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ELECTROMIGRATION IS A MAJOR SOURCE OF WIRE AND VIA FAILURE. REFUELING UNDOES

EM FOR BIDIRECTIONAL WIRES AND POWER/GROUND GRIDS—SOME OF A CHIP'S MOST

VULNERABLE WIRES. REFUELING EXPLOITS EM'’S SELF-HEALING EFFECT BY BALANCING THE

AMOUNT OF CURRENT FLOWING IN BOTH DIRECTIONS OF A WIRE. IT CAN SIGNIFICANTLY

EXTEND A WIRE'S LIFETIME WHILE REDUCING THE CHIP AREA DEVOTED TO WIRES.

e e e 0o Reliability is a key issue in micro-
processor design because users expect failure-
free operation throughout the product’s
lifetime. However, failure rates will likely
grow as transistors and wires shrink and the
supply voltage scales slowly, leading to higher
current densities and temperatures. As a
result, transistor and wire degradation will
accelerate and shorten the product’s lifetime.

Electromigration, an undesirable conse-
quence of driving current through wires, is a
major source of wire and via failure.! EM
mainly occurs in bidirectional wires (for
example, data buses between caches or buses
between cores in multicore processors) and
power/ground grids. The conventional so-
lution to EM is to use wider wires and vias
because they have lower current densities so
degrade more slowly (see the “Related
Work in Electromigration” sidebar). How-
ever, the area overhead in the metal layer
impacts interconnect density, increasing
constraints on processor design and leaving
significant performance on the table. Addi-
tionally, this solution adds some guard
bands in the cycle time to tolerate EM
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degradation to some extent, which decreases
operating frequency.

We've observed that driving similar
amounts of current in both directions
undoes the EM. Refieling is a microarchi-
tectural technique that exploits this obser-
vation. It consists of injecting current
whenever the amount of current in one
direction is higher than the amount in the
opposite direction. We use this technique to
extend the EM lifetimes of bidirectional wires
and power/ground grids by several orders of
magnitude without requiring wider wires. In
addition, because our technique reduces EM
degradation, it can reduce guard bands, and
so increase the operating frequency or reduce
the affected blocks™ latency. This type of ad
hoc technique helps increase a chip’s overall
reliability by mitigating one of the most
significant sources of failure for each block.
Refueling might also solve the EM problem
in some critical wires for future technologies.
To the best of our knowledge, refueling is the
first microarchitectural approach to make up
for EM in bidirectional buses and power/
ground grids in the field.
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Related Work in Electromigration

Conventional solutions for electromigration in wires and vias rely on increasing wire
width, which has a significant overhead in terms of area and replicating and resizing vias.
Some researchers propose analyzing circuits to widen only the most vulnerable wires.'
Despite some promising results, this technique is useless for circuits in which all the wires
behave the same (such as bidirectional buses) because they all must be widened.

Some researchers propose reducing the activity in some wires to reduce EM, while not
repairing the wires. This technique’s benefits are far from those of refueling, depend on the
workload, and are applicable only if multiple instances of such wires are in place, which is rarely
the case (an example is the bus between the data cache and the unified cache, DLO/UL1).

EM is considered inevitable in circuits, and chip manufacturers use some design rules to
deal with it, especially in power/ground grids.>* These rules redistribute the current when
possible. They then measure the current that wires must drive and widen the wires as
needed to satisfy the lifetime requirements.

Our previous work analyzed EM physics from a microarchitecture perspective, identified
wires that might experience some degree of EM, and evaluated potential benefits of
avoiding EM in future technologies.> However, the survey provided no solutions.
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Electromigration
Metal wires are imperfect because of
missing atoms (vacancies), impurities,

boundaries between crystals of metal with
different orientations (grain boundaries),
and so on. These imperfections cause
electrons flowing through the wires to
collide with metal atoms, which are pulled
in the direction of the current flow, causing
EM.? High temperatures (which make
metal atoms looser) and higher current
densities (which increase the dragging force)
increase metal atoms’ likelihood to move, so
voids and hillocks are more likely. Voids
appear in those parts of the wire from which
metal atoms are pulled, and eventually those
parts of the wire can break. Meanwhile,
metal atoms pile up in other parts of the
wire to form hillocks, which can create
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shorts with neighbor wires. Black’s law??
describes the mean time to failure (MTTF)
due to EM as:

