
Abstract

This paper presents NoSQ (short for No Store Queue), a

microarchitecture that performs store-load communication

without a store queue and without executing stores in the out-

of-order engine. NoSQ implements store-load communication

using speculative memory bypassing (SMB), the dynamic

short-circuiting of DEF-store-load-USE chains to DEF-USE

chains. Whereas previous proposals used SMB as an opportu-

nistic complement to conventional store queue-based forward-

ing, NoSQ uses SMB as a store queue replacement.

NoSQ relies on two supporting mechanisms. The first is an

advanced store-load bypassing predictor that for a given

dynamic load can predict whether that load will bypass and

the identity of the communicating store. The second is an effi-

cient verification mechanism for both bypassed and non-

bpyassed loads using in-order load re-execution with an SMB-

aware store vulnerability window (SVW) filter.

The primary benefit of NoSQ is a simple, fast datapath that

does not contain store-load forwarding hardware; all loads

get their values either from the data cache or from the register

file. Experiments show that this simpler design—despite being

more speculative—slightly outperforms a conventional store-

queue based design on most benchmarks (by 2% on average).

1.  Introduction

Conventional dynamically-scheduled processors imple-

ment value communication between loads and older in-flight

stores using an age-ordered store queue as an intermediary.

When a store executes, it writes its value into the store queue

at a position determined by its age. When a load executes, it

both accesses the cache and associatively searches the store

queue for older stores to the same address. On a match, it for-

wards the value from the youngest matching store; otherwise,

it uses the value from the data cache.

One drawback of the conventional approach is the non-

scalability of associative search, i.e., search latency grows

quickly with structure size. Associative search constrains the

scalability of the store queue, which in turn constrains the scal-

ability of the entire instruction window. To address this chal-

lenge, recent work has proposed to reduce both search

frequency and the number of entries that must be searched [2,

5, 12, 15, 18, 20], to replace the fully-associative age-indexed

store queue with a set-associative address-indexed forwarding

structure [6, 21, 24], or to maintain the age-ordered structure

but replace associative search with speculative indexed access

[19, 22]. This paper presents NoSQ (short for No Store Queue

and pronounced like “mosque”), a microarchitecture that

implements in-flight store-load communication without a store

queue or any other intermediary structure. By avoiding such

structures, the core datapath can be simpler, smaller, and

faster.

The NoSQ microarchitecture uses speculative memory

bypassing (SMB) [10, 11, 13, 14, 25] as a replacement for

conventional store-queue based forwarding. SMB is a previ-

ously-proposed technique that dynamically transforms in-win-

dow store-load communication into register communication. It

uses an extension to register renaming to short-circuit DEF-

store-load-USE chains into lower-latency DEF-USE chains.

Prior proposals used SMB opportunistically as a lower-latency

complement to conventional store queue-based forwarding.

This paper proposes using SMB for all in-window store-

load forwarding. A decode-stage predictor classifies loads as

either bypassing or non-bypassing. All bypassing loads—

loads that in a conventional design forward from an older in-

flight store—skip out-of-order execution altogether. Instruc-

tions dependent on bypassed loads use SMB’s renaming

extension to obtain their values directly from the register file.

Non-bypassing loads are injected into the out-of-order core as

usual, execute when their register inputs are ready, and obtain

their value from the data cache. Because NoSQ uses SMB for

all in-window communication, there is no reason to maintain a

store queue (or other analogous structure) to act as a forward-

ing intermediary, or to execute stores out-of-order to update

this structure. Instead, store execution occurs in the in-order

back-end commit pipeline.

NoSQ relies on two supporting mechanisms. The first is a

store-load bypassing predictor that can predict both whether a

given load will bypass and the identity of the bypassing store.

Speculative memory bypassing, which short-circuits loads and

stores without comparing their addresses, requires more robust

prediction than speculative forwarding, which performs an ini-

tial address check [19]. This paper presents a bypassing pre-

dictor design that achieves prediction accuracies of greater

than 99.8% on all SPEC2000 and MediaBench programs,

using only 10KB of storage to do so. The predictor represents

store-load dependences as the dynamic distances (in stores)

from the store to the load, and is explicitly path-sensitive.

The second component is a lightweight mechanism for

verifying the correct execution of both bypassed and non-

bypassed loads while preserving SMB’s datapath simplifica-

tion benefits. NoSQ verifies all loads using in-order load re-

execution [3] combined with a store vulnerability window

(SVW) filtering mechanism [16, 17] extended to support

SMB. With SVW, most bypassed loads skip re-execution (and

the corresponding cache access) and commit without having

accessed the cache even once.

Without a conventional store queue, NoSQ requires mech-

anisms to supply store addresses and data to the commit pipe-

line. NoSQ extends the commit pipeline with additional stages

for reading store base addresses and data values from the reg-

ister file and for calculating effective addresses. The register

ports and address generation units that previously performed

these functions in the out-of-order core are simply shifted to

the back-end. NoSQ also uses these stages, ports, and adders

to calculate the addresses of bypassed loads for verification
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purposes. Adding a little more bandwidth to these stages—one

additional register read port and one additional address gener-

ation unit—allows them to re-calculate the addresses of the

remaining, non-bypassing loads. By calculating all load

addresses in the back-end pipeline, the traditional load queue

itself can be eliminated as well.

The primary contributions of this paper are:

• A design for a simple core datapath that does not include a

store queue or other store-load forwarding structure. All

loads obtain their values either from the cache or the regis-

ter file. Stores and SMB loads are not dispatched to the

out-of-order core. An extended commit pipeline calculates

store and SMB-load addresses, commits stores to the data

cache, and re-executes a small fraction of the loads to ver-

ify that every load receives the correct value.

• A new implementation of speculative memory bypassing

(SMB) that is capable of handling all in-flight memory

communication duties. This implementation includes a

distance-based store-load bypassing predictor that

achieves greater than 99.8% accuracy using only 10KB of

storage, an integrated verification/training mechanism that

allows most bypassed loads to skip cache access com-

pletely, and support for partial word bypassing.

Being more speculative and with a longer commit pipe-

line, NoSQ is not intended to outperform (in terms of IPC) a

conventional design with an integrated store queue. Its goal is

to match conventional performance while removing timing-

critical and non-scalable structures from the processor’s out-

of-order engine. Nonetheless, experiments show that the

lower-latency memory communication provided by specula-

tive memory bypassing and the reduced contention for out-of-

order resources more than offset the performance impact of the

infrequent store-load bypassing mis-predictions. As a result,

on average NoSQ outperforms an idealized conventional out-

of-order superscalar design by 2%.

2.  Background

This section reviews two previously-proposed techniques

upon which NoSQ builds: speculative memory bypassing

(SMB) [10, 11, 13, 14, 25] and in-order load re-execution [3,

7] with store vulnerability window (SVW) filtering [16, 17].

