. The main objective of our

formulation is to learn a robust and generalized regression function that generalizes well on a target domain given a
labeled and an unlabeled sample from the source and target domains, respectively. Since the target domain data is
unlabeled, DRDA adapts the knowledge of the source domain sample by re-weighting its instances and simultaneously
learning a robust decision function. Some previous works have considered the use of DRO across domains for DA
[6, 18, 19, 31, 34]. There, the search is over an uncertainty set of probabilistic (conditional) mappings from input
to output subject to moment constraints. In sharp contrast, here we define an uncertainty set of joint distributions
within a given distance from a weighted empirical source domain distribution with respect to the MMD metric, with
the main goal of establishing guarantees on out-of-sample performance.
The conventional DA framework does not account for uncertainty in the given source and target domain samples

(e.g., due to contamination with noise), wherefore the model it learns could yield inaccurate predictions. DRO is not
directly applicable in the target domain since the labeling information is unavailable. On the other hand, DRDA
addresses these limitations by transferring knowledge within uncertainty sets of distributions from the labeled source
domain, thereby simultaneously accounting for the discrepancy between domains and the uncertainty in the target
domain. The contributions of our work can be summarized as follows.

1. We formulate a robust DA problem, dubbed Distributionally Robust Domain Adaptation (DRDA), to learn a
robust regression model that guarantees the out-of-sample performance in the target domain.

2. We construct an MMD ambiguity set and prove that it contains the source and target domain distributions
with high probability, thereby ensuring the generalization of the learned model.

3. We develop a solution methodology to the formulated DRDA problem leveraging a DRO formulation under an
additional common assumption on the loss function.

II. BACKGROUND

A. Notation

Let X ⊆ R
N be a topological input space, and P the set of all probability measures defined on X . Let lh be a

loss function associated with a decision function h, henceforth, we denote it by lh for simplicity, and d : P × P → R

a distance metric between probability measures. We denote the pair (x, y) by ζ. We use P̂(.) = 1
m

∑m

j=1 δζj (.) to

represent the empirical distribution on the sample {ζj}mj=1, where δ is the Dirac measure. Let H be a Reproducing

Kernel Hilbert Space (RKHS) associated with a characteristic kernel k, φ : RN → H is the corresponding feature map,
〈., .〉H is the inner product on H and ‖.‖H is the induced norm. We define µP = E

P[φ(x)] to be the embedding mean
of the probability measure P, where µP ∈ H and E

P[.] denotes the expectation with respect to measure P. Since the
kernel k is assumed to be characteristic, every probability measure P ∈ P is embedded as a unique element in H [24].
Hence, the embedding mean µP is an injective map.

B. Domain Adaptation (DA)

In the DA setting, we are given a labeled source domain sample Ds = {xi, yi}ns

i=1 and an unlabeled target domain
sample Dt = {xi}nt

i=1 drawn from two different distributions, where ns and nt are the source and target domain sample
sizes, respectively. In DA, one seeks to find a decision function h that minimizes the target domain risk Rt = E

Pt [lh].
Since the labeling information is unavailable for the target domain sample, DA transfers knowledge from the source
domain to improve the performance of the learned decision function in the target domain.

Covariate shift and density ratio: Under the covariate shift assumption, it is assumed that the conditional
distributions of the labels given the features are similar across domains, but the marginals are different [16]. We
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define the density ratio between the target and source domain distributions as w(ζ) = Pt(ζ)
Ps(ζ)

, where Pt is absolutely

continuous with respect to Ps.
Let ŵ(ζ) be an estimate of the density ratio w(ζ), so we define Pt′(ζ) = ŵ(ζ)Ps(ζ) as the weighted source domain

probability distribution and P̂t′(.) =
1
ns

∑ns

i=1 ŵ(ζi)δζi(.) as its corresponding empirical distribution.

