
210272-1732/03/$17.00  2003 IEEE Published by the IEEE computer Society

Microcode, which M.V. Wilkes
introduced in 1951, constitutes an important
computer engineering innovation.1 Microc-
ode allowed the emulation of complex
instructions through simple hardware (oper-
ations) and thus greatly helped drive the devel-
opment of computer systems. Microcode
actually partitioned computer engineering
into two distinct conceptual layers: architec-
ture and implementation. Architecture in this
article denotes the programmer’s view of a sys-
tem’s attributes—such as the processor’s con-
ceptual structure and functional behavior. It is
distinct from the dataflow’s organization and
the processor’s physical implementation.2 The
partitioning is partly because emulation
allowed the definition of complex instructions
that might have been technologically unim-
plementable (at the time they were defined),
thus projecting an architecture to the future.
That is, microcode let computer architects
determine a technology-independent func-
tional behavior (such as the instruction set)
and select conceptual structures providing the
following possibilities:

• Computer architects could define the
computer architecture as a programmer’s
interface to the hardware rather than to
a specific technology-dependent realiza-
tion of a specific behavior.

• Computer architects could determine a
single architecture for a family of imple-
mentations, giving rise to the important
concept of compatibility. Simply stated,
you could write programs for a specific
architecture once and run them “ad
infinitum” independent of the imple-
mentations.

Since its beginnings, microcode, as intro-
duced by Wilkes, has been a sequence of
micro-operations, called a microprogram.
Such a microprogram comprises pulses for
operating the gates associated with arithmeti-
cal and control registers. Figure 1 depicts the
method of generating this sequence of puls-
es.1 First, a timing pulse initiating a micro-
operation enters the decoding tree that in turn
generates an output signal depending on setup
register R. This output signal passes to matrix

Stamatis Vassiliadis
Stephan Wong
Sorin Cotofana
Delft University of

Technology

MICROCODE IS AN IMPORTANT INNOVATION IN COMPUTER ENGINEERING. THE

AUTHORS DISCUSS THE EVOLUTION OF MICROCODE FROM ITS INTRODUCTION

TO ITS DECLINE AND TO ITS LIKELY RESURGENCE IN CUSTOM COMPUTING

MACHINES. FURTHERMORE, THEY PRESENT A MICROCODED MACHINE

AUGMENTED WITH FIELD-PROGRAMMABLE GATE ARRAYS (FPGAS) AND

PROVIDE EXPERIMENTAL EVIDENCE THAT IT CAN SUBSTANTIALLY INCREASE

THE PERFORMANCE OF SOME MEDIA BENCHMARKS.

MICROCODE PROCESSING:
POSITIONING AND DIRECTIONS

A, which in turn generates pulses to control
arithmetical and control units and thus per-
form the required micro-operation. The out-
put signal also passes to matrix B, which in its
turn generates pulses to control and update
setup register R (with a certain delay). The
next timing pulse, therefore, generates the
next micro-operation in the required sequence
due to the updated setup register R.

Microcode has become a
major component, requiring a
large development effort, from
mainframes to PC processors.
To understand the magnitude
and the importance that
microcode has played, consid-
er some key facts of “real”
machine microcode depicted
in Table 1.2 As you can

observe, several assembly and higher-level lan-
guages have been developed and used, with a
substantial amount of code developed for the
implementations.3 This is indicated by the
number of modules used, the number of lines
of code, and the number of lines of code plus
comments.

Microcode has evolved considerably from
its initial structure. In this article, we look at

22

MICROCODE PROCESSING

IEEE MICRO

Matrix A Matrix B

R

Delay

Timing
pulse

Decoding tree

To gates in
arithmetical

unit, and so on

From sign flip-flop
of accumulator

Figure 1. Wilkes’ microprogram control model.

Table 1. Some facts from two IBM enterprise servers.

No. of No. of
assembly higher Lines of Lines of code

System languages languages Modules code plus comments
IBM ES/4381 3 1 1,505 480,692 791,696
IBM ES/9370 6 2 3,130 796,136 1,512,750
Total 9 3 4,635 1,276,828 2,304,446

current architectures and briefly discuss some
technological advances that somehow dimin-
ished the microcode appeal and other tech-
nological advances that could reintroduce its
usefulness.