Throughout the paper, we identify dynamic stores using

store sequence numbers (SSNs) [16], which form the basis of

the SVW scheme and are more convenient than store queue

indices because they also represent committed stores. All

dynamic stores are assigned monotonically increasing SSNs at

rename. A global counter, SSNrename, tracks the SSN of the

most recently renamed/dispatched store. A second counter,

SSNcommit, tracks the SSN of the most recently committed

store. SSNrename – SSNcommit is equal to the occupancy of the

store queue. SSNs are easily convertible to store queue indi-

ces: the store queue index of an in-flight store is the low-order

bits of the store’s SSN. In the rare situations in which SSNs

wrap around, the processor drains its pipeline and clears all

hardware structures that hold SSNs.

2.1.  Speculative Memory Bypassing (SMB)

Value communication through memory from instruction

DEF to instruction USE takes place through a store-load pair,

DEF-store-load-USE. Speculative memory bypassing (SMB)

[10, 11, 13, 14, 25] optimizes in-window memory communica-

tion. SMB “short-circuits” the store-load pair in a DEF-store-

load-USE chain by directly connecting the DEF to the USE

using the register map table. Initial proposals used SMB only

for its store-load communication latency reduction benefits;

bypassed loads still executed in the out-of-order engine for

verification [10, 11, 25]. Subsequent proposals used SMB to

amplify execution core bandwidth and capacity as well, by

allowing bypassed loads to skip the out-of-order engine and

using in-order load re-execution for verification [13, 14].

A Store-Sets based SMB design. Table 1 shows the pipe-

line action diagram for an SMB implementation that leverages

a modified StoreSets store-load dependence predictor [4] and

that performs SMB verification by executing bypassed loads

out-of-order. SMB-specific modifications are in bold. Origi-

nally designed for load scheduling, StoreSets is a two stage

predictor. A decode-stage table called the StoreSet ID Table

(SSIT) maps load PCs to communicating store PCs. A rename-

stage table called the Last Fetched Store Table (LFST) maps

each store PC to the SSN of its most recent dynamic instance1.

This SMB implementation extends StoreSets by (i) adding to

each SSIT entry an additional confidence counter that tracks

the stability of the communicating store-load pair and (ii)

extending the LFST to track not only the SSN of the most

recent dynamic instance of each store PC, but also its input

data physical register tag (dtag).

Collapsing a DEF-store-load-USE chain to a DEF-USE

chain is a multi-step process. The first connection (DEF-store)

is established when the store is renamed: DEF’s output loca-

tion which is also the store’s data input physical register

(st.dtag) is noted in the store’s LFST entry. The second con-

nection (DEF-load) takes place when the load is decoded and

renamed. At decode, the load uses its own PC to pick up the

PC of the communicating store from the SSIT. At rename it

uses the forwarding store PC to pick up that store’s data input

physical register tag (dtag) from the LFST. To perform the

actual “short-circuiting” operation, the load’s output logical

register is mapped to dtag rather than to a newly allocated

physical. The third and final step takes place naturally when

USE is renamed: conventional RAT (register alias table)

lookup points USE’s input to the load’s output which is actu-

ally DEF’s output (dtag). Effectively, the store passes dtag

from DEF to load via the LFST, which then passes it to USE

via the RAT.

In this example, the processor verifies SMB by executing

the load itself in the out-of-order engine. When the load exe-

cutes, it compares its value to the value in the short-circuited

register. If the values do not match, recovery is initiated. The

load also writes its address into the load queue, to allow its

address to be checked by older stores that have yet to execute.

1. As proposed, StoreSets uses the SSIT to map store and load PCs to
Store Set IDs, and the LFST to map StoreSet IDs to store queue
indices. This modified scheme achieves the same effect.

The 39th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO'06)
0-7695-2732-9/06 $20.00  © 2006



2.2.  Filtered In-order Load Re-execution

Conventional dynamically scheduled processors issue

loads speculatively in the presence of older un-executed stores.

They verify this speculation by buffering load addresses in a

load queue. When stores execute, they search the load queue

for younger executed loads with matching addresses. Matches

signal mis-speculation and trigger recovery.

In-order load re-execution prior to commit. To avoid

associative load queue search, load speculation can alterna-

tively be verified by in-order load re-execution prior to commit

[3, 7]; mis-speculation is detected when a load’s re-executed

value does not equal its (initial) executed value. As shown in

Table 2, re-execution can be implemented within an existing

in-order back-end pipeline; the actions corresponding to re-

execution are in bold. The setup stage is extended to read load

addresses and data values from the load queue. For the time

being, ignore the SVW stage. The data cache stage is aug-

mented to also re-execute speculative loads. The commit stage

is extended to compare the newly loaded correct values

(ndata) of loads marked for re-execution with the original

value (data) and flush the pipeline on a mismatch.

Store Vulnerability Window (SVW) re-execution filter-

ing. Under conventional load speculation, only loads that actu-

ally issued in the presence of older un-executed stores—

typically 10–20% of all loads [3, 7]—are speculative, and only

these loads must re-execute. Because the re-execution rate is

low, load re-execution can share a data cache port with store

commit without performance loss due to contention. However,

more aggressive forms of load speculation—e.g., speculative

indexed forwarding [19]—perform speculation of one kind or

another on all loads and would seemingly require re-executing

all loads. Re-executing all loads would in turn require an addi-

tional data cache port or would otherwise induce overheads

that overwhelm the benefit of the speculation itself.

Store Vulnerability Window (SVW) [16] is an address-

based filter that dramatically reduces the re-execution rate for

any form of speculation on loads with respect to older stores.

SVW is based on the observation that a load should not have to

re-execute if no store wrote to a matching address in a suffi-

ciently long time. SVW implements this basic idea using a

small address-indexed table called the Store Sequence Bloom

Filter (SSBF) tracks the SSN of the youngest committed store

to write to each (hashed) address. When a load executes, it

remembers the SSN of the youngest store to which it is not

vulnerable (SSNnvul); if the load forwards SSNnvul is the SSN

of the forwarding store, otherwise this is SSNcommit at the time

of execution. Prior to commit, the load then accesses the SSBF

and re-executes only if the last store to write to its address is

younger than its SSNnvul. Table 2 shows the SVW actions in

the in-order back-end pipeline in bold. These actions are

restricted to the new SVW stage which precedes the data cache

access (store write, load re-execute) stage.

The original SVW proposal described the SSBF as

untagged and direct mapped and achieved re-execution rate

reduction factors of 20–50. To reduce re-executions further,

the SSBF can be tagged and made set-associative, with each

set managed in FIFO fashion. A tagged SSBF (T-SSBF) can

reduce re-execution rates by factors of 100–200 with less total

storage than its untagged counterpart [17].