The Maximum Mean Discrepancy (MMD) distance, denoted by dm, between two probability distributions Q and
P is defined as

dm(Q,P) = sup
‖f‖H≤1

E
Q[f(x)]− E

P[f(x)]

= sup
‖f‖H≤1

< f, µQ − µP >H= ‖µQ − µP‖H .
(1)

Since the embedding mean is an injective map when the kernel associated with the RKHS is characteristic, the
MMD metric can measure the distance between distributions by finding the distance between their embedding means.

Kernel Mean Matching (KMM) [16] is concerned with finding the weights ŵ(x) ≤ B such that the MMD distance
between the weighted source and target probability measures is minimized. Thus, the KMM problem is defined as
follows

min
ŵ(x)

‖µPt′ − µPt
‖H subject to ŵ(x) ∈ [0, B],

∫

ŵ(x)dPs = 1 .
(2)

C. Distributionally Robust Optimization (DRO)

Let ζ1, . . . , ζn be an i.i.d. sample drawn from a probability distribution P ∈ P . The Distributionally Robust
Optimization (DRO) problem is defined as

Ĵn = inf
h

sup
Q∈Ω

E
Q[lh] , (3)

where Ω is the ambiguity set

Ω = {Q|d(Q, P̂) ≤ ǫ} . (4)

The DRO problem (3) finds the learning model h that minimizes the worst-case risk. Specifically, it optimizes over all

distributions in the ambiguity set, i.e., that are within a distance ǫ from the empirical distribution P̂. A key challenge in
the DRO problem is to construct an ambiguity set that contains the true population distribution with high confidence.
Formally, if we ensure that P ∈ Ω with high probability, then fixing any model h, EP[lh] ≤ supQ∈Ω E

Q[lh] with high
probability. Therefore, if the ambiguity set is chosen appropriately, the DRO problem gives a high probability bound
on the true population risk.

III. DISTRIBUTIONALLY ROBUST DOMAIN ADAPTATION (DRDA)

In this section, we present the problem setup, formulate the DRDA problem, and establish our main theoretical
results.
We are given two samples Ds and Dt in the source and target domains, respectively, where the labels of Dt are not

available. The samples are drawn from probability measures Ps and Pt, respectively. The goal of DRDA is to learn
a hypothesis h : X → R that simultaneously minimizes the target domain risk Rt = E

Pt [lh], and generalizes well on
any unseen sample from the target domain distribution Pt.
Towards this goal, we seek to solve the following DRO problem

Ĵnt
= inf

h
sup
Q∈Ωt

E
Q[lh], (5)

where the ambiguity set Ωt := {Q|d(Q, P̂t) ≤ ǫt} is centered at the empirical target domain probability measure

P̂t(.) =
1
nt

∑nt

i=1 δζi(.). The DRO formulation in (5) finds the decision function h that minimizes the worst-case target
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domain risk. In principle, if we ensure that Pt ∈ Ωt with high confidence, then E
Pt [lh] ≤ supQ∈Ωt

E
Q[lh] with high

probability.
However, a key difficulty for establishing such guarantee is that the labels for the given target domain sample Dt are

not available. Therefore, we make use of the labeled source domain sample Ds to learn a hypothesis h that achieves
the desired two-fold objective. Hence, we propose the following DRO problem

Ĵnt′ = inf
h

sup
Q∈Ωt′

E
Q[lh] (6)

where Ωt′ = {Q|d(Q, P̂t′) ≤ ǫt′}, recalling that P̂t′ is the empirical weighted source domain probability. The
introduced set Ωt′ can be viewed as a transferred version of a source domain ambiguity set Ωs (that is centered at the

empirical source domain distribution P̂s). However, how do we set the radius ǫt′ to ensure that Pt,Pt′ ∈ Ωt′ with
high confidence? We answer this question by establishing the following results.