Modern microcode concepts
Here we discuss concepts associated with

the microcode structure and some organiza-
tional techniques that microcode employs.
Figure 2 depicts a high-level micropro-
grammed computer.4

The control store in Figure 2 contains the
microinstructions (which represent one or
more micro-operations) and corresponds to
matrices A and B in Figure 1. The machine’s
operation is as follows:

1. The control store address register (CSAR)
contains the address of the next microin-
struction in the control store. The
microinstruction there is then forwarded
to the microinstruction register (MIR).

2. The MIR decodes the microinstruction
and generates smaller micro-operations
that the hardwired units or control logic
must perform.

3. The sequencer uses status information
from the control logic or results from the
hardwired units to determine the next
microinstruction and stores its control
store address in the CSAR. The previous
microinstruction could also influence the
sequencer’s decision about which
microinstruction to select next.

As mentioned earlier, the MIR generates
micro-operations depending on the microin-
struction. If only one micro-operation is gen-
erated that controls a single hardwired resource,
the microinstruction is called vertical. In all
other cases, the microinstruction is called hori-
zontal. Finally, the control store could provide
permanent (fixed) storage to frequently used
microprograms (a sequence of microinstruc-
tions) and temporary (pageable) storage for less-
frequently-used microprograms. In microcoded
machines, not all instructions have or will have
access to the control store. In fact, only emu-
lated instructions have to go through the
microcode logic; the hardware can directly exe-
cute all other instructions that the system has
implemented, following path α in Figure 2.

That is, a microcoded machine is a hybrid with
emulated and hardwired instructions. Contrary
to some beliefs, from the moment it was possi-
ble to implement instructions, microcoded
machines always had a hardwired core that exe-
cuted reduced-instruction-set computer (RISC)
instructions.

Microcode advantages?
Why does an extremely successful mecha-

nism appear to be in decline, and what is hap-
pening to the advantages of microcoded
machines? To examine this question, we
explore a simple example. We consider the
requirements imposed by moving one or more
characters (represented by bytes) from one
memory location to another. Because the
generic case is too complex and will not serve
any purpose to our discussion, we further
assume that at most 256 bytes are to be moved
and that the source and destination addresses
are always aligned at word boundaries. The
generic case requires many more test and
boundary conditions that will only increase
the code sizes of the examples.

This example is by no means casual,
because it relates to the move character fami-

23JULY–AUGUST 2003

Sequencer

CSAR

Status
α

Main
memory

Control
store M

IR

Hardwired units
and

control logic

Memory address
register

Memory
data

register

Figure 2. High-level microprogrammed computer.

ly of instructions, which includes the contro-
versial complex-instruction-set computer
(CISC) operation, move character long.

Figure 3 depicts three potential scenarios.
The first shows no overlap between the string
to be moved and the moved string. In this sce-
nario, moving characters does not pose any
problem.

In the second scenario, however, moving
the first, (then second, and so on) characters

in a straightforward manner
will overwrite the string to be
moved. The third scenario
also has an overlap, but
because the starting point B
is in front of A, it does not
pose any problems when
moving the characters in a
straightforward manner.

The described move char-
acter operation is an applica-
tion requirement and is what
the programmer intended to
do. Thus, it has no relation to
any architectural paradigm.
The intention of the move
instruction is to actually per-
form a “true” move. That is,
the programmer does not
intend to replicate bytes using
move instructions and over-
lap. There are several ways of
performing such an operation
with varying involvement of
software and hardware.

Case 1. The first approach is
to introduce a complex

instruction and assume that the hardware
somehow will execute it. The instruction has
the format: MOVE R1, R2, d, where R1 is
the source address, R2 is the destination
address, and d is the number of bytes to be
moved.

Case 2. A second approach is to assume sim-
ple instructions, and produce a program like
the one shown in Table 2.5

24

MICROCODE PROCESSING

IEEE MICRO

Scenario II:

Scenario I:

Scenario III:

AB

BA

BA

Figure 3. Three scenarios of moving characters.

