
1

Putting Faulty Cores to Work
Amin Ansari, Shuguang Feng, Shantanu Gupta, and Scott Mahlke

Advanced Computer Architecture Laboratory

University of Michigan, Ann Arbor, MI 48109

{ansary, shoe, shangupt, mahlke}@umich.edu

Abstract—Since the non-cache parts of a core are less regular, compared to on-chip caches, tolerating manufacturing

defects in the processing core is a more challenging problem. Due to the lack of effective solutions, disabling non-functional

cores is a common practice in industry, which results in a significant reduction in system throughput. Although a faulty core

cannot be trusted to correctly execute programs, we observe that for most defects, when starting from a valid architectural

state, execution traces on a defective core coarsely resemble those of fault-free executions. In light of this insight, we

propose a robust and heterogeneous core coupling execution scheme, Necromancer, that exploits a functionally dead core

to improve system throughput by supplying hints regarding high-level program behavior. We partition the cores in a CMP

system into multiple groups in which each group shares a lightweight core that can be substantially accelerated using these

execution hints from a faulty core.

Index Terms—Manufacturing defects, Wearout, Chip multiprocessors, Heterogeneous core coupling, System throughput

F

1 INTRODUCTION

Shrinking process technologies and rising power densi-

ties over the last decade have led to a host of reliability

challenges such as defects, wear-out, and parametric

variations [5]. One of these challenges for the semicon-

ductor industry is manufacturing defects, which have a

direct impact on yield. From each process generation

to the next, microprocessors become more susceptible

to manufacturing defects due to the higher sensitivity

of materials, random particles attaching to the wafer

surface, and sub-wavelength lithography issues. Thus, in

order to maintain an acceptable level of manufacturing

yield, a substantial investment is required. Traditionally,

hardware reliability was only a concern for high-end

systems (e.g., HP Tandem Nonstop) for which applying

high-cost redundancy solutions such as triple modular

redundancy (TMR) was acceptable. However, hardware

reliability is emerging as a major issue for mainstream

computing, where the usage of high-cost reliability so-

lutions is not acceptable.

A large fraction of die area is devoted to caches,

which can be protected using techniques like column

redundancy. With appropriate protection mechanisms in

place for caches, the processing cores become the major

source of defect vulnerability on the die. Consequently,

we try to tackle hard-faults in the non-cache portions

of the processing core. Due to the inherent irregu-

larity of the non-cache parts of the core, it is well-

known that handling defects in these parts is challeng-

ing [10]. A common solution is to disable the faulty

core [1]. However, industry is currently dominated by

Chip Multi-Processor (CMP) systems with only a modest

number of high-performance cores (e.g., Intel Core 2).

Therefore, losing a core significantly reduces system

throughput and sale price. At the other extreme of the

solution spectrum lies fine-grained micro-architectural

redundancy [12]. Unfortunately, since the majority of

the core logic is non-redundant, the fault coverage from

these approaches is very limited (e.g., less than 10% for

an Intel processor [10]). StageNet [8] suggests breaking

each core into pipeline stages and allowing one core

to borrow stages from other cores through intercon-

nection networks. Introduction of these interconnection

networks in the processor pipeline presents performance,

power consumption, and design complexity challenges.

DIVA [2] was proposed for dynamic verification of

complex microprocessors. It employs a checker pipeline

that re-runs the same instruction stream to ensure correct

program execution. Given the fact that DIVA was not

2

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

am sv am sv am sv am sv am sv am sv am sv am sv am sv am sv am sv am sv am sv am sv

mgrid applu mesa art equake ammp gzip vpr gcc crafty parser bzip2 twolf Average

< 10K (CI) < 100K (CI) > 100K (CI) or Masked

Fig. 1: Here, the first set of bars (am) shows the distribution of injected hard-faults that manifest as architectural

state mismatches across different latencies, where latency is measured as the number of committed instructions

(CI). The second set of bars (sv) shows the number of CIs before an injected fault results in a violation of a 90%

similarity index.

intended to tolerate defects, as shown in [2], a hard-fault

can result in about 10X slow-down.