DECODE RENAME WAIT EXECUTE
S

to
re

st.dtag=RAT[st.dreg]
st.atag=RAT[st.areg]
LFST[st.PC].SSN=SSNrename++

LFST[st.PC].dtag=st.dtag

st.dtag
st.atag

SQ[st.SSN].addr=RF[st.atag]+st.ofs
SQ[st.SSN].data=RF[st.dtag]
search LQ for older loads

flush on ld.addr match

Lo
ad

ld.PCfwd=SSIT[ld.PC].PC

ld.conffwd=SSIT[ld.PC].conf

ld.atag=RAT[ld.areg]
ld.SSNfwd=LFST[ld.PCfwd].SSN

ld.atag
ld.SSNfwd

ld.addr=RF[ld.atag]+ld.ofs
LQ[ld.lqpos]=ld.addr

High-confidence forwarding? Speculative memory bypassing

ld.PCfwd & ld.conffwd & ld.SSNfwd > SSNcommit?

RAT[ld.dreg]=ld.dtag=LFST[ld.PCfwd].dtag

read cache, search SQ for younger stores
flush if data != RF[ld.dtag]

Low-confidence? Conventional load

!ld.PCfwd | !ld.conffwd ?

RAT[ld.dreg]=ld.dtag

read cache, search SQ for younger stores
RF[ld.dtag] = data

Table 1. In-order decode/rename and out-of-order wait/execute pipeline action diagram for Store-Sets based SMB.

Verification is performed by executing the bypassed load in the out-of-order engine.

SETUP SVW DCACHE COMMIT

S
to

re

st.addr=SQ[head].addr
st.data=SQ[head].data

T-SSBF[st.addr]=st.SSN D$[st.addr]=st.data SSNcommit++

commit

Lo
ad

ld.addr=LQ[head].addr
ld.data=LQ[head].data
ld.SSNnvul=LQ[head].SSNnvul

ld.reexec &=
T-SSBF[ld.addr] > ld.SSNnvul

ld.reexec ?
ld.ndata = D$[ld.addr]

(ld.reexec & ld.ndata != ld.data)
? flush
: commit

Table 2. In-order back-end pipeline action diagram for load re-execution with SVW filtering.
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3.  The NoSQ Microarchitecture

NoSQ uses speculative memory bypassing (SMB) to

replace the conventional store-load forwarding path in an out-

of-order processor. Unlike previous proposals that performed

opportunistic SMB [10, 11, 13, 14, 25], NoSQ uses exclusive

SMB to handle all store-load communication. In NoSQ, loads

are classified as either non-bypassing or bypassing. Non-

bypassing loads dispatch to the out-of-order engine where they

wait for their address register input and read the data cache.

Bypassing loads skip out-of-order execution; map-table

“short-circuiting” directly connects their consumers to the pre-

dicted bypassing stores’ producers. As the store queue is no

longer used as an intermediary for store-load communication,

stores skip the out-of-order engine as well. As in a traditional

pipeline, stores write their values to the data cache at commit.

Exclusive SMB requires a highly-accurate store-load

bypassing predictor (Section 3.3) and mechanisms for bypass-

ing “difficult” but common cases like partial-word communi-

cation (Section 3.5). Eliminating the store queue requires

extending the back-end pipeline to execute stores (Section

3.4). Before detailing these modifications, Sections 3.1 and 3.2

describe the basic structure and operation of NoSQ.

3.1.  Store Load Dependences as Dynamic Store Distances

SVW uses store sequence numbers (SSNs) to identify both

in-flight and committed stores. This naming scheme forms the

basis for NoSQ, which represents store-load dependences as

dynamic store distances [26]. Dynamic store distances are

both compact and convenient. At rename, a predicted distance

to a bypassing store can be easily converted to a dynamic store

instance by simple subtraction, ld.SSNbyp = SSNrename–

ld.distbyp. At commit, the distance to the store the load should

have bypassed from can be computed as ld.distbyp =

SSNcommit–T-SSBF[ld.addr]; the T-SSBF holds the SSNs of

the most recently committed store to each (hashed) address.

Store-load dependence schemes based on store distances

can be both more efficient and more powerful than schemes

based on store PCs. Store distances can be converted to SSNs

(i.e., dynamic stores) and vice versa using simple subtraction

from global counters. In contrast, store PCs and SSNs can be

converted to each other only through a level of indirection. At

rename, converting a store PC to an SSN requires a table that

maps each (hashed) store PC to its most recent dynamic

instance, e.g., a Last Fetched Store Table (LFST) [4] or a Store

Address Table (SAT) [19]. For high accuracy, this table must

be repaired during branch misprediction recovery. Converting

an SSN to a store PC at commit also requires an additional

table, e.g., an SPCT [16]. Store distance-based schemes can

also easily represent dependences of loads on what is not the

most recent instance of a static store, as in the loop body

X[i]=A*X[i-2]. Store PC-based schemes, which use a

table to map each store PC only to its most recent dynamic

instance, cannot easily represent these communication patterns

that occur frequently in some benchmarks [10, 19, 25].

3.2.  Basic Structure and Operation

Table 3 shows the basic operation of NoSQ at the proces-

sor’s front-end and out-of-order stages. At decode, all loads

access the store-load bypassing predictor to obtain a predicted

bypassing distance, ld.distbyp. Loads that “miss” in the predic-

tor or whose predicted bypassing store has already commit-

ted—this is determined at rename by comparing ld.SSNbyp to

SSNcommit—are predicted as non-bypassing. These non-

bypassing loads are dispatched to the out-of-order engine

where they wait for their base address register to become avail-

able. On issue, they perform a simple data cache access.

Bypassing loads—loads that “hit” in the predictor and whose

SSNbyp > SSNcommit—are not dispatched into the out-of-order

engine. Instead, their output register mapping is set to the

physical register corresponding to the predicted bypassing

store’s data input. This register is retrieved from the store reg-

ister queue (SRQ) using the low-order bits of ld.SSNbyp. The

store register queue parallels a traditional store queue in struc-

ture, but unlike a traditional store queue is not a datapath ele-

ment. It contains only physical register numbers (not addresses

and values) and it is accessed only at rename, not at execute.

As Table 3 also shows, NoSQ handles especially difficult

bypassing cases—e.g., bypassing from a narrow store to a

DECODE RENAME WAIT EXECUTE
S

to
re

ROB[tail].dtag=RAT[st.dreg]
ROB[tail].atag=RAT[st.areg]
ROB[tail].ofs=st.ofs
SRQ[SSNrename++].dtag = RAT[st.dreg]

nothing! nothing!

Lo
ad

ld.distbyp=predict[ld.PC].dist

ld.confbyp=predict[ld.PC].conf

ROB[tail].SSNnvul = ld.SSNbyp = SSNrename–ld.distbyp
ROB[tail].atag=RAT[ld.areg]
ROB[tail].ofs=ld.ofs

High-confidence bypassing? speculative memory bypassing

ld.SSNbyp > SSNcommit & ld.confbyp ?
RAT[ld.dreg]=ROB[tail].dtag=SRQ[ld.SSNbyp].dtag

nothing! nothing!

Non-bypassing (or low confidence bypassing)? simple cache access (with delay)

ld.SSNbyp ≤ SSNcommit | !ld.confbyp ?