Label Instruction
start: lw r8, A

lw r9, B
lw r10, d
beq r8, r9, stop
sub r11, r9, r8
bltz r11, no_overlap
sub r12, r11, r10
bltz r12, overlap

no_overlap: sub r11, r10, 4
bltz r11, last_bytes
lw r12, 0(r8)
sw r12, 0(r9)
add r8, r8, 4
add r9, r9, 4
sub r10, r10, 4
jmp no_overlap

last_bytes: beq r10, r0, stop
lb r12, 0(r8)
sb 0(r9), r12
add r8, r8, 1
add r9, r9, 1
sub r10, r0, 1
jmp last_bytes

Label Instruction
overlap: add r14, r8, r10

add r15, r9, r10
word_aligned?: sll r13, r10, 30

beq r13, r0, yes_aligned
sub r14, r14, 1
sub r15, r15, 1
lb r12, 0(r14)
sb 0(r15), r12
sub r10, r10, 1
beq r10, r0, stop
jmp word_aligned?

yes_aligned: sub r14, r14, 4
sub r15, r15, 4
lw r12, 0(r14)
sw r12, 0(r15)
sub r10, r10, 4
beq r10, r0, stop
jmp yes_aligned

stop:

Table 2. Sample program for case 2.

Case 3. A third approach is to decide on an
architecture that will allow combining mul-
tiple instructions and executing them in par-
allel.6,7,8 You could then rewrite the move
character program as in Table 3. The program
assumes five instruction slots for different
instructions: one slot for load/store instruc-
tions, two slots for integer instructions, one
slot for floating-point instructions, and one
slot for branch instructions. Furthermore, we
assume that the arithmetic units produce
their results in one cycle.

Case 4. If we find (using simulations) that in
most of the cases (say 80 percent) a program-
mer is moving 8 bytes without overlap, then
we can rewrite the move character program as
in Table 4.

Case 5. With the same assumptions of the
architecture in case 3, the program from case
4 can be rewritten as in Table 5 (on p. 27).

The differences among all the cases are the

hardware involvement, the software involve-
ment, their complexity, performance, and
cost (in terms of area). The trained eye will
recognize that case 1 is what has been called
CISC architecture. Cases 2 and 4 are RISC
architectures with programming tricks to
improve performance, and cases 3 and 5 are
very long instruction word (VLIW) archi-
tectures with the same considerations as for
the RISC architectures.

Microcode design principles
What might not be so obvious is that cases

2 through 5 are microcoded sequences for the
complex instruction that case 1 describes. To
comprehend this, you need to understand
how a microcoded machine is actually
designed. The design principles of such a
machine are as follows:

• Principle 1. We design (and always have
designed) hardware that is simple, mean-
ing it is implementable using current
technologies and meeting certain con-

25JULY–AUGUST 2003

Table 3. Sample program for case 3.*

Label Load/store slot Integer slot 1 Integer slot 2 Branch slot
start: lw r8, A

lw r9, B
lw r10, d sub r11, r9, r8 beq r8, r9, stop

sub r11, r10, 4 sub r12, r 11, r10 bltz r11, no_overlap
add r14, r8, r10 add r15, r9, r10 bltz r12, overlap

no_overlap: lw r12, 0 (r8) bltz r11, last_bytes
sw r12, 0(r9) add r8, r8, 4 add r9, r9, 4

sub r10, r10, 4 sub r11, r10, 8 jmp no_overlap
last_bytes: lb r12, 0(r8) beq r10, r0, stop

sb 0(r9), r12 add r8, r8, 1 add r9, r9, 1
sub r10, r10, 1 jmp last_bytes

overlap: sll r13, r10, 30
word_aligned?: beq r13, r0, yes_aligned

sub r14, r14, 1 sub r15, r15, 1
lb r12, 0(r14) sub r10, r10, 1
sb 0(r15), r12 beq r10, r0, stop

s11 r13, r10, 30 jmp word_aligned?
yes_aligned: sub r14, r14, 4 sub r15, r15, 4

lw r12, 0(r14) sub r10, r10, 4
sw r12, 0(r15) beq r10, r0, stop

jmp yes_aligned
stop:

* This program does not execute floating-point instructions; therefore, this table does not show the floating-point

instruction slot.

straints (such as cycle, cost, or area).
• Principle 2. We emulate and thus microc-

ode the instructions that are nonimple-
mentable or are not frequently used.

