
..

Reflections from the 2013
Eckert-Mauchly Award Recipient

JAMES GOODMAN
University of Auckland

......I thank Editor in Chief Erik

Altman and Associate Editor in Chief

Lieven Eeckhout for inviting me to share

my experiences leading to the Eckert-

Mauchly Award. Nobody wins this award

on his own (sadly, this gender reference

is correct: it has been awarded 35 times,

all to men). Many people contributed to

the achievements that led to the award,

and my biggest fear in writing this is that

for lack of space I will leave too many

unrecognized.

A meandering path
Coming of age at the beginning of the

Vietnam War, I spent my twenties simul-

taneously protesting the war and sup-

porting it by assisting the U.S. Navy in

deploying computers and navigation sys-

tems. This deep internal conflict had

many consequences and affected impor-

tant decisions later in life. But at Texas

Instruments I learned a lot about how

real computers worked from Tom String-

fellow, Quitman Liner, and many others.

Working as an engineer while a grad-

uate student in the 1970s, I was involved

in the development of third-party mem-

ory systems attaching to IBM main-

frames. I was fortunate that upstart Intel

allowed me a 30-hour work week during

more than five years’ employment. I

learned about memory systems by

examining detailed designs of third-party

memory systems for the IBM System/

370 family, struggling particularly with

the problems of how to hold off a

processor designed for core memory or

static RAM when a DRAM required

refresh and how to extend a transaction

look-aside buffer to support a larger

memory than the manufacturer had

intended. I learned much about caches

from “Mr. Cache,” Alan J. Smith at the

University of California, Berkeley. And I

learned a lot about how to conduct

research from my advisor Al Despain,

along with Carlo Sequin and David Patter-

son, the last of whom has provided me

with sage advice throughout my career,

despite being three years my junior.

Near the end of my studies at Berke-

ley, as Intel shifted emphasis from mem-

ory chips to microprocessors, I moved to

the microprocessor group, where the P1

and P2 (80186 and 80286) were being

designed. The state of the art was the

single-board computer, with multiple

processors sharing their memory by

communicating through a backplane

Multibus. Although computers costing

more than a half-million dollars had

caches, the microprocessors did not, but

Intel understood Moore’s law. Extending

the single-board model to computers

with caches led directly to the cache

coherence problem, which I discussed

with Jack Klebanoff, leading me to think

about using Multibus broadcast com-

mands to keep the caches consistent.

Thus, I got an early start on the problems

of cache consistency for the coming gen-

eration of microprocessors capable of

shared-memory multiprocessing.

At the age of 36, with three degrees

in engineering but not yet having auth-

ored a published paper, I completed a

PhD and took a position as assistant pro-

fessor in the Department of Computer

Sciences at the University of Wiscon-

sin–Madison. Having investigated archi-

tectural support for databases in my

dissertation, I had listed research inter-

ests as “computer architecture and data-

bases.” I was blessed with a colleague,

David DeWitt, who tactfully advised me

that I was more likely to succeed in archi-

tecture than databases. Over the next

two decades, I enjoyed a rich and pro-

ductive environment with colleagues

Andy Pleszkun, Jim Smith, Guri Sohi,

Mark Hill, and David Wood. It was my

natural inclination to work on “small

science” projects, in part because big

science seemed inaccessible to one

determined to eschew support from mili-

tary sources. My embrace of small sci-

ence also persuaded me that not every

interesting idea was worth publishing,

and that I would best succeed by sifting

and winnowing ideas before publishing

them. Perhaps this was less about great

insight than simple laziness, but to this

day my list of publications over 45 years

is barely one per year.

In early collaboration with Jim Smith

and Andy Pleszkun on a “decoupled

architecture,” I learned a lot about com-

pilers and simulation when Honesty

Young designed an early compiler for

PIPE, a decoupled architecture.1 Within

0272-1732/14/$31.00�c 2014 IEEE Published by the IEEE Computer Society

...

149

Awards

the same project, Wei-chung Hsu recog-

nized that conflicts between register allo-

cation and code scheduling could be

handled best by doing both at once,

resulting in work2 I’m very proud to claim

despite my minimal contribution.