Lemma 1. Let k : X × X → R be a positive definite kernel on the space X with ‖φ(x)‖H ≤
√
M, ∀x ∈ X . Let

ŵ(x) ∈ [0, B], and 0 < δ < 1. Then, with probability at least 1− δ,

dm(Pt′ , P̂t′ ) ≤ B

√

M

ns

(

1 +

√

2 log
1

δ

)

. (7)

Proof. We make use of Mcdiarmid’s inequality as in the proof of the concentration result [32, Proposition A.1]. Let
x1, . . . , xn be independent random variables, and let f : X1 × · · · × Xn → R be a function, such that for every
(x1, . . . , xn), (x

′
1, . . . , x

′
n) ∈ X1 × · · · × Xn that differ only in the ith element (xl = x′

l, ∀l 6= i), we have

|f(x1, . . . , xn)− f(x′
1, . . . , x

′
n)| ≤ di .

Therefore, for any t ≥ 0,

Pr[f(x1, . . . , xn)− Ef(x1, . . . , xn) ≥ t] ≤ exp

( −2t2

n
∑

i=1

d2i

)

. (8)

Let

f(x1, . . . , xn) = dm(Pt′ , P̂t′ ) = ‖µPt′ − µ
P̂t′

‖H
f(x′

1, . . . , x
′
n) = dm(Pt′ , P̂′

t′ ) = ‖µPt′ − µ
P̂′

t′
‖H

where P̂′
t′ =

1
ns

ns
∑

i=1

ŵ(x′
i)δ(x

′
i).

First, we find the value of di. We have that

|‖µPt′ − µ
P̂t′

‖H − ‖µPt′ − µ
P̂′

t′
‖H| ≤ | sup

‖f‖H≤1

E
P̂t′ f(x)− E

P̂′
t′ f(x)| = ‖µ

P̂t′
− µ

P̂′
t′
‖H

=
1

ns

‖ŵ(xi)φ(xi)− ŵ(x′
i)φ(x

′
i)‖H ≤ 2B

√
M

ns

By setting the RHS of (8) to δ ∈ (0, 1), it holds with probability at least 1− δ that

‖µPt′ − µ
P̂t′

‖H − E‖µPt′ − µ
P̂t′

‖H ≤ B

√

2M

ns

log
1

δ
.

Now,

E‖µPt′ − µ
P̂t′

‖H ≤
√

E‖µPt′ − µ
P̂t′

‖2H
(a)

≤
√

Ex∼Ps
ŵ2(x)‖φ(x)‖2H−‖

∫

X ŵ(x)φ(x)dPs‖2H
ns

≤B

√

M

ns

Inequality (a) follows the same reasoning in [32].
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Lemma 1 establishes a high probability upper bound on the distance between the weighted source domain probability
and its empirical version, thus can guide the choice of the radius of Ωt′ so that Pt′ ∈ Ωt′ with high probability. However,
this does not guarantee that the target domain population distribution Pt ∈ Ωt′ with high probability.

Next, we present our main result for setting the radius ǫt′ of the proposed ambiguity set Ωt′ . The choice of ǫt′ in
the statement of Theorem 2 guarantees the generalization of the learned model with high probability.

Theorem 2. Let w ∈ [0, B], then for any δ ∈ (0, 1), set the radius ǫt′ of Ωt′ in (6) as

ǫt′ =
√
M





√

B2

ns

+
1

nt

+

√

1

nt





(

1 +

√

2 log
1

δ

)

. (9)

Then, with probability at least 1− δ, Pt ∈ Ωt′ and E
Pt [lh] ≤ supQ∈Ωt′

E
Q[lh].