RAT[ld.dreg]=ROB[tail].dtag=ld.dtag
ld.atag=RAT[ld.areg]

ld.atag
(SSNbyp ≤SSNcommit)

D$[ld.addr]

Table 3. In-order decode/rename and out-of-order wait/execute pipeline action diagrams. NoSQ does not dispatch

stores to the out-of-order execution core, and uses speculative memory bypassing for all in-flight memory communication.
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wide load—by dispatching the load and delaying its issue until

the corresponding store commits. The next section provides

more details on the implementation of delay.

3.3.  Store-Load Bypassing Predictor

The goal of a store-load bypassing predictor is to map

each dynamic load to the dynamic in-flight store (if any) from

which it will forward. Bypassing prediction, especially the

kind performed by NoSQ, is more challenging than other

forms of store-load dependence prediction. Dependence-pre-

dictors used for load scheduling (i.e., to reduce squashes due

to premature load execution) [1, 4, 8, 23, 26] must capture

only loads that execute out-of-order with respect to older

stores on which they depend; they can also represent depen-

dences conservatively because predicting a dependence where

none exists only results in a little additional delay. Dependence

predictors used for speculative indexed forwarding [19] must

capture all in-flight store-load dependences, but can also be

conservative. In speculative indexed forwarding, a load for-

wards from its predicted store only if their addresses match.

In contrast, NoSQ’s predictor must be more precise. SMB

passes values from a store’s data producer (DEF) to the load’s

consumers (USE) without the benefit of an address check [10,

11, 13, 14, 25] and so conservative prediction of a dependence

where none actually exists is unacceptable from a performance

standpoint. Because NoSQ uses SMB exclusively rather than

opportunistically, its bypassing predictor must generate a

dependence prediction for every load; it does not have the

option of generating no prediction when its confidence is low.

NoSQ’s bypassing predictor also replaces/subsumes any store-

load dependence predictor in the baseline microarchitecture.

NoSQ’s bypassing predictor design builds upon various

existing designs [4, 10, 11, 25, 26]. The basic predictor organi-

zation is a load-PC indexed, set-associative, cache. Each pre-

dictor entry contains a (partial) tag and distance field. When

the commit stage detects a bypassing mis-prediction—(i) a

non-bypassing load should have bypassed, (ii) a bypassing

load should have accessed the cache instead, or (iii) a bypass-

ing load bypassed from the wrong dynamic store—it allocates

an entry for that load in the predictor table (if necessary) and

updates its distance field.

Explicit path-sensitivity and hybridization. To capture

path-dependent bypassing patterns, NoSQ’s bypassing predic-

tor uses explicit path information in its indexing function. Like

branch predictors with explicit path history in their indexing

functions, NoSQ’s bypassing predictor uses a hybrid structure

to reduce both storage requirements and training times,

exploiting the fact that many loads have path-independent

bypassing patterns.

NoSQ’s bypassing predictor uses two parallel tables: a

path-insensitive table indexed by load PC, and a path-sensitive

table indexed by a hash (XOR) of load PC and some number

of path history bits. To capture both flow-sensitive (i.e., condi-

tional branch) and context-sensitive (i.e., call-site) bypassing

patterns, the path history contains both branch directions (1 bit

per branch) and call PCs (2 bits per call). Loads access both

tables in parallel. If a matching entry is found in both tables,

the path-sensitive prediction is used. On a mis-prediction,

entries are created in both tables. For loads with path-indepen-

dent bypassing behavior, this training policy results in the one-

time creation of an entry in the path-sensitive table. This entry

will eventually be overwritten by a legitimate entry for a load

with path-sensitive behavior. For loads with path-dependent

bypassing behavior, the steady state contents of the predictor

will be an entry in the path-sensitive table for each observed

path and an entry in the path-insensitive table that corresponds

to the most recent mis-predicted bypassing distance.

Although the NoSQ predictor is explicitly path sensitive,

Store-PC based dependence predictors (e.g., StoreSets) do

have some measure of implicit path sensitivity. For example,

when there is no instance of the predicted static store along the

current path, the load would be predicted not to forward; if

there are instances of two different predicted static stores, the

load is predicted to forward from the younger instance. In con-

trast, without using explicit path information, a distance-based

dependence predictor is totally path-insensitive.

Delay. NoSQ uses SMB for all in-flight store-load com-

munication. However, some store-load communication cannot

be handled by bypassing. Specifically, SMB cannot perform

partial-store (i.e., narrow-store/wide-load) communication

because it cannot combine values from multiple sources. Other

communication patterns may pathologically elude the predic-

tor, e.g., path dependent communication patterns whose differ-

entiating signature is longer than the predictor’s history or

path-independent/data-dependent patterns. To avoid bypassing

mis-prediction in these cases, NoSQ effectively converts the

would-be bypassing load to a non-bypassing load by dispatch-

ing it to the out-of-order engine and delaying it until the uncer-

tain store commits, at which time the load safely retrieves its

value from the data cache. A similar approach was used to

reduce squashes in speculative indexed forwarding [19].

NoSQ implements delay by attaching a short confidence

counter to each predictor entry. A prediction with a sub-thresh-

old confidence results in the load waiting for the store corre-

sponding to SSNbyp to commit rather than bypassing from that

store. The confidence counters are initialized at an above-

threshold value and updated at commit. Counters are decre-

mented if a path-sensitive prediction was available but a

bypassing mis-prediction resulted anyway—a condition that

captures the three scenarios described above—and incre-

mented otherwise. Because the baseline predictor is path sen-

sitive, the delay prediction is also path sensitive.

3.4.  Commit Pipeline and Resulting Core Simplifications

NoSQ’s use of SMB to handle all in-flight store-load com-

munication enables several simplifications and enhancements

to the out-of-order execution engine. With store addresses and

data values not needed in the out-of-order core to support for-

warding, the store queue can be eliminated and all stores can

skip out-of-order execution. A traditional store queue buffers

store addresses and data values not only for store-load for-

warding but also for store commit. Eliminating the store queue

requires extending the back-end pipeline to perform store

address generation and to retrieve store data from the register

file. This additional support also enables eliminating the load

queue. This section describes these modifications and the

modifications to SVW needed to support SMB. Table 4 sum-

marizes these modifications.
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SVW for SMB. NoSQ uses SVW to filter re-executions

for both bypassed and non-bypassed loads. Both types of loads

use the same filter, but they use different filter tests. Non-

bypassing loads perform an inequality test, skipping re-execu-

tion if ld.SSNnvul ≤ T-SSBF[ld.addr]. In contrast, bypassing

loads perform an equality test, skipping re-execution if

ld.SSNnvul=T-SSBF[ld.addr] (recall, SSNnvul is SSNbyp for

bypassing loads). This equality test actually requires the use of

a tagged SSBF (a T-SSBF). Load speculation techniques that

use only an inequality test (e.g., speculative scheduling or

speculative indexed forwarding) may use an untagged SSBF

(because SVW inequality tests are safe with respect to SSBF

aliasing). Equality tests, however, are unsafe in the presence of

aliasing, necessitating tags.