As we will see, for most defect instances, the execu-

tion flow of the program on a faulty core coarsely resem-

bles the fault-free program execution when starting from

the same architectural state. Given this observation, we

propose Necromancer (NM) to enhance overall system

throughput and mitigate the performance loss caused by

defects in the non-cache parts of the core. To accomplish

this, we first relax the correct execution constraint on

a faulty core (the undead core). Next, we leverage

high-level execution information (hints) from the undead

core to accelerate the execution of an animator core.

The animator core is an additional core, introduced by

NM, that is an older generation of the baseline cores.

In the animator core, these hints are only treated as

performance enhancers and do not influence execution

correctness.

2 MOTIVATION

In this section, we first demonstrate that an aggressive

out-of-order (OoO) core with a hard-fault in the non-

cache area cannot be trusted to operate correctly. Further,

we test our hypothesis of whether it can still provide

useful execution hints for another core.

2.1 Effect of Hard-Faults on Program Execution

In order to illustrate the negative impact of hard-faults on

program execution, we identify the average number of

instructions that can be committed before observing an

architectural state mismatch. This result, for 5000 area-

weighted hard-fault injections, is depicted as the first

set of bars (am) in Figure 1. For these experiments, we

have a golden execution which compares its architectural

state with the faulty execution every cycle and as soon

as a mismatch is detected, it terminates the simulation

and reports the number of committed instructions up to

that point. For instance, looking at equake, 42% of the

injected hard-faults cause an architectural state mismatch

in less than 10K committed instructions. As this figure

shows, more than 40% of the injected hard-faults can

cause an immediate architectural state mismatch. Thus,

a faulty core cannot be trusted to provide correct func-

tionality even for short periods of program execution.

2.2 Relaxing Correctness Constraints

Here, we try to determine the quality of program ex-

ecution on a faulty core when relaxing the absolute

correctness constraints. The second set of bars (sv) in

Figure 1 depicts how many instructions can be com-

mitted in a faulty core before it gets considerably off

the correct execution path. We define a similarity index

(SI) that measures the similarity between the PC of

committed instructions in the faulty core and a golden

execution of the same program. This SI is calculated

every 1K instructions and whenever it drops beneath

a pre-specified threshold, we stop the simulation and

record the number of committed instructions. Here, we

3

use a SI of 90% which means that during each 1K

instruction window, 90% of PCs must hit exactly the

same instruction cache line in both the golden execution

and program execution on the faulty core. As can be

seen, even for this high threshold value, in more than

85% of cases, the faulty core can successfully commit

at least 100K instructions before its execution differs by

more than 10%.

Since the execution behavior of a faulty core coarsely

matches the golden program execution for long time

periods, we can extract useful information from the

execution of the program on the faulty core and send this

information (hints) to the other core (the animator core),

running the same program. This symbiotic relationship

between the two cores enables the animator core to

achieve a significantly higher performance. We allow the

undead core to run without requiring absolutely correct

functionality. Later, we will evaluate the performance

boost that can be achieved by the NM system.

3 CHALLENGES IN COUPLING WITH A

FAULTY CORE

Given a CMP system, two cores can be coupled together

to achieve higher single-thread performance. Since the

overall performance of a coupled core system is bounded

by the slower core, these two cores were traditionally

identical. However, in order to accelerate program ex-

ecution, one of these cores must progress through the

program stream faster. In order to do so, three methods

have been proposed. First, in Paceline [7], the core that

runs ahead (leader) operates at a higher frequency than

the core that receives execution hints (checker). When

an architectural state mismatch happens, the frequency

of the leader is adjusted. Alternatively, Slipstream pro-

cessors [11] need two different versions of the same

program. The leader core runs a shorter version based on

the removal of ineffectual instructions while the checker

core runs the unmodified program. Lastly, Flea-Flicker

two pass pipelining [4] allows the leader core to return an

invalid value on long-latency operations and proceed. In

most of these schemes, the checker core takes advantage

of program execution on the leader core by receiving pre-

processed instruction streams, resolved branches, and L2

cache prefetches. Although a simple extension of these

ideas seems plausible, due to the presence of defects,

NM encounters two major difficulties.