Proof. Let’s define P̂t′(.) = 1
ns

∑ns

i=1 w(ζi)δζi(.). First, we obtain a high probability upper bound on the distance

between the empirical target and the weighted source probability measures. For any δ ∈ (0, 1),

dm(P̂t, P̂t′) ≤
√
M

√

B2

ns

+
1

nt

(

1 +

√

2 log
1

δ

)

(10)

with probability at least 1 − δ, from the result of [16], which characterizes the deviation between empirical means
across domains. By invoking the concentration of measure result in [32], we get that

dm(Pt, P̂t ) ≤
√

M

nt

(

1 +

√

2 log
1

δ

)

. (11)

From the triangular inequality,

dm(Pt, P̂t′) ≤ dm(P̂t, P̂t′) + dm(Pt, P̂t) (12)

Therefore, by summing (10) and (11), we obtain an upper bound on dm(Pt, P̂t′). Hence, we set ǫt′ equal to this

upper bound as in (9). The result in 2 follows since ǫt′ bounds dm(Pt, P̂t′) from above with probability 1 − δ, i.e.,
Pt ∈ Ωt′ and the target domain risk is less than the worst-case risk on Ωt′ with probability 1− δ.

Given the primal robust domain adaptation problem in (6), the value of Ĵnt
depends on the density ratio ŵ(x), since

we are optimizing over all distributions that lie in the ambiguity set Ωt′ . The main problem in (6) aims at finding the
decision function h corresponding to the worst-case distribution such that the discrepancy between the source and
target domain probability measures is minimized. This objective can be achieved in two different ways: (i) ŵ can be
estimated by solving the KMM (2) and then (6) can be used to estimate the decision function h; (ii) we can optimize
jointly over the decision function h and the density ratio ŵ, and since supQ∈Ωt′

E
Q[lh] ≤ supQ∈Ωt′

E
Q[lh]+d2m(Pt′ ,Pt),

we can instead solve

inf
h,ŵ

sup
Q∈Ωt′

E
Q[lh] + βd2m(Pt′ ,Pt) , (13)

where β ≥ 0 is introduced to control the domain adaptation component.

Optimizing jointly over h and ŵ is desirable since the parameters that control the learned density ratio and the
decision function are not independent [4]. More specifically, the source domain sample is common in both the
estimation of the weights ŵ and for learning the decision function h. Hence, optimizing first over ŵ (using KMM)
then over h using the DRO formulation in (6) would yield a sub-optimal solution. We refer to the formulation in
(13) as Distributionally Robust Domain Adaptation (DRDA). The first term in the DRDA formulation accounts for
the generalization of the learned model on the target domain, while the second regularizing term is to minimize the
discrepancy between the two domain distributions.



6

IV. PROPOSED DRDA FORMULATION

In this section, we present a DRO-based formulation to solve the DRDA problem in (13) under the assumption
that l ∈ H. A similar assumption was made in [29] for the DRO problem. Since µP is an injective map, we have that

sup
Q∈Ωt′

E
Q[lh] ≤ sup

µQ:‖µQ−µ
P̂

t′
‖H≤ǫt′

〈µQ, l〉H = E
P̂t′ [lh] + ǫt′‖l‖H (14)

The inequality in (14) is because not every element of the RKHS is an embedding mean of some probability measure.
Therefore, we can rewrite the DRDA problem as

inf
h,ŵ(x)

sup
Q∈Ωt′

E
Q[lh] + βd2m(Pt′ ,Pt) ≤ inf

h,ŵ(x)
E
P̂t′ [lh] + ǫt′‖l‖H + βd2m(Pt′ ,Pt) .

Since we do not have access to the true underlying source and target domain distributions and only have samples
from both domains, we make use of the empirical MMD distance dm(P̂t′ , P̂t). Thus, instead we solve

inf
h,ŵ(xi)

E
P̂t′ [lh] + ǫt′‖l‖H + βd2m(P̂t′ , P̂t)

= inf
h,ŵ(x)

1

ns

ns
∑

i=1

ŵ(xi)lh(xi) + ǫt′‖l‖H + β

∥

∥

∥

∥

∥

1

ns

ns
∑

i=1

ŵ(xi)φ(xi)−
1

nt

nt
∑

i=1

φ(xi)