MTTF = A -j " - eF7 (1)
where A is a technology-dependent constant
that we must determine empirically, j is the
interconnect’s current density, n is a
constant depending on the metal used for
the interconnect (1.1 for copper!), Q is the
activation energy for EM, k is Boltzmann’s
constant, and 7 is temperature in Kelvin.
We compute ; as follows?:

C- Vpp

W -H fp (2)

j =
where C is capacitance, W and H are the
wire’s width and height, Vpp is the supply
voltage, f is the clock frequency, and p is the
switching probability.

Equation 2 clearly shows that increasing
wire and via widths would reduce the
current density, which would reduce EM
and extend the wire’s lifetime. Replicating
vias or increasing their size has a small area
overhead. However, increasing the wire
stripes’ width has a significant area overhead
because of the extra area needed for these
wider metal stripes. This increase in area
significantly impacts the design because it
reduces the connection density, letting us
place fewer wires and possibly leading to less
efficient designs.

However, there is a self-healing effect that
can undo EM. This effect occurs when
current flows in both directions of a wire.*
The parts of the wire that are prone to form
voids when current flows in one direction are
prone to form hillocks when it flows in the
opposite direction. Thus, if the same amount
of current flows in each direction, EM self-
heals. This effect could extend wire lifetime
by several orders of magnitude>—depending
on the metal used, a lifetime can be more
than 1,000 or 10,000 times longer.

As an example, take the low end of that
range and assume that a current that is
perfectly balanced in both directions ex-
tends a wire’s lifetime by 1,000 times. Using
Equations 1 and 2 and assuming that n is
1.1 (copper’s value), we would have to



// UPDATE COUNTER

If (SentLast==0 and SendNow==1 and AtoB) then

counter = counter + 1
If (SentLast==1 and SendNow==0 and BtoA) then
counter = counter + 1
If (SentLast==1 and SendNow==0 and AtoB) then Clock Counter
counter = counter - 1
If (SentLast==0 and SendNow==1 and BtoA) then
counter = counter - 1
Endif +1 1
SentLast = SendNow
// UNDO ELECTROMIGRATION IF NEEDED |
If (|counter| > EMthreshold) then SentLastWM1OO 01
If (counter > 0) then
send “1” from B to A SendNow Mo
send “0” from A to B Sentlast
Else
send “1” from A to B Sender
send “0” from B to A
Endif
Endif
(a) (b)

Figure 1. Refueling in bidirectional buses: algorithm for updating the counter and undoing electromigration (a), and the circuit

to monitor EM (b).

increase the wire’s width at least by a factor
of 534 to achieve this same 1,000X lifetime
extension. Obviously, no one would in-
crease a wire width that much, because
other sources of failure would become the
limiting ones if nothing was done to solve
them. Still, the example helps illustrate self-
healing’s potential benefits.

Refueling hidirectional buses

In a bidirectional bus, both ends (for
example, A and B) can send signals. EM can
cause them to degrade depending on signal
patterns. For instance, the value in the bus
might be “0.” A might send a “1” to B,
thus charging some current through A.
Then B might send a “0” to A, thus
discharging through B the current sent from
A. Thus, the current charged through one
end (A) can be discharged through the other
end (B), causing some EM.

We monitor the amount of current
flowing in each direction for bidirectional
buses, and whenever the imbalance is above
a given threshold we inject current in the
proper direction (refuel) to undo EM. By
avoiding the widening of bidirectional wires
and vias while extending their lifetimes
several orders of magnitude, refueling
reduces the cost of bidirectional buses.

Mechanism

Based on the observation that we can
approximate the EM caused by each current
flow using Equation 1, we determine the
amount of current flow required to make up
for EM produced by past flows. We can do
this using a single counter for each wire. We
assume that similar currents are charged
from both ends, A and B, whenever the bus
state is 0 and any of the bus ends sends a 1
unless otherwise stated. Such amounts of
current depend on the interface with the
bidirectional bus at each end (that is, the
number and size of transistors to feed).
Because bidirectional wires mostly commu-
nicate symmetrical blocks (such as different
cache levels or two cores), both interfaces
can be similar. Thus, both current amounts
are typically similar. Different amounts
would require minor modifications to our
algorithm.