Global Divergences: Hints become ineffective when

the undead core gets completely off the correct execution

T
h

e
 U

n
d

e
a

d
 C

o
re

L1-Data

Shared L2 cache

Read-Only

T
h

e
 A

n
im

a
to

r C
o

re

L1-Data

Hint Gathering

FET

Memory

Hierarchy

Queue

ta
il

h
e

a
d

DEC REN DIS EXE MEM COM

FE DE RE DI EX ME CO

Hint Distribution

L1-Inst
L1-Inst

Cache Fingerprint

Hint Disabling
Resynchronization

signal and hint

disabling information

Fig. 2: The high-level architecture of NM with the

modules that are added or modified highlighted.

path. To bring the undead core back to a valid execution

point, the architectural state of the animator core can

be copied over to the undead core. Although exact state

matching, by checkpointing the register file, has been

used [7], it is not applicable for animating a faulty core

since architectural state mismatches occur so frequently.

Therefore, we need coarse-grained online monitoring of

the effectiveness of hints over a large time period to de-

cide whether the undead core should be resynchronized

with the animator core. Moreover, resynchronizations

should be cheap and relatively infrequent to avoid a

noticeable impact on the overall performance of the

animator core.

Fine-Grained Variations: The undead core might

execute/commit more or less number of instructions,

causing variations in the similarity of program executions

between the two cores. For instance, the undead core can

take the wrong direction on an IF statement. Although it

quickly returns to the correct execution path afterwards,

a perfect data or instruction stream for the animator

core is unattainable. This necessitates employing generic

hints that are more resilient to these local abnormalities.

Moreover, a mechanism is required to help the animator

core identify the proper time for getting the hints from

the dead core. Given the variation in the usefulness of the

hints, in order to enhance the efficiency of the animator

core, fine-grained hint disabling can also be leveraged.

4 NM ARCHITECTURE

To mitigate system throughput loss due to defects, NM

employs a robust and flexible heterogeneous core cou-

pling technique. Given a group of cores, we introduce

an animator core, an older generation with the same

4

ISA, that is shared among these cores. In this section,

we describe the architectural details for a coupled pair

of faulty and animator cores. As we saw earlier, by

relaxing the correctness constraints, the undead core can

execute a moderate portion of the program before a

resynchronization is required. By executing the program

on the undead core, NM provides hints to accelerate

the animator core. In other words, the undead core is

used as an external run-ahead engine for the animator

core. Figure 2 illustrates the high-level NM design.

In our design, most communication is unidirectional

from the undead core to the animator core with the

exception of the resynchronization and hint disabling

signals. Consequently, a single queue is used for sending

the hints and cache fingerprints to the animator core.

The hint gathering unit attaches a tag to each queue

entry to indicate its type. When this queue gets full and

the undead core wants to insert a new entry, it stalls.

To preserve correct memory state, we do not allow the

dirty lines of the undead core’s data cache to be written

back to the shared L2 cache. Furthermore, exception

handling is also disabled within the undead core since

the animator core maintains the precise state.

In NM, we do not rely on overclocking the undead

core or having multiple versions of the same program.

Furthermore, NM is a hardware-based approach that

is transparent to the workload and operating system.

It also does not require register file checkpointing for

performing exact state matching between two cores.