∥

∥

∥

∥

∥

2

H

(15)

The weights ŵ(xi) are bounded by a constant B per the assumption in Lemma 1. Also, the weighted source domain

probability must sum up to 1, i.e.,
∫

X ŵ(x)dPs = 1, thus for the empirical one
ns
∑

i=1

ŵ(xi) = ns. We can readily

formulate the final DRDA problem as

inf
h,ŵ(xi)

1

ns

ns
∑

i=1

ŵ(xi)lh(xi) + ǫt′‖lh‖H + β

∥

∥

∥

∥

∥

1

ns

ns
∑

i=1

ŵ(xi)φ(xi)−
1

nt

nt
∑

i=1

φ(xi)

∥

∥

∥

∥

∥

2

H

s.t. ŵ(xi) ∈ [0, B]
∣

∣

∣

∣

∣

ns
∑

i=1

ŵ(xi)− ns

∣

∣

∣

∣

∣

≤ nsc, c > 0

(16)

V. PROPOSED SOLUTION

In this section, we present our solution to the DRDA formulation in (16). We consider the RKHS Hσ induced by a

Gaussian kernel kσ(x, y) = exp

(

− ‖x−y‖2

2σ2

)

of bandwidth σ, and assume a quadratic loss function lh = (h(x)−g(x))2 ,

where g(x) is a labeling function. We use ‖.‖σ and 〈., .〉σ to denote the norm and inner product of the corresponding
RKHS Hσ, respectively. Therefore, we need to minimize the objective function

E
P̂t′ [(h(x)− g(x))2] + ǫt′‖(h− g)2‖σ + βd2m(P̂t′ , P̂t) . (17)

To bound the norm ‖(h− g)2‖σ, we need the following lemma from [29, Theorem 4.1].

Lemma 3. If h, g ∈ Hσ, that is, the RKHS corresponds to the Gaussian kernel, then ‖hg‖ σ√
2

≤ ‖h‖σ‖g‖σ.

Since fg ∈ H σ√
2

, from the triangular inequality, it follows that ‖(h − g)2‖σ ≤ ‖h2‖ σ√
2

+ ‖g2‖ σ√
2

+ 2‖h‖σ‖g‖σ.
Therefore, the objective function in (17) can be bounded by

E
P̂t′ [(h(x)− g(x))2] + ǫt′(‖h2‖ σ√

2

+ ‖g2‖ σ√
2

+ 2‖h‖σ‖g‖σ) + βdm(P̂t′ , P̂t)
2 (18)

In addition, dm(P̂t′ , P̂t) can be written as

dm(P̂t′ , P̂t) =

∥

∥

∥

∥

∥

1

ns

ns
∑

i=1

ŵ(xi)φ(xi)−
1

nt

nt
∑

i=1

φ(xi)

∥

∥

∥

∥

∥

2

H

=
1

n2
s

ŵKs
σŵ − 2

ntns

ŵTKs,t
σ 1nt

+ const ,

(19)
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and the first term in (18) as

E
P̂t′ [(h(x)− y)2] =

1

ns

ns
∑

i=1

ŵ(xi)(h(xi)− yi)
2 =

1

ns

(Ks
σα− ys)

TW(Ks
σα− ys) , (20)

where the matrix Ks
σ has the elements kσ(xi, xj), i, j = 1, . . . , ns, the matrix Ks,t

σ has the elements kσ(xi, xj), i =
1, . . . , ns, j = 1, . . . , nt, W = diag(ŵ(x1), . . . , ŵ(xns

)) and y = (y1, . . . , yns
), where diag(.) returns a diagonal matrix

of its vector argument. Since h ∈ Hσ, then by the representer Theorem [27], we have the expansion h =
∑ns

i=1 αiφ(xi).
Using the bound in (18), the DRDA problem in (16) can be expressed as

inf
α,ŵ

(Ks
σα− ys)

TW(Ks
σα− ys) + β(

1

n2
s

ŵKs
σŵ − 2

ntns

ŵTKs,t
σ 1nt

) + λ tr((DαK
s
σ√
2

)4) + λαTKs
σα

s.t. ŵ(xi) ∈ [0, B]
∣

∣

∣

∣

∣

ns
∑

i=1

ŵ(xi)− ns

∣

∣

∣

∣

∣

≤ nsc, c > 0

(21)

where α = (α1, . . . , αns
)T , Dα = diag(α1, . . . , αns

).