Figure 1a shows the algorithm to update
the counter and undo EM when required.
We refer to the last value sent through the
wire (0 or 1) and the current value as
SentLast and  SendNow. The algorithm
increments the counter when current is
charged through A or discharged through B.
Similarly, it decrements the counter when
current is discharged through A or charged
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. Send from A to B

Send from B to A

. Send from A to B

// Send from A to B is:

for (each wire)
If (counter > 0)
Send “0”
Else
Send “1”
Endif
endfor

then

// Send from B to A is:
for (each wire)
If (counter > 0)
Send “1”
Else
Send
Endif
endfor

then

wo

Figure 2. Algorithm to refuel buses with multiple wires.
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through B. We account for the amount of
current sent twice—when charging and
discharging—which gives the counter dou-
ble the desired value. We solve this by
doubling the EMthreshold value because we
compare the counter with EMthreshold. If
the counter is higher than EMthreshold, we
inject current in the proper direction just
once to keep the imbalance below the
threshold and update the counter. To do
this, we make the wire unavailable during
refueling (as if it were serving a normal
access) after any ongoing access finishes. For
instance, if we must send current from A to
B, we send 1 from A to B, and then we send
0 from B to A. Thus, current is charged
through A and discharged through B. We
update the counter’s value accordingly. We
perform refueling only once to keep the
imbalance below the threshold instead of
trying to achieve perfectly balanced refuel-
ing as often as needed. This is because
future activity might balance the current
discharged through each end.

Because we perform refueling soon after
the imbalanced activity occurs (typically a
few thousands of cycles later), the temper-
ature of both the regular and the refueling
activities is the same, leading to near-
optimal refueling. Thus, the mechanism
doesn’t need to weight the amount of EM
caused by the regular activity and the
amount of EM recovered by the refueling
activity with the actual temperature. We can
achieve maximum lifetime benefits even if
the degradation level remains near EM-
threshold, because the amount of degrada-
tion occurring during some microseconds is

negligible for a processor, which typically
has a lifetime of some years.

Figure 1b shows the hardware imple-
mentation of the algorithm to update the
counter. The number of bits required to
implement the counter depends on EM-
threshold. As we show later, when we use
lower EMthreshold values, we need fewer
bits to implement the counter.

Refueling multiple wires

Refueling one wire only needs two
transitions, as the second part of the
algorithm in Figure 1a shows. When we
refuel one wire of a bus, we must make the
whole bus unavailable for normal operation.
We can exploit this unavailability to refuel
all wires of the bus, even if they haven’t
reached the EMthreshold value.

Because different wires of a given bus
might have different refueling requirements
because of different activity patterns, we
must do both types of refueling—that is,
from end A to end B and vice versa.
Figure 2 shows this process. Depending on
the previous activity in the wires, we refuel
some wires twice, which isn’t detrimental
because we refuel them in the proper
direction. This is the case when one wire’s
counter is above 0 and the last signal
through the wire (Sentlast) is 1. In this
scenario, we send 0 from A to B, which
refuels the wire; then we send 1 from B to
A; and finally, we send 0 from A t B,
which further refuels the wire.

Evaluation

We evaluated an example of a core in
which we apply refueling to both the data
bus between the data (DLO0) cache and the
unified (UL1) cache, and the on-chip bus
between the ULI cache and memory.
Although we evaluated these two concrete
buses, our technique is applicable to any
bidirectional bus in the chip. For instance,
it has great potental for communication
buses between cores in a multicore proces-
sor.

We collected the results presented here
from an IA32 execution-driven simulator
resembling Intel’s Core microarchitecture.
Our workload consisted of more than 500



traces (each consisting of 10 million
consecutive IA32 instructions), which we
obtained from a wide variety of programs.
We split the ULL cache latency (13 cycles)
into three delays:

® cycles to send the request to the ULI
cache,

* cycles to access the cache itself, and

* cycles to send the reply back.