Instead, we employ a fuzzy hint disabling approach

based on the continuous monitoring of hint effectiveness,

initiating resynchronizations when appropriate. In order

to make the hints more robust against microarchitectural

differences between the two cores and also variations in

the number/order of executed instructions, we leverage

the number of committed instructions for hint synchro-

nization and attach this number to every queue entry

as an age tag. Moreover, we introduce the concept of

a release window to make the hints more robust in the

presence of the aforementioned variations. The release

window helps the animator core determine the right time

to utilize a hint. For instance, assuming the data cache

release window is 20, and 1030 instructions have already

been committed in the animator core, data cache hints

with age tags ≤ 1050 can be pulled off the queue and

applied.

4.1 Hint Gathering and Distribution

Our branch prediction and cache hints (except L2

prefetches) need to be sent through the queue to the

animator core. The hint gathering unit in the undead core

is responsible for gathering hints and cache fingerprints,

attaching the age and type tags, and finally inserting them

into the queue. The PC of committed instructions and

addresses of committed loads and stores are considered

as hints. For branch prediction hints, the hint gathering

unit sends a hint through the queue every time the branch

predictor (BP) of the faulty core gets updates. On the

animator core side, the hint distribution unit receives

these packets from the queue and compares their age

tag with the local number of committed instructions

plus the corresponding release window sizes. It treats

the incoming cache hints as prefetching information to

warm-up its local caches.

The default BP of the animator core is a simple bi-

modal predictor. We first add an extra bimodal predictor

(NM BP) to keep track of incoming branch prediction

hints. Furthermore, we employ a hierarchical tournament

predictor to decide, for a given PC, whether the original

or NM BP should take over. As mentioned earlier, we

leverage release windows to apply the hints just before

they are needed. However, due to the variations in the

number of executed instructions on the undead core, even

the release window cannot guarantee perfect timing of

the hints. In such a scenario, for a subset of instructions,

the tournament predictor can give priority to the original

BP of the animator core to avoid any performance

penalty. Figure 3 shows a simple example in which

the NM BP can only achieve 33% branch prediction

accuracy. This is mainly due to the existence of a tight

inner loop with a low trip count for which switching

to the original BP can enhance the branch prediction

accuracy.

In order to reduce the queue size, communication

traffic needs to be limited to only the most beneficial

hints. Consequently, in the hint gathering unit, we use

two content addressable memories (CAMs) with several

entries to discard I-cache and D-cache hints that were re-

cently sent. Eliminating redundant hints also minimizes

resource contention on the animator core. Furthermore,

to save on transmission bits, we only send the block

related bits of the address for cache hints, ignore hints

on speculative paths, and for branch prediction hints,

only send lower-order bits of the PC that are used for

updating the branch history table of the NM BP.

5

sum = 0;

for (i = 0 ; i < 100 ; i++) {

for (j = 0 ; j < 2 ; j++) {

sum = sum +

arr[i][j];

}

}

C/C++ Code

0X19000000: xor $1, $1, $1 # sum = 0

0X19000004: xor $2, $2, $2 # i = 0

0X19000008: xor $3, $3, $3 # j = 0

0X1900000C: ldq $4, 0($5) # load from arr

0X19000010: addq $1, 0($5) # sum = sum + arr[i][j]

0X19000014: addq $3, 1, $3 # j++

0X19000018: addq $5, 1, $5 # arr pointer proceeds

0X1900001C: cmplt $3, 2, $6 # j < 2

0X19000020: bne $6, 0X1900000C

0X19000024: addq $2, 1, $2 # i++

0X19000028: cmplt $2, 100, $7 # i < 100

0X1900002C: bne $7, 0X19000008

DEC Alpha Assembly Code

Chronologically Sorted Branch Prediction Hints for

0X19000020 [Sent from the undead core]

Age Tag PC Taken OR Not

Taken

9 0X19000020 Taken

15 0X19000020 Taken

21 0X19000020 Not Taken

31 0X19000020 Taken

37 0X19000020 Taken

43 0X19000020 Not Taken

53 0X19000020 Taken

NM BP Entry for PC = 0X19000020 at Different

Times [In the animator core]