Using SVW to filter re-executions for bypassed loads actu-

ally reduces data cache read bandwidth consumption; because

bypassed loads do not read the data cache in the out-of-order

core—they are not dispatched to the out-of-order core—and

most do not read the data cache for verification.

Eliminating the store queue and the out-of-order exe-

cution of all stores. Eliminating the store queue simplifies the

latency-critical load execution path in the out-of-order engine.

Allowing stores to skip out-of-order execution frees up issue

queue entries and issue slots for use by other instructions.

To exploit these advantages, NoSQ effectively moves store

execution from the out-of-order core to the in-order back-end.

After rename, stores are not injected into the out-of-order core.

Instead they are marked as completed and simply wait to com-

mit. In the back-end commit pipeline, prior to the SVW and

data cache write stages, stores access the register file to

retrieve their data and base address values and perform address

calculation. Essentially, instead of using the store queue as an

intermediary buffer for their address and data, stores generate

these “just in time” prior to their actual use.

Delaying these actions to commit requires buffering store

sizes, data and base register tags, and address displacements

until commit. These fields can (logically) be stored in the re-

order buffer. For Alpha, these fields sum to 34 bits (2 for size,

8 for each register tag, and 16 for displacement). This is “new”

storage, but it is written only at rename, it is read only at com-

mit, and it exists outside the latency-critical execution core.

The back-end pipeline uses dedicated register read file

ports to obtain store data and base address, an adder for

address generation, and a TLB port for address translation.

However, these are not additional structures. They are existing

structures simply moved from the out-of-order core to the in-

order back end. Eliminating the store queue does not require

additional register file, address generation, or TLB bandwidth.

This design favors a virtually-tagged T-SSBF. A physically

tagged T-SSBF would require elongating the pipeline further

to allow store addresses to be translated before T-SSBF access.

With a virtually-tagged T-SSBF, store address translation can

occur in parallel with the initial cycles of store data cache

access. A virtually-tagged T-SSBF can be made multiproces-

sor safe [17].

The obvious performance cost of eliminating the store

queue is an extension of the back-end pipeline which may

increase pressure on core structures like the store queue and

register file. However, this is not a significant concern for

NoSQ. NoSQ eliminates the store queue. SMB reduces regis-

ter file pressure by allowing multiple instructions—specifi-

cally, the DEF and the load in a DEF-store-load-USE chain—

to share a single physical register1; pressure is reduced when

the lifetimes of the DEF and the load naturally overlap.

Generating addresses of bypassed loads. In a microar-

chitecture with SVW-filtered re-execution, load data values are

rarely needed in the back-end and so these can obtained from

the register file, potentially using the store data register read

port. However, load re-execution does require load addresses

in the back-end. For non-bypassing loads, these can be

obtained from the load queue. In NoSQ, bypassing loads do

not execute out-of-order and do not update the load queue,

requiring additional mechanisms.

In NoSQ, load input base address and output data register

tags and address displacements are recorded in the ROB—

these fields also hold the corresponding information for

stores—and are available in the back-end. With this informa-

tion, NoSQ uses the store address register read port and

address generation unit to generate the addresses of bypassing

loads in the back-end. Because relatively few loads bypass

(typically only 10%), a single register read port and a single

adder provide sufficient bandwidth to generate the addresses

1. Physical register sharing requires modifications to the reg-
ister allocation/de-allocation logic. Specifically, the physi-
cal registers must be explicitly reference counted to
properly determine when it is safe reallocate a register.

SETUP REGFILE SVW DCACHE COMMIT
S

to
re

st.atag=ROB[head].atag
st.dtag=ROB[head].dtag
st.ofs=ROB[head].ofs

st.baddr=RF[st.atag] st.addr=st.baddr+st.ofs
T-SSBF[st.addr].SSN=st.SSN
T-SSBF[st.addr].tag=st.addr

st.data=RF[st.dtag]
D$[st.addr]=st.data
DTLB[st.addr]

commit

Lo
ad

ld.atag=ROB[head].atag
ld.dtag=ROB[head].dtag
ld.ofs=ROB[head].ofs
ld.SSNnvul=ROB[head].SSNnvul

ld.baddr=RF[ld.atag] ld.addr=ld.baddr+ld.ofs
ent=T-SSBF[ld.addr]
ld. reexec= ld.bypassed

? ((ent.tag != ld.addr) |
(ent.SSN != ld.SSNnvul))

: ent.SSN > ld.SSNnvul

ld.reexec ?
ld.ndata=D$[ld.addr]
DTLB[ld.addr]
ld.data=RF[ld.dtag]

(ld.reexec &
ld.ndata != ld.data)

? flush, train
: commit

Table 4. NoSQ in-order back-end pipeline action diagram. NoSQ performs address generation for all stores and loads
at the SVW stage and translates addresses for all stores and loads that must re-execute at the data cache stage. Without a
load queue or a store queue, load and store base addresses and data values are read from the register file.
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Figure 1. Three out-of-order core/in-order back-
end divisions. Top: a conventional division with an
associative store queue and non-associative load
queue. Middle: NoSQ with a non-associative load
queue. Bottom: NoSQ with no load queue.
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point format to an in-register 64-bit representation. For SMB

to successfully perform partial-word bypassing, it must mimic

these transformations.

To perform partial-word SMB, NoSQ injects a speculative

shift & mask instruction into the out-of-order engine in place

of the original load. This instruction reads the store’s data

input register, performs the necessary transformation, and

writes the value to the bypassed load’s output register. Based

on the size and type of the store and load involved (the store

size and type is recorded in the store register queue), NoSQ

can non-speculatively determine (i) which bytes to mask,

(ii) whether to zero-extend or sign-extend the value, and (iii)

whether to apply the floating point transformation. However,

NoSQ cannot determine a shift amount without the load and

for all stores and for bypassing loads. Address translation

bandwidth for bypassed loads that must re-execute—i.e., those

that “miss” in the T-SSBF—is provided by the store TLB port.

Eliminating the load queue. NoSQ’s extended back-end

pipeline and support for transporting load address and data

register names to the back-end makes eliminating the tradi-

tional load queue a practical option as well. This change

requires an additional register read port and address generation

unit in the back-end to provide sufficient bandwidth to calcu-

late addresses for all loads, i.e., to re-calculate addresses for

non-bypassing loads. This design option eliminates yet

another structure from the processor at the cost of performing

an additional register read and an additional address calcula-

tion for each non-bypassing load. Note that with a virtually

tagged T-SSBF, an additional address translation is needed

only for bypassing loads that ultimately re-execute.

Summary: out-of-order core/in-order back-end

designs. Figure 1 shows three organizations for an out-of-

order core and in-order back-end pipeline. Each diagram

shows paths for a single load and a single store.

The top diagram shows a microarchitecture with an asso-

ciative store queue and non-associative load queue, i.e., load

re-execution with SVW filtering. All loads and stores execute

out-of-order and the back-end pipeline obtains store and load

addresses and values from the store and load queues.

The middle diagram shows NoSQ. The store queue is

eliminated and stores execute in-order in the back-end pipeline

using base register and offset information from the ROB.

