
R3TOS-BASED AUTONOMOUS
FAULT-TOLERANT SYSTEMS

......In this new age of exploration,
which began in the mid-20th century, we
trust electronic systems to be our nose, ears,
and eyes wherever we could not arrive
because of human limitations (for example,
travel time, lack of oxygen, corrosion, tem-
perature, and radiation). Although the com-
bination of human and electronic capabilities
has been effective, it will not be possible in
the future as exploration electronic systems
reach ever more remote, unknown, and harsh
environments, such as the underground
ocean in Jupiter’s moon Europa. Earth-
driven reaction to the hazards posed by these
environments (such as high-energy particles,
corrosive chemical plumes, and volcanic
black smokers in Europa’s ocean) will be too
slow, threatening the electronic explorer,
which will not be accessible for people to
repair. Hence, next-generation exploration
electronics should be adaptive and autono-
mous to increase the scientific return of
future missions.

Adaptivity and autonomy would contrib-
ute to increase the robustness and effective-

ness of many applications operating in more
mundane and better-known environments as
well. Adaptivity can help daily-use consumer
electronic devices fulfill each user’s particular
requirements and expectations, whereas self-
healing would allow for making these devices
more reliable, durable, and cheaper to main-
tain. The latter is especially important as the
process technology becomes more complex
and prone to failure, with the chips degrad-
ing faster and in an unpredictable way over
time as a result of manufacturing-process var-
iations (such as transistor channel length and
threshold voltage).

R3TOS—the Reliable Reconfigurable
Real-Time Operating System—is our solu-
tion for building efficient, self-healing, and
adaptive electronics using commercial-off-
the-shelf partially reconfigurable Xilinx field-
programmable gate arrays (FPGAs).1,2

R3TOS lets a system gain control over its
own resources at the finest chip granularity to
implement the high-level behavioral func-
tionality specified by the system designer.
R3TOS improves efficiency by using a
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virtually unlimited number of computation-
specific circuits, which are swapped in and
out of the chip as needed to complete the
overall computation within the smallest time
span. It increases reliability by always circum-
venting the use of damaged chip resources,
keeping the system fault free and safe. Finally,
it enhances adaptivity by autotuning system
operation to the particular needs at each
time, as well as to deviations in its own func-
tioning. (For information on other ap-
proaches and issues, see the “Related Work
and Technology Limitations” sidebar.)

The R3TOS approach
R3TOS is aimed at making autonomous

fault-tolerant systems (AFTSs) mainstream
by providing the user with a set of hardware
abstraction services and fault-detection, re-
covery, and damage-handling strategies, as
well as computation-scheduling and circuit-
allocation mechanisms. All this functionality
is executed by a hardware microkernel
(HWlK), which is designed to be simple,
reusable, and reliable in order to ease the
composability and certification of R3TOS-
based applications. Because the HWlK con-
stitutes a single point of failure, it is carefully
protected against faults through special hard-
ening—for example, selective triple modular
redundancy (TMR) and error-correcting
code (ECC) bits in memories. The HWlK is
currently implemented using on-chip FPGA
standard resources, but we envision a future
implementation built on the FPGA silicon.

R3TOS hardware microkernel
The R3TOS HWlK comprises three

main components:1,2 a scheduler to decide
the optimum execution order of the com-
putations, an allocator to manage FPGA
resources and decide the most appropriate
placement for the circuits, and a configura-
tion manager to translate the high-level oper-
ations dictated by the scheduler and allocator
into configuration commands for the FPGA.
Each component is separately implemented
to enable parallelism in the execution of
R3TOS processes. For instance, while the
scheduler decides which computation to exe-
cute next, the allocator can analyze the state
of the FPGA surface, and the configuration

manager can load a previously scheduled cir-
cuit in the FPGA. The parallel cooperation
of simple components not only results in low
runtime overhead but also in low area over-
head; that is, the main computing core of all
HWlK components is a tiny Xilinx Pico-
Blaze 8-bit processor. Overall, the HWlK
consumes about 500 configurable logic
blocks (CLBs) and 6 block-RAM memories
(BRAMs).