Number of

Committed

Instructions

PC Taken OR Not

Taken

9 0X19000020 Taken

15 0X19000020 Not Taken

21 0X19000020 Taken

31 0X19000020 Taken

37 0X19000020 Not Taken

43 0X19000020 Taken

53 0X19000020 Taken

Branch Prediction Release Window Size = 10 Committed Instructions

Perfect

Branch

Prediction

Taken

Taken

Non Taken

Taken

Taken

Not Taken

Taken

Fig. 3: A code example in which hints are received by the animator core at improper times, resulting in low branch

prediction accuracy. Therefore, switching to the original BP of the animator core is beneficial. The code simply

calculates the summation of a 2D-array elements. It should be noted that the branch prediction release window size

is normally set so that the branch prediction accuracy for the entire execution gets maximized.

4.2 Why Disable Hints?

Hints can be disabled when they are no longer beneficial

for the animator core. This might happen because the

program execution on the undead core diverges from the

correct execution path, performance of the animator core

is already near its ideal case, or the undead core is not

be able to get ahead of the animator core. In all these

scenarios, hint disabling helps in four ways: (1) It avoids

occupying resources of the animator core with ineffective

hints. (2) The queue fills up less often, which means less

stalls for the undead core. (3) Disabling hint gathering

and distribution saves power. (4) It serves as an indicator

of when the undead core has strayed far from the correct

execution path and resynchronization is required.

4.3 Hint Disabling Mechanisms

The hint disabling unit is responsible for realizing when

each type of hint should get disabled. In order to disable

cache hints, the cache fingerprint unit generates high-

level cache access information based on the committed

instructions in the last time interval (e.g., last 1K com-

mitted instructions). These fingerprints are sent through

the queue and compared with the animator core’s cache

access pattern. Based on a pre-specified threshold value

for the similarity between access patterns, the animator

core decides whether the cache hint should be disabled.

In addition, when a hint gets disabled, the hint remains

disabled throughout a significant time period, the back-

off period.

Apart from prioritizing the original BP of the animator

core for a subset of PCs, the NM BP can also be

employed for global disabling of the branch prediction

hints. For disabling branch prediction hints, we use a

score-based scheme with a single counter. For every

branch that the original and NM BPs agree upon no

action should be taken. Nonetheless, for the branches that

the NM BP correctly predicts and the original BP does

not, the score counter is incremented by one. Similarly,

for the ones that the NM BP mispredicts but the original

BP correctly predicts, the score counter is decremented.

Finally, at the end of each disabling time interval, if

the counter is below a certain threshold, the branch

prediction hints will be disabled for the back-off period.

4.4 Resynchronization

Since the undead core can stray from the correct ex-

ecution path and no longer provide useful hints, a

mechanism is required to restore it back to a valid state.

To accomplish this, we occasionally resynchronize the

two cores, during which the animator core’s PC and

architectural register values are copied to the undead

core. According to [10], for a modern processor, this

process takes on the order of 100 cycles. Moreover, all

instructions in the undead core’s pipeline are squashed,

the rename table is reset, and the D-cache content is also

6

Core1
L2

Cache

Banks

L2 Cache Banks L2 Cache Banks
Data

Switch

L2

Cache

Banks

Core3 Core4

Core2 Core1

Core3 Core4

Core2

Core1

Core3 Core4

Core2Core1

Core3 Core4

Core2

The

Animator

Core

Core1 Core2

Core3 Core4

Hint GatheringHint Gathering

Hint GatheringHint Gathering

Cache FingerprintCache Fingerprint

Cache Fingerprint Cache Fingerprint

Cluster1 Cluster2

Cluster3 Cluster4

L2 Cache Banks

Core4

Core2

Core1

Core

Core2

Cluster2

Cluster

Core3 Core4

2

Cluster4

Fig. 4: The high-level NM design for a large CMP

system with 16 cores, modeled after the Sun Rock

processor.

invalidated. We take advantage of the hint disabling in-

formation to identify when resynchronization is needed.