• Principle 3. We permanently cache the
microcode (emulation code) of certain,
frequently used, nonimplementable
instructions (or instances of) in the con-
trol store to improve performance. We
cache all other microcode corresponding
to non-frequently-used nonimple-
mentable instructions (or instances of)
on demand with appropriate replace-
ment policies.

• Principle 4. We write microcode to either
control a single facility (vertical microc-
ode) or control multiple facilities (hori-
zontal microcode).

Going back to our cases, if we assume that
we can implement all instructions in case 2
(principle 1), then the program in case 2 emu-
lates case 1 and we can store it in the control

store; thus, it is its microcode (principle 2). We
can store it permanently—or not, depending
on simulation evaluations (principle 3)—and
because we assume that the program only exe-
cutes one instruction at a time, we have a verti-
cal microcode (principle 4). We can apply the
same principles to case 3 with the addition that
this case is a horizontal microcoded machine,
because multiple facilities are controlled in a sin-
gle cycle. Cases 4 and 5 are just different ways
of performing the same emulation. In essence,
they do move characters but are geared toward
improving the performance of the most fre-
quent cases. So they possibly split the microcode
into permanently and nonpermanently stored
emulation code to compact the control store
memory. To put things in perspective, by elim-
inating instructions that require emulation and
by exposing vertical microcode to the pro-
grammer, we have a RISC architecture. When
the exposure involves horizontal microcode, we
have a VLIW architecture.

We are ready to consider the developments

26

MICROCODE PROCESSING

IEEE MICRO

Label Instruction
start: lw r8, A

lw r9, B
lw r10, d
beq r8, r9, stop
sub r11, r9, r8
bltz r11, no_overlap
sub r12, r11, r10
bltz r12, overlap

no_overlap: sub r11, r10, 8
beq r11, r0, 8bytes

no_overlap2: sub r11, r10, 4
bltz r11, last_bytes
lw r12, 0(r8)
sw r12, 0(r9)
add r8, r8, 4
add r9, r9, 4
sub r10, r10, 4
jmp no_overlap2

last_bytes: beq r10, r0, stop
lb r12, 0(r8)
sb 0(r9), r12
add r8, r8, 1
add r9, r9, 1
sub r10, r0, 1
jmp last_bytes

Label Instruction
overlap: add r14, r8, r10

add r15, r9, r10
word_aligned?: sll r13, r10, 30

beq r13, r0, yes_aligned
sub r14, r14, 1
sub r15, r15, 1
lb r12, 0(r14)
sub 0(r15), r12
sub r10, r10, 1
beq r10, r0, stop
jmp word_aligned?

yes_aligned: sub r14, r14, 4
sub r15, r15, 4
lw r12, 0(r14)
sw r12, 0(r15)
sub r10, r10, 4
beq r10, r0, stop
jmp yes_aligned

8bytes: lw r12, 0(r8)
sw r12, 0(r9)
lw r12, 4(r8)
sw r12, 4(r9)

stop:

Table 4. Sample program for case 4.

leading to the proposal that eliminates instruc-
tions requiring emulations (at least from the
processor’s point of view). First of all, techno-
logical improvements allow more complex
instructions to be implemented in hardware.
Examples are multiply, divide, and square root.
All these operations were microcoded in one
time period or another. Consequently, any
instruction that we can implement in hard-
ware does not need emulation; thus, we have
no need for microcode. The implication here
is that, to a certain extent, improvements in
technology have diminished the microcode’s
effectiveness. Furthermore, the programmers
did not frequently use instructions that were
complex, had side effects, or were difficult to
comprehend, making their elimination from
the architecture desirable and thus further
diminishing the microcode’s appeal.

The event of caching was the second strike
against microcode’s effectiveness for general-
purpose computers. We have added caches to
the processor to improve performance of
memory accesses. The bottom line is, a
sequence of instructions accomplishing a
complex task (captured by a CISC instruction
as in case 1) that resides frequently (almost
permanently) in caches requiring few access
cycles does not need to reside in the control
store. Thus, the CISC instruction needs no
emulation by a microcoded machine. Instead,
a sequence of simple instructions (no microc-
ode) can emulate the complex task.