We assumed that the bus from DLO to
ULI takes 4 cycles and accessing the UL1
takes 5 cycles. This assumption might be a
bit pessimistic in terms of bus latency, but
because our technique makes the bus
unavailable during refueling, the penalty is
larger. We considered that the on-chip bus
to communicate between ULl and main
memory has the same latency as the bus
between DLO0 and UL1, because most of the
memory latency is spent in the off-chip bus
and the DRAM access. Thus, whenever we
refuel a bus, it’s unavailable for normal
processing during 12 cycles because of the
three transmissions (see Figure 2) of 4
cycles each (bus latency).

Performance evaluation. Table 1 presents
performance results for different values of
EMthreshold. The slowdown is practically
negligible, especially for a threshold of
1,000—a 0.35 percent drop in instructions
per cycle (IPC). Because this threshold
requires 11 bits per counter [—1,000,
+1,000], we consider a more practical
design that uses a lower threshold (5 bits
for an EMthreshold of 15). The slowdown
for an EMthreshold of 15 averages 0.78
percent IPC. On average, this scenario
requires one refueling every 1,000 cycles
for each bus. As expected, the more

refuelings, the higher the IPC loss.

Lifetime evaluation. We further studied
refueling’s benefits in terms of lifetime with
respect to both the worst-case situation (any
access produces imbalance always in the
same direction), and the real case without
refueling. As we stated previously, lifetime
with refueling should be around 1,000
times longer than it is in the worst case.

Table 2 shows the results for DLO/UL1 and

Table 1. Slowdown and number of refuelings.

Slowdown refueling Refuelings per million cycles
both DLO/UL1 and

EMthreshold UL1/memory (%) DLO/UL1 UL1/memory
1,000 0.35 954 798
15 0.78 1,570 1,341

UL1/memory buses normalized with respect
to the worst case. Although real case bus
lifetimes average approximately 28 times
better than the worst case, this is far from
the lifetimes achieved with refueling, which
are 1,000 times longer® than the worst case
(and 36 times longer than the real case). In
particular, refueling lets us reduce buses’
area by 4X, and, based on Equations 1 and
2, simultaneously extend their lifetime by
8X. Even if the worst-case and real-case
buses are already affordable, refueling can
reduce the delay guard band due to EM,
leading to higher operating frequencies or
lower latencies for the affected components.

Power and area implications. The overhead
for updating counters is low. Updating the
counters for each wire of the bus takes much
less power than the power dissipated on the
wire itself. Additionally, refueling occurs
only 5.5 percent of the times that we use the
DLO0/UL1 bus (1 out of 18 misses in DLO)
and 4.8 percent of the times that we use the
UL1/memory bus (1 out of 21 misses in
ULI). Hence, the energy consumed is
negligible.

In terms of area, the circuit in Figure 1b
100).
Hence, a 64-bit bus only requires 7,000

requires few transistors (around
transistors. Furthermore, these transistors
can be very small because they aren’t in the
critical path and the circuit itself is rather

small. To

overhead is negligible, we compare it against

illustrate that such an area

Table 2. Lifetime of buses for different scenarios (normalized).

Scenario Lifetime DLO/UL1 bus Lifetime UL1/memory bus
Worst case 1 1
Real case 28 27
Refueling 1,000 1,000

NovemBeR—DECEMBER 2008 4]



ELECTROMIGRATION

Off-chip switch On-chip
Power supply g = ke =i SWitgl Supply
—_— )
Ground > >< __________..-..-..-----------------------I--{ --------- 4 2 a 3 Block 1
i L 1“ roun
Interrupt i :
controller |4 i . n
Turn off . i OSCVEQP'F u
Interrupt request i Surersl
ti | L | pply
_ gating 1 TS Block N
Switch Switch requests ' Ground
controller - : ¢ 4
Select Switch replies EleeEss6
ZF ] Data bus
Off-chip
cache

Figure 3. Mechanism to switch power/ground grids.
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the area of a 32-Kbyte cache, which requires
more than 2 million transistors just for the
data bit cells (300 times more transistors).

Thus, with little hardware overhead and
negligible performance degradation, we can
monitor bus activity and refuel wires to
undo EM, thus saving significant area in the
metal layers.

Refueling power/ground grids

Power/ground grids involve numerous
wires that occupy a vast area of some metal
layers.® Based on the observation that both
grids drive similar amounts of current in
opposite directions, we switch both grids to
drive current in different directions alterna-
tively.