For instance, a potential resynchronization policy is to

resynchronize when at least two of the hints get disabled.

4.5 NM Design for CMP Systems

Here, we describe how NM can be applied to CMP

systems with more cores. Figure 4 illustrates the NM

design for a 16-core system with 4 clusters modeled after

the Sun Rock processor. Each cluster contains 4 cores

which share a single animator core, shown in the call-

out. In order to maintain scalability of the NM design, we

employ the aforementioned 4-core cluster design as the

basic building block. Since many dies are fault-free, in

order to avoid disabling the animator cores, these cores

can be leveraged for accelerating the operation of live

cores by exploiting speculative method-level parallelism.

However, evaluation of the latter is beyond the scope of

this work.

For a heterogeneous CMP system, sharing an animator

core between multiple cores might not be possible since

cores have different computational capabilities. A poten-

tial solution is to partition the original set of cores into

groups such that in each group, we have several large

cores and a small core. In each group, the smaller core

should have the capability of operating as a conventional

core or as an animator core when there is a defect in one

of the larger cores within its group. These dual purpose

cores are a suitable fit for many heterogeneous CMP

systems that are designed with many simple cores such

as the IBM Cell processor.

5 EVALUATION METHODOLOGY

We heavily modified SimAlpha [3] to model our coupled

core execution. Inter-process communication is used to

model the information flow between our 6-issue OoO

Alpha 21264 and 2-issue OoO core with the same

resources as Alpha 21064 while simulating SPEC-CPU-

2K. To study the effect of manufacturing defects on

the NM system, we developed an area-weighted, Monte

Carlo fault injection engine. During each iteration of

the Monte Carlo simulation, a microarchitectural struc-

ture is selected and a single, random stuck-at fault is

injected into the timing simulator. We inject these hard-

faults in 15 different microarchitectural structures shown

in Figure 5. Dynamic, and static, power consumption

is evaluated using Wattch [6], HotLeakage [13] and

CACTI [9]. The Synopsys standard industrial tool-chain,

with a TSMC 90nm technology library, is used to eval-

uate the overheads of the remaining miscellaneous logic

(e.g. shift registers).

6 RESULTS

As described earlier, there are many parameters in the

NM design such as cache hint CAM sizes, release

window sizes, and hint disabling thresholds. To fix these

architectural parameters, we performed an extensive de-

sign space exploration. Given these parameter values,

on average, NM can achieve 39.5% speed-up over the

baseline animator core.

Impact of hard-fault locations on performance: To

highlight the impact of fault locations on the achievable

speed-up by NM, Figure 5 depicts the performance

breakdown for 15 different fault locations in the Alpha

21264 ipeline. Results in each column are normalized to

the average speed-up that can be achieved by NM for

that particular benchmark. This was done to eliminate

the advantage/disadvantage that comes from the inherent

benchmark suitability for core coupling. As can be

seen, hard-faults in some locations are more harmful

than others. These locations consist of the PC, integer

ALU, and instruction fetch queue. Another interesting

observation is that reaction to defects can significantly

differ between benchmarks (e.g., parser). We conclude

two main points from this plot. First, on average, there

are only a few fault locations that can drastically impact

7

Fault location m
gr

id

ap
plu

m
esa

ar
t

equake

am
m

p

gz
ip

vp
r

gc
c

cr
aft

y

par
se

r

bzip
2

tw
olf

Ave
ra

ge

Program counter

Branch target buffer

Instruction fetch queue 1.7

Input latch of decoder

Rename address table

Integer register file

Floating point register file

Reorder buffer 1.0

Integer ALU

Integer multiplier

Integer divider

Floating point ALU

Floating point multiplier

Floating point divider 0.4

Load/store queue

Fig. 5: Variation in the speed-up of the animator core for different hard-fault locations across SPEC-CPU-2K

benchmarks. To isolate the impact of hard-fault locations, results in each column are normalized to the average

speed-up that can be achieved by the NM coupled cores for that particular benchmark.