Is microcode a thing of the past?
At first glance, it appears that microcode is

on its way out. Maybe so. However, some cir-
cumstances may indicate otherwise. First, while

27JULY–AUGUST 2003

Label Load/store slot Integer slot 1 Integer slot 2 Branch slot
start: lw r8, A

lw r9, B
lw r10, d sub r11, r9, r8 beq r8, r9, stop

sub r11, r10, 4 sub r12, r11, r10 bltz r11, no_overlap
add r14, r8, r10 add r15, r9, r10 bltz r12, overlap

no_overlap: sub r16, r10, 8
lw r12, 0(r8) beq r16, r0, 8bytes

no_overlap2: lw r12,0(r8) bltz r11, last_bytes
sw r12, 0(r9) add r8, r8, 4 add r9, r9, 4

sub r10, r10, 4 sub r11, r10, 8 jmp no_overlap2
last_bytes: lb r12, 0(r8) beq r10, r0, stop

sb 0(r9), r12 add r8, r8, 1 add r9, r9, 1
sub r10, r10, 1 jmp last_bytes

overlap: sll r13, r10, 30
word_aligned?: beq r13, r0, yes_aligned

sub r14, r14, 1 sub r15, r15, 1
lb r12, 0(r14) sub r10, r10, 1
sb 0(r15),r12 beq r10, r0, stop

sll r13, r10, 30 jmp word_aligned?
yes_aligned: sub r14, r14, 4 sub r15, r15, 4

lw r12, 0(r14) sub r10, r10, 4
sw r12, 0(r15) beq r10, r0, stop

jmp yes_aligned
8bytes: sw r12, 0(r9)

lw r12, 4(r8)
sw r12, r(r9)

stop:
* This program does not execute floating-point instructions; therefore, this table does not show the floating-point

instruction slot.

Table 5. Sample program for case 5.

technologies allow increasingly more instruc-
tions to be implementable, several instructions
(such as start I/O instructions) cannot possi-
bly be implemented in a hardwired mode.
Designers have implemented I/O instructions,
for example, using multiple levels of emulation
(that is, using multiple levels of microcode, fre-
quently called picocode). As far as we can see,
microcode for machines that require I/O
processors or processing mostly keep or change
the microcode name, but not the substance.
The second reason relates to the rise of custom
computing machines. Such machines compute
complex tasks and have the hardware chang-
ing via reconfiguration. Given that reconfigu-
ration is a complex function that executes by
using a “long” program, special caching is nec-
essary to reduce the reconfiguration times, rein-
troducing the microcode concept. Because
reconfigurations are complex behaviors, cover-
ing all of them with one hardware implemen-
tation is not possible. Therefore, emulation
(and thus microcode) is needed (principle 2).
Furthermore, caching as we know it today may
not be capable of handling large and frequent
reconfigurations until reused. The implication
here is the reintroduction of special storage and
techniques to hold reconfigurations resembling
control store, possibly with modifications, to
accommodate special reconfiguration needs.

We could achieve this by pointing to emula-
tion code (microcode) that either resides on
chip (frequently used) or in main memory, and
is loaded in caches like control store when need-
ed (less frequently used)—principle 3. Because
of the configurable nature of the hardware, we
can configure it to contain many subunits
(facilities) to optimally perform the functions
by exploiting parallelism. In this case, depend-
ing on the available parallelism, we can use
either vertical or horizontal microcode (prin-
ciple 4). Such microcode constructions have
begun to appear. In this article, we consider an
augmented general-purpose paradigm with
reconfigurable microcode.9 Figure 4 depicts the
organization of the Molen reconfigurable
processor.

The Molen processor fetches instructions
from the main memory and stores them in the
instruction fetch unit. The arbiter fetches
instructions from the instruction fetch unit and
performs a partial decoding on the instructions
to determine where they should be issued.
Instructions implemented in fixed hardware
are issued to the core processor. The core
processor further decodes the instructions and
issues them to their corresponding functional
units. The (core) processor fetches the source
data from the general-purpose registers (GPRs)
and writes the results back to the same GPRs.