Mechanism

Power/ground grids are typically de-
signed as interleaved identical stripes of
metal whose width decreases as they move
to lower metal layers.® Hence, at any metal
layer, power/ground wires are identical and
distributed in the same way. We propose a
mechanism to refuel power/ground wires by
switching grids. Because both grids are
identical, driving current in one direction
(power supply) or the opposite direction
(ground) through metal stripes and vias
doesn’t impact the circuits below. Our only
concern is how to perform this switch,

because we must guarantee that blocks are
always properly connected to power and
ground, that processor state can’t be lost,
and that any device communicating with
the processor won’t notice the switch. By
switching power/ground grids, we make
both grids drive similar amounts of current
in the opposite direction, so the refueling of
such grids is near-optimal in both wires and
vias.

Figure 3 illustrates our switching tech-
nique. Implementing our mechanism to
refuel the grids requires some extra hard-
ware:

® an off-chip controller to decide when
to switch both grids,

* off-chip and on-chip switches,

® off-chip storage space to save the
processor state if switching the grids
is allowed during normal operation
(the storage space can be inside the
microcontroller but we can use any
off-chip cache instead), and

® a mechanism to manage the interrupt
controller so it doesn’t release inter-
rupts when the processor is unavail-

able.

The switch controller decides when to
switch. It includes a register (time counter)
implemented in nonvolatile memory that



tracks how long each grid provides the
power supply. When a user turns the
computer on, the switch controller selects
(using the select signal) the least-used grid to
drive power, while the other grid drives
ground.

The blocks in Figure 3 can represent
single transistors or full cores. Our mech-
anism refuels any power/ground wire and
via between the off-chip and on-chip
switches. The finer the granularity, the
greater the number of power/ground wires
and vias refueled. The proper granularity is
strongly related to the devices used to
implement the on-chip switches. How
much power and area overhead is acceptable
for a given design will depend on EM
degradation’s significance at the current
technology node.

Figure 4 shows our proposed on-chip
switch. Its four transistors have the same
functionality as those used to gate structures
for power savings.” We carefully size gate
transistors in on-chip switches to provide
enough current regardless of the circuit’s
activity. One way to size the transistors is to
use the sum of the widths of all the
transistors  that

could  simultaneously

switch.” That is, we use the sum of the
widths of the
semiconductor transistors to size both of
our on-chip switch’s NMOS transistors,
and the sum of the widths of its p-channel
MOS transistors to size both PMOS
transistors. If we consider that most of the

n-channel metal oxide

area is devoted to memory-like structures
(first- and second-level caches, branch
predictors, and so on) and that few of these
transistors can switch simultaneously, we
can see that the overhead is small. However,
we must still estimate it for each block in
the chip. For instance, the worst case for a
1-Mbyte UL1 cache might be 2° bits
changing among the 2°°—that is, 0.05
percent. Hence, the transistors’ relative
overhead is only significant for blocks in
which a significant fraction of the transistors
can switch simultaneously. If such blocks
represent a significant fraction of the entire
chip area, the overhead might be significant.
Therefore, we must apply refueling only if
we can’t widen the power/ground grid wires
to fit the EM requirements.

Select Select

Grid 1

-0
mﬁj

[ 1

Grid 2

1

Supply

Ground

Figure 4. Implementation of an on-chip switch.

The overhead of the select wires to switch
power and ground inside the chip is also
low. Such wires aren’t critical because they
won’t switch during operation. Using
narrow wires is thus sufficient, even if they
take microseconds to propagate and stabi-
lize the select signal. Additionally, EM isn’t
a concern for these wires because they drive
current only at switching. In addition, the
wires are unidirectional buses that benefit
from EM’s self-healing effect.