Notice, the number of register ports and address generation

units is unchanged. Verification of bypassed loads shares these

structures with store commit.

The bottom diagram shows NoSQ with load queue elimi-

nation. The cost of eliminating the load queue is re-calculating

addresses for non-bypassed loads in the in-order back-end. To

provide sufficient bandwidth for doing so, an additional regis-

ter read port and address generation unit are needed. With this

modest additional bandwidth, the performance of NoSQ with

and without a load queue is identical. Table 4 shows NoSQ’s

actions in the back-end pipeline with load queue elimination.

3.5.  Partial-word Bypassing

For SMB to effectively perform as the only in-flight store-

load communication mechanism, it must correctly handle all

common cases, including many partial-word communication

instances. Performing SMB on partial-word operations

requires additional mechanisms, because a partial-word store-

load pair may implicitly perform mask, shift, and sign/zero

extend operations on the value passed from DEF to USE in a

DEF-store-load-USE chain. On a 64-bit architecture, a partial-

word store implicitly truncates (or masks) an 8-byte register

value to n (1, 2 or 4) bytes when storing it to memory. A par-

tial-word load implicitly zero/sign extends an m (1, 2, or 4)

byte value to 8-bytes. Finally, a partial-word store-load pair

may, from the point of view of the USE, perform a shift on

DEF’s value, e.g., when a narrow load reads the upper half of

the word written by a wide store. On the Alpha architecture

(which is our experimental platform), there is yet another pos-

sible transformation. The lds and sts instructions convert from/

to an in-memory 32-bit IEEE754 single-precision floating-
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store addresses, and so shift amounts must be learned and pre-

dicted. To do this, NoSQ (i) extends each entry in the bypass-

ing predictor with a shift amount and (ii) extends each entry in

the T-SSBF with the store’s size and low-order address bits. At

commit, this additional information is combined with the size

and low-order bits of a load’s address to both learn shift

amounts and, equivalently, to verify (without replay) that the

predicted shift amount was correct.

4.  Experimental Evaluation

The performance goal of NoSQ is to match a design with

conventional forwarding using a fully-associative store queue.

Because NoSQ has a longer back-end pipeline and can suffer

from squashes due to store-load forwarding mis-speculation, it

can under-perform (in terms of IPC) a conventional design.

Alternatively, as NoSQ uses speculative memory bypassing, it

can modestly exceed the performance of a conventional

design. Experiments show that on average, NoSQ outperforms

a conventional design, because the impact of its infrequent

mis-predictions is offset by the latency benefits of SMB and by

the additional benefits of eliminating the store queue and out-

of-order execution of stores. As a secondary benefit, NoSQ

reduces overall data cache accesses by 9% on average. The

following experiments characterize the store-load communica-

tion behavior of our benchmarks, evaluate the accuracy of the

bypassing predictor, and measure NoSQ’s performance.

4.1.  Methodology

We evaluate NoSQ using timing simulation on the

SPEC2000 and MediaBench benchmark suites. The SPEC

programs run on their training input sets using 2% periodic

sampling with 2% cache and branch predictor warm-up and

10M instructions per sample. The Media programs run unsam-

pled on their provided inputs. All programs run to completion.

The detailed simulator executes the Alpha AXP user-level

ISA using the ISA definition and system call modules supplied

by SimpleScalar 3.0. It models a 4-way fetch/issue/commit

superscalar processor with a 128-entry reorder buffer, 48-entry

non-associative load queue, 40-entry issue queue, and 160

physical registers. It models 64KB, 2-way set-associative

instruction and data caches, 128-entry, 4-way set-associative

TLBs, and a 1MB, 8-way set-associative 10 cycle-access L2.

Memory latency is 150 cycles and the memory bus is 16 bytes

wide and clocked at one quarter processor frequency. The

front end can predict two branches per cycle and fetch past

one. It uses an 12k-entry hybrid gShare/bimodal predictor, a

2k-entry, 4-way set-associative target buffer, and a 32-entry

RAS. The front-end and execution pipelines total 11 stages: 1

predict, 3 fetch, 1 decode, 1 rename, 1 schedule, 2 register

read, 1 execute, and 1 complete. Data cache latency is 3

cycles, so the load pipeline is 15 stages. The scheduler can

issue up to 4 instructions per cycle: 4 simple integer, 2 com-

plex integer/FP, 1 branch, 1 load and 1 store. Load speculation

is verified by SVW filtered re-execution. The SVW configura-

tion uses 20 bit SSNs and a 128-entry, 4-way associative T-

SSBF with 2 read ports and 1 write port. Each T-SSBF entry is

8 bytes: 20-bit SSN, 3-bit offset, 3-bit store data size, and 38-

bit tag; total T-SSBF size is 1KB.

in-window store-load

communication

(% committed loads)

bypassing

mis-predictions

(per 10k loads)

total partial-

word

no

delay
delay

(% loads delayed)

adpcm.d 0.0 0.0 0.2 0.2 (0.0)

adpcm.e 0.0 0.0 0.2 0.2 (0.0)

epic.e 8.4 1.9 5.3 1.0 (0.3)

epic.d 17.0 5.0 8.9 5.3 (2.7)

g721.d 6.3 4.7 0.0 0.0 (0.0)

g721.e 6.9 5.8 40.9 0.7 (0.4)

gs.d 12.3 8.0 56.8 4.5 (3.3)

gsm.d 1.4 0.3 2.1 2.3 (0.2)

gsm.e 1.1 0.5 0.4 0.1 (0.0)

jpeg.d 1.1 0.2 2.2 1.9 (1.6)

jpeg.e 10.8 0.2 8.0 3.3 (1.8)

mesa.m 42.7 18.6 84.5 7.9 (5.2)

mesa.o 48.0 19.0 76.3 7.7 (5.8)

mesa.t 32.3 15.4 51.1 7.0 (4.5)

mpeg2.d 24.3 0.4 2.0 0.8 (0.4)

mpeg2.e 4.4 0.6 0.7 0.3 (0.1)

pegwit.d 6.4 6.3 6.2 2.4 (1.1)

pegwit.e 5.6 4.7 7.1 2.5 (1.2)

Media.avg 12.7 5.1 21.6 2.0 (1.6)

bzip2 8.8 5.9 24.6 3.8 (5.3)

crafty 2.8 1.9 17.5 5.7 (3.1)

eon.c 20.4 3.2 61.2 10.8 (4.3)

eon.k 15.4 1.7 56.6 13.9 (6.2)

eon.r 17.3 2.5 71.4 14.0 (6.1)

gap 8.1 0.2 4.5 1.3 (1.5)

gcc 7.7 1.4 17.4 10.4 (6.3)

gzip 15.0 8.7 7.3 2.5 (1.3)

mcf 0.9 0.1 27.7 5.0 (2.7)

parser 8.2 2.6 22.4 8.4 (4.2)

perl.d 9.9 1.9 4.5 2.1 (1.3)

perl.s 11.5 2.7 4.9 2.4 (1.5)

twolf 6.3 5.0 21.4 4.9 (2.5)

vortex 17.9 4.7 12.1 2.9 (1.7)

vpr.p 6.3 4.5 55.0 7.9 (4.6)

vpr.r 17.0 5.6 34.1 12.8 (5.2)