NM speed-up gains. Second, for a given fault location,

different benchmarks show various degrees of suscepti-

bility; thus, heterogeneity across the benchmarks running

on a CMP system helps NM to achieve a higher speed-

up by allowing more suitable workloads to be assigned

to the coupled cores.

Speed-up and overheads: Table 1 demonstrates the

amount of speed-up that can be achieved by the NM cou-

pled cores. We achieve a higher overall speed-up as the

number of cores increases. This is because NM achieves

different speed-ups based on the defect type, location,

and the workload running on the system. For a 16-core

system, on average, the coupled cores can achieve the

performance of a live core, essentially providing the

appearance of a fully-functional 6-issue baseline core

with a 2-issue animator core. Here, we assume full

utilization, which means there is always one job per core.

Hence, for larger CMPs, with more heterogeneity across

the benchmarks running on the system, there is more

opportunity for NM to exploit. This table also shows the

area and power overheads for our scheme. As can be

seen, the area overhead gradually shrinks as the number

of cores grows since the cost of the animator core is

amortized among more cores. Nevertheless, since we

simply replicate the 4-core building block to construct

CMPs with more than 4 cores, the area overhead remains

the same. In terms of power overhead, as the speed-up

results show, for CMPs with less than 8 cores, the undead

core remains ahead of the animator core and must stall

when the queue is full. During stalls, the undead core

does not consume dynamic power.

Throughput enhancement: The main objective of

TABLE 1: Summary of performance benefit, area overhead, and power overhead of our scheme for CMP systems

with different numbers of cores. Performance of NM coupled cores is normalized to the average performance of a

baseline animator core and also to the average performance of a live core.

Target Performance of NM norm. to a Area overhead Power overhead

system baseline animator core live core (percentage) (percentage)

Single-core (2MB L2) 1.39 0.68 13.6% 15.6%

2-core CMP (2MB shared L2) 1.59 0.78 10.1% 11.8%

4-core CMP (4MB shared L2) 1.79 0.87 5.3% 8.5%

8-core CMP (8MB shared L2) 1.94 0.95 5.3% 5.1%

16-core CMP (16MB shared L2) 2.02 0.99 5.3% 2.7%

8

80%

85%

90%

95%

100%

3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4

Y
ie

ld

4-Core CMP 4-Core CMP + NM

4-Core CMP + Cache Prot. 4-Core CMP + NM + Cache Prot.

enhancement when caches are NOT protected

enhancement when caches are protected

Fig. 6: Achievable yield for a 4-core CMP, given an

expected level of system throughput. Here, we consider

two baselines, a CMP system with and without proper

protection for on-chip caches, showing the yield im-

provement when NM is applied.

NM is to improve the average system throughput of

a population of manufactured chips. For this purpose,

we model 1000 manufactured chips with randomly dis-

tributed defects based on our target defect rate. In the

case of a defect in one of the original cores, we apply

our scheme. On the other hand, if any of the animator

cores, communication queues, or NM specific modules

like the hint gathering unit are faulty, we simply disable

the animator core and the rest of the system can continue

their normal operation. Figure 6 depicts the throughput

enhancement results (shaded regions) based on through-

put binning for a 4-core CMP. Note that NM significantly

enhances the overall system throughput. The horizontal

axis shows the system throughput, normalized to the

throughput of a single baseline core. In this plot, we

illustrate the throughput binning results for throughput

values between 3 and 4. Since we assume, on average,

one defect per 5 chips, yield is always above 80%.