Working with Mary Vernon and me,

Steve Scott did some excellent work eval-

uating the Scalable Coherent Interface

(SCI) ring.3 Working with IEEE standards

committees (Futurebus and SCI) over

the next 10 years, I learned a lot about

cache coherence protocols, and with Ste-

fanos Kaxiras, developed a strong belief

that such protocols could be extended

without falling back to a scalable—but

slow— directory-based scheme. Gradu-

ally it emerged that caches were highly

effective for the sharing of data, particu-

larly if things could get out of order, but

that locks and critical sections could

exhibit disastrous memory behavior for

cache-based memory systems.

Steve Scott also came up with the bril-

liant notion of pruning caches, exploring

the novel concept of a distributed direc-

tory (or cache) that remembered regions

of the network where a line was not

cached. The concept has since come up

repeatedly in my work toward scalable,

non-directory-based cache consistency,

but this work is rarely referenced, per-

haps because it ended up in an IEEE jour-

nal4 after multiple conference rejections.

I delved into locks and memory order-

ing, working with Phil Woest and Mary

Vernon to propose the concept of build-

ing hardware queues to avoid many of

the problems associated with spinlocks.

We initially called this Queue-on-Sync-Bit

(QOSB, pronounced “Cosby”), but soon

renamed it Queue-on-Lock-Bit (“Colby,”

after the Wisconsin town responsible for

a common cheese). This work5 inspired

Michael Scott and John Mellor-Crummey

to propose the popular MCS lock, a soft-

ware-built queue that captured much of

the benefit of QOLB.6 Meanwhile, Alain

Kagi and Doug Burger analyzed the

potential for QOLB,7 concluding that it

could be effective, but required sophisti-

cated and disciplined programming, as

if programming SMPs wasn’t hard

enough. With Guri Sohi arguing that

speculation could be exploited in many

ways, Alain had the insight that hardware

could deduce when lock contention was

occurring, creating “Implicit QOLB,” a

queue similar to that of QOLB but with-

out assistance from the programmer.8 A

key notion was that performance could

be improved by delaying a response to a

request for a cache line containing a lock,

allowing the thread holding the lock a

brief opportunity to complete execution

of the critical section.

Once we recognized the benefit of

speculation regarding critical sections,

other ideas quickly followed. For exam-

ple, recognizing that certain memory

locations could be associated with a

given lock suggested the possibility of

speculative push, passing cache lines

modified within the CS at the time the

now-available lock was replaced.9

Ravi Rajwar extended the notion of

speculating about critical sections one

step further, recognizing that a CS with-

out data conflicts need not acquire the

lock and therefore can share the cache

line containing the lock, permitting con-

current execution of critical sections pro-

tected by a common lock.10 I only

realized how counterintuitive this was

when I described it to knowledgeable

colleagues who initially insisted this was

impossible since the programmer explic-

itly invokes mutual exclusion.

I’m delighted to claim partial credit for

this breakthrough, though my primary

contributions were presenting Ravi with

the context and insisting—over his objec-

tions—on calling it Speculative Lock Eli-

sion (SLE). Like many brilliant insights,

this seems obvious in retrospect, and

after we disclosed the idea in 2000 I

expected it would soon appear in new

processors. It soon appeared in software

implementations with limited hardware

support in Azul Systems, and experimen-

tal software-only versions have been

widely discussed. Sun Microsystems

introduced support for software-hinted

lock elision in their experimental pro-

cessor Rock, through instructions that

explicitly begin speculative execution

rather than acquire the lock. But only in

the past two years—a full decade later—

has this capability appeared in commer-

cial products.

After a sabbatical in 2000 to 2001 at

Intel, I discovered the frustration of com-

pany secrecy preventing the disclosure

of interesting new ideas. Herbert Hum

and I conceived a novel cache-coherence

protocol intended to exploit the higher

bandwidth opportunities present with

the emerging transmitter equalization

(pre-emphasis clocking) technology, and

further increasing the speed advantage

of point-to-point networks over buses.

The starting point was the notion of a

broadcast coherence protocol, with the

introduced problem being event order-

ing, conveniently avoided by a bus.

Although our original MESIF Coherence

Protocol evolved some before becoming

a critical part of QPI source snooping in

Nehalem, we were initially prohibited by

Intel from publishing the idea, then had it

rejected twice by ISCA11,12 because of

limits on what we could disclose.