Especially interesting in this article’s scope
is the configuration manager, which provides
direct, efficient, and easy access to FPGA
resources. The configuration manager sup-
ports circuit allocation, relocation, and
deallocation, along with intercircuit commu-
nications and synchronization. Notably, the
R3TOS configuration manager delivers three
novel capabilities and addresses three impor-
tant limitations imposed by current FPGA
technology. First, it can modify the vertical
position of relocatable circuits inside clock
regions, even relocating them in between
neighbor regions. In connection with this, it
can compute the ECC values for the relo-
cated configuration frames online, enabling
designers to continue using Xilinx Frame-
ECC logic. Finally, it can reroute local clock
signals in each clock region where the relo-
cated circuit spans on the fly.3

At the core, these capabilities are based on
basic configuration operations, such as write,
read back a set of configuration frames
(RBF), blank a configuration frame, and load
a partial bitstream (LPB). To increase per-
formance, up to three different writing func-
tions are available, each for use in a specific
situation: write a single frame to a single loca-
tion (WSF2S), write a single frame to multi-
ple locations (WSF2M), and write multiple
frames to a single location (WMF2S).

The sequence of configuration commands
that must be executed for implementing
these configuration functions are stored in a
BRAM. The configuration manager’s Pico-
Blaze uses these sequences as raw configura-
tion templates that are dynamically adjusted
with the particular parameters of the opera-
tion (such as the frame address or number
of words to read back or write) to be per-
formed each time before they are sent to the
internal configuration access port (ICAP). A
finite-state machine (FSM) controls the



Related Work and Technology Limitations
Parris et al. give a general view of the state of the art in autono-

mous fault tolerance techniques using field-programmable gate arrays

(FPGAs).1 They distinguish between passive techniques, which rely on

fixed FPGA configurations (such as triple modular redundancy [TMR])

and active techniques, which rely on modifying the configuration of

the FPGA (that is, bitstream) to adapt to faults. In our approach, we

focus on active techniques to increase system flexibility, with the

objective of enabling recovery from virtually all types of faults.

Upon beginning the R3TOS project, some of this article’s authors

published a paper describing a roadmap for building an autonomous

fault-tolerant system (AFTS) using partially reconfigurable Xilinx

FPGAs.2 This paper explained the fundamentals of an AFTS and classi-

fied previous related work into four technological levels (TLs) associ-

ated with increasing levels of flexibility:

� TL0: human-driven runtime reconfiguration.

� TL1: use of FPGA configurations created at design time independ-

ently of fault locations detected at runtime.

� TL2: limited generation of FPGA configurations that avoid fault loca-

tions detected at runtime by combining pieces of configurations

that were generated at design time (that is, bitstream relocation).

� TL3: unlimited generation of FPGA configurations that circumvent

fault locations detected at runtime (that is, place and route).

Because TL3 involves online synthesis capability, which is not avail-

able for commercial-off-the-shelf FPGAs, the highest achievable level

using this technology is TL2. An alternative to online synthesis is to use

evolutionary techniques to blindly modify the FPGA’s bitstream (that is,

without any knowledge of the functionality associated with the configu-

ration bits) to create at runtime a set of functionally identical, yet physi-

cally different, configurations that compete for selection on the basis of

a fitness function that favors fault-free behavior.3 However, two major

problems are associated with this quasi-TL3 technique: the long (and

possibly unaffordable) amounts of time necessary to generate the new

FPGA configurations, and certification issues derived from using only

partially tested circuitry that is created randomly.