However, there is a small chance that multiple defects

hit the same chip, which precludes a yield of 100% at

a throughput of 3, even when protecting the on-chip

caches. As can be seen, cache protection is a necessity

and fortunately, can be provided easily (e.g., column

redundancy).

7 SUMMARY

To maintain an acceptable level of yield in nanoscale

technologies, manufacturing defects need to be ad-

dressed properly. Since non-cache parts of a core are less

structured and homogeneous, tolerating defects in the

general core area has remained a challenging problem.

In this work, we presented Necromancer, an architectural

scheme to enhance system throughput by exploiting

faulty cores. Necromancer does not rely on correct

program execution on a faulty core; instead, it only

expects this undead core to generate effective execution

hints to accelerate an animator core. In order to increase

Necromancer’s efficacy, we use microarchitectural tech-

niques to provide intrinsically robust hints, effective hint

disabling, and dynamic inter-core state resynchroniza-

tion.

REFERENCES

[1] N. Aggarwal, P. Ranganathan, N. P. Jouppi, and J. E. Smith.
Configurable isolation: building high availability systems with
commodity multi-core processors. In Proc. of the 34th Annual
International Symposium on Computer Architecture, pages 470–
481, 2007.

[2] T. Austin. Diva: a reliable substrate for deep submicron microar-
chitecture design. In Proc. of the 32nd Annual International

Symposium on Microarchitecture, pages 196–207, 1999.
[3] T. Austin, E. Larson, and D. Ernst. Simplescalar: An infras-

tructure for computer system modeling. IEEE Transactions on
Computers, 35(2):59–67, Feb. 2002.

[4] R. D. Barnes, E. N. Nystrom, J. W. Sias, S. J. Patel, N. Navarro,
and W. W. Hwu. Beating in-order stalls with ”flea-flicker”
two-pass pipelining. In Proc. of the 36th Annual International
Symposium on Microarchitecture, page 387, 2003.

[5] S. Borkar. Designing reliable systems from unreliable compo-
nents: The challenges of transistor variability and degradation.
IEEE Micro, 25(6):10–16, 2005.

[6] D. Brooks, V. Tiwari, and M. Martonosi. A framework for
architectural-level power analysis and optimizations. In Proc.

of the 27th Annual International Symposium on Computer Ar-
chitecture, pages 83–94, June 2000.

[7] B. Greskamp and J. Torrellas. Paceline: Improving single-thread
performance in nanoscale cmps through core overclocking. In
Proc. of the 16th International Conference on Parallel Architec-

tures and Compilation Techniques, pages 213–224, 2007.
[8] S. Gupta, S. Feng, A. Ansari, J. A. Blome, and S. Mahlke. The

stagenet fabric for constructing resilient multicore systems. In
Proc. of the 41st Annual International Symposium on Microar-

chitecture, pages 141–151, 2008.
[9] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi. Opti-

mizing nuca organizations and wiring alternatives for large caches
with cacti 6.0. In IEEE Micro, pages 3–14, 2007.

[10] M. D. Powell, A. Biswas, S. Gupta, and S. S. Mukherjee.
Architectural core salvaging in a multi-core processor for hard-
error tolerance. In Proc. of the 36th Annual International

Symposium on Computer Architecture, June 2009.
[11] Z. Purser, K. Sundaramoorthy, and E. Rotenberg. A study of

slipstream processors. In Proc. of the 33rd Annual International
Symposium on Microarchitecture, pages 269–280, 2000.

[12] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers. Exploiting
structural duplication for lifetime reliability enhancement. In
Proc. of the 32nd Annual International Symposium on Computer

Architecture, pages 520–531, June 2005.

9

[13] Y. Zhang, D. Parikh, K. Sankaranarayanan, K. Skadron, and
M. Stan. Hotleakage: A temperature-aware model of subthreshold
and gate leakage for architects. Technical report, Univ. of Virginia

Dept. of Computer Science, Jan. 2003.