VI. GENERALIZATION BOUND

In this section, we derive a generalization bound on the true (population) target domain risk Rt = E
Pt [lh] =

E
Pt [(h(x)− g(x))2] in terms of the empirical source domain risk R̂s = E

P̂s [(h(x)− g(x))2]. This bound is in the same
spirit of [28, Theorem 4.3], which was derived for the original DRO problem (without domain adaptation).

Theorem 4. Let the labeling function g satisfy ‖g‖σ ≤ η. Therefore, for any δ > 0, with probability 1 − δ, the

following holds for all functions h satisfying that ‖h‖σ ≤ η:

Rt ≤ BR̂s + 4η2





√

B2

ns

+
1

nt

+

√

1

nt





(

1 +

√

2 log
1

δ

)

(22)

Proof. We denote the empirical weighted source domain risk by R̂t′ := E
P̂′

t [(h(x) − g(x))2]. Based on the choice of
the radius ǫt′ in (9), for any δ > 0, with probability 1− δ, we have that

Rt ≤ R̂t′ + ǫt′‖(h− g)2‖σ
≤ R̂t′ + ǫt′(‖h2‖ σ√

2

+ ‖g2‖ σ√
2

+ 2‖h‖σ‖g‖σ)
≤ R̂t′ + 4η2ǫt′ . (23)

The first inequality follows from the first part of Theorem 2 and (14), and the second follows from the triangular
inequality. The last inequality in (23) is because ‖hg‖ σ√

2

≤ ‖h‖σ‖g‖σ ≤ η2 (Lemma 3), and hence ‖h2‖ σ√
2

, ‖g2‖ σ√
2

≤ η2.

Since R̂t′ =
1
ns

∑ns

i=1 ŵ(xi)(h(xi)− g(xi))
2 ≤ 1

ns

∑ns

i=1 B(h(xi)− g(xi))
2 = BR̂s, we can write

Rt ≤ BR̂s + 4η2ǫt′ . (24)

Finally, since we are using a Gaussian kernel, we have M = 1 in (9), which completes the proof.

We note that the RHS of (22) is inversely proportional to the source and target domain samples sizes ns and nt,

and directly proportional to B. Therefore, for large sample sizes (i.e., ns, nt → ∞), we have that Rt ≤ BR̂s, i.e.,
depends on B, which is indicative of the degree of discrepancy between both domains.

VII. EXPERIMENTAL RESULTS

In this section, we verify the performance of the proposed approach. First, we generate data following the regression
model y = g(x)+n, where g(x) = kσ(x, 1)−kσ(x,−1), n is drawn from a normal distribution with zero mean and 0.12

variance, and the source and target domain samples follow the distributions N (1, 0.52) and N (−1, 0.62), respectively.
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Method Formulation

Regularized Least Squares (RLS) minα ‖Ks

σα− y‖22 + λαTKs

σα

Weighted Regularized Least Squares (W-RLS) minα(K
s

σα− y)TW(Ks

σα− y) + λαTKs

σα

Weighted DRO (W-DRO) (6)
DRDA (21)

TABLE I: Different least-square methods (W in W-RLS and W-DRO is estimated using the KMM formulation in (2)).

In our first experiment, we verify the robustness of our learned model to perturbations. We sample 50 source and
target samples of size 100. For each instance, we learn a regression model and test it on an unseen target domain
sample Xt of size 500 for different noise levels. A depiction of these samples along with the true model are shown in
Figure 1a.