28

MICROCODE PROCESSING

IEEE MICRO

Main memory

Data
fetch

Memory
multiplexer

Instruction
fetch

Register
file

Xregs
file

Arbiter

Core
processor

ρµ-code
unit CCU

Hardware

Memory

Reconfigurable unit

Figure 4. Reconfigurable microcoded Molen processor.

The reconfigurable unit consists of a custom
configured unit (CCU)—possibly imple-
mented by using a field-programmable gate
array (FPGA)—and the ρµ-code unit that
encompasses the functionality of the sequencer
and control store as depicted in Figure 2. The
reconfigurable unit is able to perform opera-
tions that can be as simple as a single instruc-
tion or as complex as a piece of application code
that describes a certain function. Therefore, the
processor divides an operation that the recon-
figurable unit executes into two distinct process
phases: set and execute. The set phase is respon-
sible for reconfiguring the CCU hardware,
enabling the execution of the operation. We
may subdivide the set phase into two subphas-
es: partial set (p-set) and complete set (c-set).
We envision the p-set phase covering common
functions of an application or set of applica-
tions. More specifically, in the p-set phase, the
CCU is partially configured to perform these
common functions. Although the system can
possibly perform the p-set subphase during
program loading or even at chip fabrication
time, it performs the c-set subphase during pro-
gram execution. Furthermore, the c-set sub-
phase only partially reconfigures remaining
blocks in the CCU (not covered in the p-set
subphase) to complete the CCU’s functional-
ity by enabling it to perform other less-frequent
functions. We use the exchange registers
(XRegs) file to provide a general methodology
to pass arguments to and results from the
reconfigurable unit.

Finally, we performed simulations of the
Molen processor using two well-known mul-
timedia benchmarks (ijpeg and mpeg2enc) and
the SimpleScalar toolset (v2.0).10 We could
configure the CCU to implementations that
perform the discrete cosine transform (DCT),

the Huffman coding (a variable length coding
technique denoted by VLC), or the calculation
of the sum of absolute differences (SAD).11 In
the simulations, we assume that an FPGA
structure (an Altera APEX20K) operating at a
considerably lower core frequency (indicated
by synthesis software FPGA Express from Syn-
opsys) augments a 1-GHz general-purpose
processor. Due to this, we normalized the cycles
to perform DCT, VLC, and SAD to reflect this
discrepancy.9 As Table 6 shows, the simulation
results have shown an average overall decrease
in cycles by about 30 percent.

We have shown two scenarios that indi-
cate microcode’s current usefulness.

We believe that microcode use will continue
in the future, especially in the advent of the
increasing use and acceptance of reconfig-
urable computing in many new application
areas, such as network processing. In this light,
the challenge lies in semiautomatically deter-
mining the most adequate design parameters,
such as the size of the fixed and pageable stor-
age within the control store and the microin-
struction width, to meet the requirements
posed by new application areas. Another chal-
lenge lies in defining a common reconfig-
urable microcode that we can use to configure
and to execute on various reconfigurable hard-
ware implementations. In conclusion, the
introduction of microcode use in custom
computing machines is opening up new
research and engineering challenges. MICRO

References
1. M.V. Wilkes, “The Best Way to Design an

Automatic Calculating Machine,” Proc. Man-
chester Univ. Computer Inaugural Conf., Fer-
ranti Ltd., 1951, pp. 16-18.

29JULY–AUGUST 2003

Table 6. Media results of the Molen processor from simulations (ML = execution cycles).

 ijpeg encoder mpeg2enc
Input data Picture testimg Picture vigo Frames testframes

(No. of cycles) (No. of cycles) (No. of cycles)
Default cycles 6,512,947 149,363,055 93,245,923
DCT ML = 282 4,680,431 (–28.14%) 109,815,770 (–26.48%) 81,560,420 (–12.53%)
VLC ML = 200 6,094,054 (–6.43%) 140,486,670 (–5.94%)
SAD ML = 234 74,608,673 (–19.99%)
DCT(282) + VLC(200) 4,505,811 (–30.82%) 106,157,895 (–28.93%)
DCT(282) + SAD(234) 62,928,429 (–32.51%)

2. A. Padegs et al., “The IBM System/370 Vec-
tor Architecture: Design Considerations,”
IEEE Trans. Computers, vol. 37, no. 5, May
1988, pp. 509-520.