In 2003, after 23 years at Wisconsin

and with an empty nest, I took up a posi-

tion in computer science at the Univer-

sity of Auckland in New Zealand. Fuad

Tabba and I collaborated extensively with

Mark Moir on transactional memory

issues, and Fuad experimented with a

Rock prototype, demonstrating that a

hybrid TM system—best-effort hardware

support for transactions, falling back to

software when necessary—is a promis-

ing approach to supporting transactional

memory.13

C onsidering the incredible advances

made in computer architecture

over my career, it is easy to suggest that

architecture thrived because of Moore’s

law and dies with it—where could it pos-

sibly go from here? But we still don’t

know how to build general-purpose paral-

lel computers that are easy to program. I

believe there are yet many opportunities

to contribute to the goal of truly scalable

systems that can be programmed by

unsophisticated users.

Computer Architecture lives! MICRO

..

AWARDS

..

150 IEEE MICRO

..
References
1. H.C. Young and J.R. Goodman, “A

Simulation Study of Architectural Data

Queues and Prepare-To-Branch

Instruction,” Proc. IEEE Int’l Conf.

Computer Design (ICCD): VLSI in

Computers, 1984, pp. 544-549.

2. J.R. Goodman and W.-C. Hsu, “Code

Scheduling and Register Allocation in

Large Basic Blocks,” Proc. 2nd Int’l

Conf. Supercomputing, 1988, pp.

442-452.

3. S.L. Scott, J.R. Goodman, and M.K.

Vernon, “Performance of the SCI

Ring,” Proc. 19th Ann. Int’l Symp.

Computer Architecture (ISCA 92),

1992, pp. 403-414.

4. S.L. Scott and J.R. Goodman,

“Performance of Pruning-Cache

Directories for Large-Scale Multiproc-

essors,” IEEE Trans. Parallel and Dis-

tributed Systems, vol. 4, no. 5, 1993,

pp. 520-534.

5. J.R. Goodman, M.K. Vernon, and P.J.

Woest, “A Set of Efficient Synchroni-

zation Primitives for a Large-Scale

Shared-Memory Multiprocessor,”

Proc. 3rd Int’l Conf. Architectural

Support for Programming Languages

and Operating Systems, 1989,

pp. 64-75.

6. J.M. Mellor-Crummey and M.L. Scott,

“Synchronization without Con-

tention,” Proc. 4th Int’l Conf. Archi-

tectural Support for Programming

Languages and Operating Systems,

1991, pp. 269-278.

7. A. K€agi, D. Burger, and J.R. Goodman,

“Efficient Synchronization: Let Them

Eat QOLB,” Proc. 24th Ann. Int’l

Symp. Computer Architecture (ISCA

97), 1997, pp. 170-180.

8. R. Rajwar, A. K€agi, and J.R. Goodman,

“Improving the Throughput of Syn-

chronization by Insertion of Delays,”

Proc. 6th Int’l Symp. High Perform-

ance Computer Architecture, 2000,

pp. 168-179.

9. R. Rajwar, A. K€agi, and J.R. Goodman,

“Inferential Queueing and Speculative

Push,” Int’l J. Parallel Processing, vol.

32, no. 3, 2004, pp. 225-258.

10. R. Rajwar and J.R. Goodman,

“Speculative Lock Elision: Enabling

Highly Concurrent Multithreaded Exe-

cution,” Proc. 34th Ann. ACM/IEEE

Int’l Symp. Microarchitecture, 2001,

pp. 294-305.

11. J.R. Goodman and H.H.J Hum,

MESIF: A Two-Hop Cache Coherency

Protocol for Point-to-Point Intercon-

nects (2004), tech. report, Univ.

of Auckland, https://researchspace.

auckland.ac.nz/bitstream/handle/2292/

11593/MESIF-2004.pdf?sequence¼7.

12. J.R. Goodman and H.H.J. Hum,

MESIF: A Two-Hop Cache Coherency

Protocol for Point-to-Point Intercon-

nects (2009), tech. report, Univ.

of Auckland, https://researchspace.

auckland.ac.nz/bitstream/handle/2292/

11594/MESIF-2009.pdf?sequence¼6.

13. F. Tabba et al., “NZTM: Non-Blocking

Zero-Indirection Transactional Memo-

ry,” Proc. 21st Ann. Symp. Parallelism

in Algorithms and Architectures

(SPAA 09), 2009, pp. 204-213.

James Goodman is a professor in the

Department of Computer Science at the

University of Auckland and an Emeritus

Professor in the Computer Sciences

Department at the University of Wiscon-

sin-Madison. Contact him at goodman@

cs.wisc.edu.

...

MAY/JUNE 2014 151

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