We perturb Xt with additive noise ∆ ∼ N (0, ρ2) with different noise levels ρ , i.e., X̂t = Xt +∆. We compute the

test loss (risk) R̂t =
1
nt

∑nt

i=1 l(h(xi)) for X̂t for each noise level ρ ∈ [0, 1] and report their average loss R̂t and the

corresponding 95% interval. We compare the performance of DRDA to different least-square regression approaches
(see Table I). In the approach that we call weighted-DRO (W-DRO), we first solve for the weights ŵ using (2), then
optimize over the decision function h in (6), in contrast to the joint optimization in DRDA. The hyperparameters β
and λ are set to 10 and 1.2, respectively.

Figure 1b demonstrates the test loss of the DRDA learned model for various noise levels in comparison to the least-
square models. As shown, our DRDA model achieves the lowest average loss for all noise levels due to the built-in
robust domain adaptation capability along with the joint optimization over the weights and decision function in (13).
To highlight the importance of the domain adaptation inherent in our framework, we also tested the standard DRO
scheme, which only uses the source sample for training the model. We found DRO without domain adaptation to be
considerably less robust than DRDA in this setting. For example, at ρ = 0.8, the DRO model yields an average test
loss of 1.540 versus 0.556 for the DRDA model. Moreover, W-RLS and W-DRO, which first learn the weights then
optimize over the model, underperform the DRDA model, underscoring the gain of jointly optimizing over ŵ and h.

(a) (b)

FIG. 1: (a) True model (dashed line), source (blue) and target (red) domain samples; (b) Test loss of different regression
models as function of the noise level ρ.

For the second experiment, we demonstrate the effect of the sample size on the target domain population risk. We
sample source and target domain samples of different sizes. For each sample size, we use the source and target domain
samples to learn the DRDA model. Figure 2a shows the target domain risk as a function of the sample size. As
expected, the risk decreases with the sample size, since training with a larger sample size (source and target) results
in a model of higher accuracy.

In our third experiment, we evaluate the performance of the proposed DRDA when the perturbations are added
to the response. Specifically, Yt is perturbed with additive noise ∆, i.e., Ŷt = Yt + ∆. As shown in Figure 2b, Our
approach outperforms other regression approaches as it achieves the lowest average loss at all noise levels.
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FIG. 2: (a) The true (population) target domain risk as a function of the sample size; (b) Test loss of different regression
models as function of the noise level ρ.

VIII. CONCLUSION AND FUTURE WORK

Existing approaches to domain adaptation often fall short of yielding a decision model that is robust to perturbations
and generalizes well to unseen target domain data. To address this limitation, we formulated a robust domain
adaptation problem, dubbed Distributionally Robust Domain Adaptation (DRDA), that leverages a DRO framework.
Our formulation simultaneously accounts for domain adaptation and the uncertainty in the target domain sample.
Since the target domain labels are unavailable, we re-weight the source domain sample to minimize the discrepancy
between the two domains. Also, we constructed an uncertainty set, centered at the empirical weighted source domain
distribution, and prove that it contains the true target domain distribution with high probability. In turn, the
worst-case risk gives a high probability upper bound on the true population risk, thereby providing a guarantee on
the generalization of the learned model. Our experimental results demonstrate that the learned regression model
outperforms existing least-square approaches both in terms of robustness to noise and generalization power.

Our future work will explore extensions of the robust DA framework to other instances of robust learning and
inference with distributional shifts, including classification and multi-output regression. Another avenue of future
investigation will focus on relaxing the covariate shift assumption to account for shifts in the conditional distributions
of the labels given the features in both domains. Therein, the key challenge will be to construct appropriate uncertainty
sets to guarantee the robustness of the learned models and their out-of-sample performance, and to obtain bounds on
the prediction and estimation errors of the solution.
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