Because users might rarely turn off their
computers, we need a mechanism to switch
supply and ground during operation. We
can perform this online switching whenever
the time counter exceeds a given threshold,
which can be several minutes or hours. This
process involves several actions:

1. The switch controller notifies the
processor that it’s going to switch
using the switch requests signal.

2. The processor stops accepting inter-
rupts and doesn’t start any other direct
memory access (DMA) transfer.

3. When all in-service interrupts and
ongoing DMA transfers have fin-
ished, all cores flush their pipelines.

4. If caches aren’t write-through, the
processor copies dirty data back to
off-chip memory.

5. The processor copies the cores’ (regis-
ters’) architectural state to off-chip
storage (for example, off-chip cache).

6. The processor notifies the switch
controller that it’s ready to be turned
off using the switch replies signal.

NovemBeR—DECEMBER 2008
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100

Area in metal layers Nand N + 1 (%)

90 nm 65nm 45nm 32nm 22nm 15nm 11 nm 8nm

B Refueling/fixed height/no current contraints
O Refueling/scaled height/no current contraints
= Refueling/fixed height/current contraints

O Refueling/scaled height/current contraints

O No refueling/fixed height

O No refueling/scaled height

Figure 5. Area devoted to the power/ground grids.
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7. The switch controller sets the interrupt
request (IRQ) gating signal to ensure that
the interrupt controller won’t release
interrupts when the processor is off.

8. The switch controller turns off the
processor, inverts the select signal to
switch the grids, and turns on the
processor. It waits for some preset
time after each operation to let the
processor stabilize completely.

9. The switch controller notifies the
processor through the switch requests
signal that it can restore the cores’ state,
and waits until the processor signals
that it’s ready to resume execution.

10. The switch controller disables the IRQ
gating signal and notifies the processor
that it can resume execution.

During switching the system is frozen, so
if switching takes too long the user will
experience a glitch. Because switching grids
doesn’t involve any mechanical components
and so shouldn’t take long, we don’t expect
this to be an issue. The time required for
switching depends on the technology, so it’s
design-dependent (probably some millisec-
onds). To reduce glitches, the system can
perform switching at computer turn-on
time, during hibernation, at speed-step
changes of operation frequency, and so on.

Benefits of refueling power/ground grids
Because switching occurs at a coarse

granularity (minutes or hours) and its impact

is in the order of milliseconds, the perfor-

mance impact is negligible. However, the
benefits of refueling power/ground grids are
huge in terms of EM lifetime and area savings.
To illustrate the significant improve-
ments in terms of area and lifetime, we
use Choi and colleagues’ example, in which
metal layers V and IV + 1 have 3-um wide
wires for power and ground with a period of
60 pum.® If we move to the next technology
generation (for example, from 90-nanome-
ter to 65-nm), they must be 3.6 pm wide
for the same wire height, or 5.2 pm for
scaled wire height to keep lifetime constant
based on expected switching capacity in-
crease per area unit.® Assuming the gap
between wires is at least as wide as the wires,
the base case uses 10 percent of these metal
layers’ area. When moving to the next
technology generation, the area devoted to
the power/ground grids in these metal layers
is 12 percent if the height doesn’t scale and
17 percent if it does. On the other hand, if
we use refueling, the area devoted to power/
ground grids in these metal layers reduces to
7 percent or remains constant at 10 percent
if needed due to current constraints.
Figure 5 illustrates the evaluation space.
The first two columns show the results of
using refueling and an unconstrained wire
size—that is, the wire can shrink because
there are no current constraints and lithog-
raphy allows scaling. If the wire height is
fixed, we scale the width for all technology
generations; otherwise, the wire width
increases after 8-nanometer technology but
its area is below 1 percent even for 5-nm



technology. The third and fourth columns
represent the same situations in the first two
columns, but in this case we can’t decrease
the wire width due to current constraints (in
addition to the EM constraints). Hence, the
wire width remains at the initial 10 percent
of the area. The last two columns show the
results of using no refueling. In both cases,
we must increase the wire width, which can
make the design unfeasible because the
wires need more than 100 percent of the
area (15 nm for scaled height). Even when
we can increase wire width, we must devote
much more area to the power/ground grids,
reducing the area available for other wires.
As Figure 5 shows, area savings for 22 nm
are as significant as 37X (88.5 versus 2.4
percent). In addition, based on Equations 1
and 2, refueling extends lifetime by 19X
simultaneously for those wires and vias.

Mechanisms based on refueling can
increase the reliability of other wires
affected by EM, besides those we have
discussed in this article, and thus increase
overall chip reliability. We can address other
sources of failure using similar ad hoc
techniques to reduce the number of expect-
ed in-the-field failures per processor. M0
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