3. G. Triantafyllos, S. Vassiliadis, and J. Delga-
do-Frias, “Software Metrics and Microcode
Development: A Case Study,” J. Software
Maintenance: Research and Practice, vol. 8,
no. 3, May-June 1996, pp. 199-224.

4. G. Tomlinson and P. Adams, “Micropro-
gramming: A Tutorial and Survey of Recent
Developments,” IEEE Trans. Computers,
vol. 29, no. 1, Jan. 1980, pp. 2-20.

5. G. Kane and J. Heinrich, MIPS RISC Architec-
ture, Prentice Hall, Englewood Cliffs, 1992.

6. S. Vassiliadis, B. Blaner, and R. Eickemeyer,
“SCISM: A Scalable Compound Instruction
Set Machine,” IBM J. Research and Devel-
opment, vol. 38, no. 1, Jan. 1994, pp. 59-78.

7. TriMedia32 Architecture (preliminary speci-
fication), TriMedia Technologies, 2000.

8. Intel IA64 Architecture: Software Develop-
er’s Manual, Intel Corp., 2000.

9. S. Vassiliadis, S. Wong, and S. Cotofana,
“The MOLEN ρµ-coded Processor,” Proc.
11th Int’l Conf. Field-Programmable Logic
and Applications (FPL 2001), Lecture Notes
in Computer Science, vol. 2147, Springer-
Verlag, 2001, pp. 275-285.

10. D.C. Burger and T.M. Austin, The Sim-
pleScalar Tool Set, Version 2.0, tech. report
CS-TR-1997-1342, Univ. of Wisconsin-Madi-
son, 1997.

11. S. Vassiliadis et al., “The Sum-Absolute-Dif-
ference Motion Estimation Accelerator,” Proc.
24th Euromicro Conf., 1998, pp. 158-163.

Stamatis Vassiliadis is the chair professor of
the Computer Engineering Laboratory in the
Electrical Engineering Department at Delft
University of Technology, Delft, the Nether-
lands. His research interests include embed-
ded systems, multimedia processors,
computer architecture, hardware design of
computer systems, custom computing
machines, hardware/software co-design, com-
puter arithmetic, low-power design,
nanocomputing, and network processing.
Vassiliadis has a PhD in electrical engineering
from Politecnico di Milano, Italy. He is an
IEEE Fellow and a member of the IEEE
Computer Society.

Stephan Wong is an assistant professor with
the Computer Engineering Laboratory in the
Electrical Engineering Department at Delft
University of Technology, Delft, the Nether-
lands. His research interests include embed-
ded systems, multimedia processors, complex
instruction set architectures, reconfigurable
and parallel processing, microcoded machines,
and network processors. Wong has a PhD in
computer engineering from Delft University
of Technology, Delft, the Netherlands.

Sorin Cotofana is an associate professor with
the Computer Engineering Laboratory in the
Electrical Engineering Department at Delft
University of Technology, Delft, the Nether-
lands. His research interests include comput-
er arithmetic, parallel architectures, embedded
systems, neural networks, fuzzy logic, com-
putational geometry, and computer-aided
design. Cotofana has a PhD in electrical engi-
neering from Delft University of Technology,
the Netherlands. He is a senior member of the
IEEE Computer Society.

Direct questions and comments about this
article to Stephan Wong, Computer Engineer-
ing Laboratory, Electrical Engineering Depart-
ment, Delft University of Technology, Delft,
the Netherlands; j.s.s.m.wong@ewi.tudelft.nl.

30

MICROCODE PROCESSING

IEEE MICRO

Investing in Students

computer.org/students/

Lance Stafford Larson Student Scholarship
best paper contest

✶
Upsilon Pi Epsilon/IEEE Computer Society Award

for Academic Excellence

Each carries a $500 cash award.

Application deadline: 31 October

SCHOLARSHIP
MONEY FOR
STUDENT
MEMBERS

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