Int.avg 10.8 3.3 17.5 4.5 (3.6)

ammp 4.1 0.1 4.4 2.0 (0.8)

applu 4.9 0.0 0.1 0.1 (0.1)

apsi 3.8 0.5 4.7 0.3 (1.3)

art 1.4 0.4 0.1 0.1 (0.0)

equake 3.2 0.1 0.7 0.1 (0.1)

facerec 0.8 0.6 0.2 0.1 (0.3)

galgel 0.5 0.0 0.5 0.2 (0.1)

lucas 0.0 0.0 0.0 0.0 (0.0)

mesa 12.1 1.7 2.2 0.2 (3.0)

mgrid 1.2 0.0 0.1 0.0 (0.0)

sixtrack 9.4 1.0 59.2 10.7 (4.2)

swim 2.9 0.0 0.3 0.1 (0.1)

wupwise 5.5 0.8 1.8 0.2 (0.1)

FP.avg 3.8 0.4 3.0 0.7 (0.8)

Table 5. Communication behavior and prediction accuracy.

The 39th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO'06)
0-7695-2732-9/06 $20.00  © 2006



The baseline has a 6 stage back-end pipeline: 1 setup, 1

SVW, 3 data cache, 1 commit. It has a 24-entry associative

store queue and a 4k-entry StoreSets load scheduling predic-

tor. NoSQ has an 8 stage back-end pipeline: 1 setup, 2 register

read, 1 agen/SVW, 3 data cache, 1 commit. The bypassing pre-

dictor uses two 1K-entry, 4-way set-associative tables: one

indexed by load PC, and one indexed by an XOR hash of load

PC and 8 bits of branch/call history. Each entry contains a 6-

bit distance field (corresponding to 64 in-flight stores), a 3-bit

shift amount, a 2-bit store size, a 7-bit confidence counter, and

a 22-bit tag, for a total of 5 bytes; the entire predictor is 10KB.

Again, from a performance standpoint there is no difference

whether NoSQ includes a load queue or not.

4.2.  Communication Patterns and Prediction Accuracy

Table 5 shows the store-load communication behavior of

the benchmarks. The left side shows the percentage of com-

mitted loads that—in a 128 instruction window with no limit

on the number stores—experience store-load communication

of any kind (total) and partial-word communication in particu-

lar (partial-word). Partial-word communication includes any

situation in which either the load or store is less than eight

bytes wide. The majority of loads do not communicate with

older stores: 100% in some benchmarks and on average 87%

in MediaBench, 89% in SPECint, and 96% in SPECfp. How-

ever, a few benchmarks have a high degree of store-communi-

cation (up to 48%). Whereas full-word communication is the

common case, partial-word communication is common in

many benchmarks (e.g., SPECint’s gzip and vpr; Media-

Bench’s gs.d, pegwit, and mesa) motivating NoSQ’s support

for partial-word bypassing using shift and mask instructions.

The right side shows the accuracy of NoSQ’s predictor (in

mis-predictions per 10,000 loads) for two different configura-

tions. The first (no delay) shows raw prediction accuracy; here

NoSQ does not delay loads with difficult bypassing behaviors.

Even in this configuration, no benchmark has a mis-prediction

rate above 1% (100 in 10,000 loads) and only 15 of 47 bench-

marks have mis-prediction rates above 0.2% (20 in 10,000)

loads. Average mis-prediction rate is 0.2% in MediaBench and

SPECint and 0.03% in SPECfp. In the second configuration

(delay), NoSQ uses delay to handle difficult bypassing behav-

ior, e.g., partial-store bypassing. Next to prediction accuracy,

in parentheses, the table lists percentage of all committed

loads delayed by NoSQ. The addition of delay reduces mis-

predictions to 0.02%, 0.05%, and 0.01% in MediaBench, SPE-

Cint, and SPECfp, respectively. No benchmark has a mis-pre-

diction rate higher than 0.2%. To achieve this reduction, NoSQ

delays an average of 1.6%, 3.6%, and 0.8% of loads, respec-

tively. Delay prevents mis-predictions caused by partial-store

communication in g721.e (two 1-byte stores to a 2-byte load)

and reduces squashing due to hard-to-predict loads in eon, vpr,

sixtrack, and MediaBench’s mesa.

4.3.  Performance

Figure 2 shows execution times of four configurations, rel-

ative to a microarchitecture with an associative SQ and perfect

load scheduling. The IPC of this ideal baseline is printed

above each benchmark name. The first bar in each group cor-

responds to a processor with an associative SQ and realistic

StoreSets load scheduling. This experiment affirms that Store-

Sets is an effective load scheduling predictor—the perfor-

mance difference between realistic and idealized scheduling is

Figure 2. NoSQ performance on machine with 128-instruction window. Execution times relative to a conventional
processor with perfect load scheduling: (i) microarchitecture with associative store queue, (ii) NoSQ without delay, (iii)
NoSQ with delay, and (iv) an idealized NoSQ configuration.
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Figure 4. Data cache reads. Number of data cache
reads for NoSQ with delay, relative to a baseline
with associative store queue and load re-execution/
SVW verification.
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Figure 3. NoSQ performance on machine with 256-instruction window. Execution times relative to a baseline with
associative store queue and perfect scheduling: (i) microarchitecture with associative store queue, (ii) NoSQ without
delay, (iii) NoSQ with delay, and (iv) an idealized NoSQ configuration.
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negligible in every benchmark except bzip2 (2%) and sixtrack

(6%)—and establishes a realistic baseline for NoSQ.

The second bar shows NoSQ with a realistic predictor and

no delay, i.e., without any load scheduler in the out-of-order

core. Overall, NoSQ slightly outperforms the realistic conven-

tional configuration: by 0.3%, 0.3% and 1.4% for Media-

Bench, SPECint and SPECfp, respectively. In 22 of 47

benchmarks, NoSQ improves performance by more than 1%.

These improvements are largely due to SMB’s latency reduc-

ing effects. Although NoSQ also improves performance in

three other ways—(i) eliminating store queue capacity dis-

patch stalls, (ii) reducing contention for issue bandwidth, and

(iii) reducing contention for issue queue entries—the baseline

processor is well-balanced meaning these resources are not a

bottleneck. In 15 programs, NoSQ’s performance is within 1%

of a conventional design’s. Finally, in 10 of 47 benchmarks,

squashes due to bypassing mis-predictions result in more than

a 1% slowdown for NoSQ.

The third bar shows NoSQ with delay. Delay both reduces

the number of benchmarks with slowdowns and improves

average performance. Adding delay reduces the number of

benchmarks with more than a 1% slowdown to only 1 of 47

benchmarks (SPECfp’s mesa). On average, it improves

NoSQ’s performance by 2.4% and 1.7% for MediaBench and

SPECint where partial-store and other difficult communication

behaviors are more frequent. However, over-delay can reduce

NoSQ’s performance, and it does for three benchmarks

(jpeg.d, gcc and mesa).

The fourth bar shows an idealized NoSQ configuration

with a perfect bypassing predictor and idealized support for

partial-word bypassing. This configuration outperforms a con-

ventional configuration by only 3.7% on average, jibing with

previous assertions that—relative to a baseline with intelligent

load scheduling—speculative memory bypassing is not a com-

pelling performance technique [9]. NoSQ captures about half

the benefit of that ideal case.

4.4.  Performance Scalability

Figure 3 shows NoSQ’s performance on a machine with a

256-instruction window. All window resources are doubled

and the branch predictor size is quadrupled; however, NoSQ’s

bypassing predictor is not enlarged. The figure shows data for

selected benchmarks, but includes suite-wide means.

A larger window increases store-load communication rates

provides more opportunity for SMB and its performance bene-

fits, as evidenced by the relatively improved performance of

the idealized SMB configuration. However, a larger window

also increases the frequency of difficult communication pat-

terns as well as increasing the probability that a window-resi-

dent path-dependent communication instance will have a path

signature that is longer than the one supported by the predictor.

As a result, bypassing mis-predictions increase—delay does

compensate for these somewhat, but in a large window delay is

also expensive—and the performance of (realistic) NoSQ suf-

fers. On average, NoSQ’s improvement drops to 1% from 2%.

Experiments show that NoSQ’s performance can be largely

restored by a larger bypassing predictor with a longer branch

history.

4.5.  Data Cache Read Bandwidth Consumption

In NoSQ, most bypassed loads never access the data

cache. If the number of bypassed loads is large, cache read

bandwidth reduction can be significant. Alternatively, if the

number of bypassed loads is small and SVW cannot success-

fully filter re-executions for non-bypassed loads—causing

them to access the cache twice—NoSQ can increase cache

read bandwidth consumption.

Figure 4 shows data cache reads for NoSQ, normalized to

those of the associative store queue baseline. Each bar shows

out-of-order engine reads (bottom) and back-end re-execution

reads (top). Due to the re-execution filtering effectiveness of

the T-SSBF—only 0.7% of loads re-execute—NoSQ reduces

data cache reads at a rate proportional to the frequency of

bypassing: about 4% for SPECfp and over 10% for Media-

Bench and SPECint on average, although several programs see
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bandwidth reductions of 20% and one (mesa.o) experiences a

40% reduction in data cache reads.

4.6.  Bypassing Predictor Sensitivity Analysis

Figure 5 shows NoSQ’s sensitivity to the configuration of

its bypassing predictor.

Capacity. The top graph shows the performance impact of

predictor capacity with relative execution times for predictors

with 512, 1K, our default 2K, 4K, and unbounded entries. All

predictors use 8 bits of history and a hybrid design with the

storage equally-split between the two tables. The results show

that in a 128-instruction window: (i) the baseline 2K-entry pre-

dictor is almost as effective as a predictor of unbounded size,

and (ii) reducing predictor size by a factor of four (to 512

entries and 2.5KB of storage) has little effect on MediaBench

and SPECfp, but reduces the performance of SPECint by 4%.

Branch history. The bottom graph shows the impact of

pattern history length for 4, 6, our default 8, 10, and 12 branch

history bits. The dark upper segments of the bars show a pre-

dictor with unbounded capacity. For most benchmarks, 6 or 8

history bits capture most of the benefit. Only a few bench-

marks benefit from more than 8 history bits (e.g., eon.k and

sixtrack). Generally, longer histories reduce performance for

the 2K-entry predictor due to the capacity pressure caused by

an increase in the number of path history patterns per load.

5.  Related Work

There have been many recent proposals to improve the

scalability and reduce the complexity of store-load forwarding

via a store queue. Proposals can be grouped into three general

classes. The first class maintains the age-ordered store queue

structure but uses partitioning, filtering, hierarchy, dependence

speculation, and speculative forwarding through the primary

data cache or other structures to reduce the frequency of asso-

ciative store queue search or the number of entries examined

per search [2, 5, 12, 18, 20]. A second class avoids associative

search by abandoning the conventional age-ordered structure

and replacing it with a cache-like address-indexed structure [6,

18, 21, 24]. A third class maintains the simplifying age-

ordered structure but uses dependence speculation to replace

associative search with speculative indexed access [19]. Our

design differs from all of these in a fundamental way: rather

than reducing the complexity of forwarding by optimizing the

store queue, it eliminates the store queue and implements for-

warding using different mechanisms based on speculative

memory bypassing.

Fire and Forget (FnF) [22] is a concurrently-proposed

alternative scheme for eliminating the store queue. FnF

accomplishes this by turning store-load forwarding from a

load-centric activity to a store-centric activity and using load

queue index prediction to perform forwarding through the load

queue instead. Both NoSQ and FnF employ SVW and dis-

tance-based prediction. Unlike NoSQ, FnF does not eliminate

the out-of-order execution of stores or forwarding (bypassing)

loads.

6.  Conclusions

Designing a fast and efficient load/store unit that is tightly

integrated enough into the data path to support efficient store-

load forwarding is a challenge for both current and future pro-

cessors. This paper presents an alternative approach to this

problem: NoSQ, a microarchitecture without an explicit store-

load forwarding unit in the out-of-order datapath. In the NoSQ

microarchitecture, the out-of-order execution engine contains

no store queue and does not execute stores. Bypassed loads do

not execute in the out-of-order engine, and non-bypassed loads

obtain their values from the data cache. All the functions of a

traditional in-flight load/store unit—store-load forwarding, in-

order store-commit, load mis-speculation detection—are

pushed out of the core into the front-end (decode, rename) and

back-end (commit) pipelines.

NoSQ exploits the synergy that exists between three

mechanisms: (i) speculative memory bypassing (SMB), (ii)

highly-accurate store-load forwarding prediction, and (iii) in-

order load re-execution with store vulnerability window

(SVW) re-execution filtering. NoSQ combines these mecha-

nisms—using a few observations and modest modifications to

Figure 5. NoSQ bypassing predictor sensitivity analysis. Top: predictor capacity. Bottom: predictor history bits.
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smooth mechanism interfaces that do not naturally fit together,

like SMB and SVW—and exploits the strengths of one to can-

cel the drawbacks of the other.

Timing simulation shows that NoSQ slightly outperforms

(in terms of IPC) a conventional associative load/store unit

design, despite being more speculative and having a longer

back-end pipeline. The performance advantages of SMB more

than offsets the performance overheads of mis-speculations.

Prior work has found that for RISC ISAs, only 10–15% of the

loads—or 2–3% of all instructions—can exploit SMB, and

concluded that strictly as a performance technique, SMB was

“not worth the effort” [9]. Perhaps when used to simplify the

datapath in addition to providing a performance benefit, SMB

may be worth the effort after all.
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