On the other hand, a TL2 AFTS can manage at runtime a set of

already synthesized, tested, and certified circuits to meet the functional-

ity, performance, and reliability requirements all the time. Namely, the

circuits are swapped in and out of the FPGA and relocated to functional

on-chip resources at all times. However, some important limitations and

challenges are identified, considering the development state of Xilinx’s

partially reconfigurable FPGAs. These include

� limitations on the relocatability of circuitry within the FPGA due

to architectural limitations (for example, chip structure and heter-

ogeneous resources, such as BRAMs and DSPs);4

� limitations for distributing the clock signal to relocatable

circuits;5

� difficulties in providing connectivity to relocatable circuits along

the entire chip;6 and, linked with this,

� limitations for generating and managing at runtime relocatable

circuits because of the need to deal with the static routes across

the chip.7

Montminy et al. present one of the few reported hands-on research

efforts for building a TL2 AFTS.8 Their approach pursued the use of three

redundant relocatable modules, receiving their input data and delivering

their output results through dedicated buses connected to input FPGA

pins and a majority voter, respectively. However, the authors reported

unsolvable synthesis errors when generating the relocatable partial bit-

streams, presumably due to routing issues. Unlike this approach, our sol-

ution does not rely on any physical wires to connect the relocatable

circuitry and the I/O FPGA pins. Instead, it uses virtual communication

through the FPGA’s configuration layer; that is, data is read back from a

source lookup table and copied to a destination lookup table through the

FPGA’s internal configuration access port.9
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configuration command-flow transfers from
the suitable BRAM positions to the ICAP,
and in the case of read-back operations, it
also commands the writing of the read-back
data from the ICAP in the latter memory.

To achieve spatial isolation between the
circuits running on the FPGA, a configura-
tion guardian isolates their associated partial
bitstreams in the configuration domain. The
guardian, which conceptually acts as the
memory protection unit (MPU) in a conven-
tional processor, is a simple (and hence reli-
able) and independent entity that traps
erroneous accesses to the ICAP. For instance,
accesses to the HWlK configuration are con-
sidered erroneous when the HWlK is not
running in privileged mode, and are thus
prohibited.

Diagnosis, recovery, and damage-handling
strategies

R3TOS executes multiple redundant
instances of critical circuits either in parallel
at distinct positions within the FPGA (spatial
redundancy) or at different times (temporal
redundancy).4 The resources assigned to a
circuit instance that has computed an errone-
ous set of results are kept in quarantine while
an exhaustive diagnostic test is conducted on
them. This test, which consists of loading
built-in-self-test (BIST) circuits on the region
in quarantine, aims to localize any damaged
resources with sufficient resolution to enable
reconfiguration around them.

Although this diagnostic test is performed
only when a computation is erroneous,
because of the HWlK’s criticality, the
HWlK’s configuration state is periodically
checked using the Xilinx built-in Frame-
ECC logic to scrub any correctable fault
before it leads to system failure.

R3TOS-based traction controller
To demonstrate the potential of R3TOS

in dependable applications, we developed a
R3TOS-based inverter controller of a real-
world railway traction system that must work
in a harsh thermal and electromagnetic envi-
ronment provoked by the switching activity
of power electronics—for example, insu-
lated-gate bipolar transistors (IGBTs) work-
ing in the kV and kA range.5 High

temperatures accelerate silicon degradation
(that is, permanent damage), whereas electro-
magnetic interferences (EMI) result in spon-
taneous soft errors.

The inverter controller is in charge of
modulating a three-phase pulse-width modu-
lated (PWM) signal according to the traction
and braking orders given by the driver and
the measured speed of the train each time to
control a power bridge of IGBTs that convert
electrical energy from the catenary into
motor traction energy.5 To ensure the train’s
safety, real-time performance is central in the
controller: the temporal resolution must be
as high as 500 ns. Our traction controller
includes three main parts:

� the R3TOS HWlK;
� application-specific logic—that is,

circuitry that performs the traction
control and generates PWM signals
(in short, the TC-PWM), and

� minimal static circuitry to handle sys-
tem inputs and outputs.

All static logic (the HWlK and system
I/Os) are constrained within the FPGA’s
upper-right quadrant, leaving the other
three-quarters of the chip free of static routes
to relocate the TC-PWM circuitry as needed.

Traction control and PWM generation circuits
Figure 1 shows the block diagram of the

TC-PWM circuit, which executes a propor-
tional closed-loop control. Both the target
and actual train speed values are delivered via
input lookup tables (LUTs) and subtracted
from each other to produce an error value for
modulating the PWM signals that control the
traction motor. This involves comparing a
reference sinusoidal that is dynamically gener-
ated with the required amplitude and fre-
quency with three triangular signals, each
shifted 120� in phase from the others. Each
PWM phase changes its state every time its
associated triangular signal crosses the refer-
ence sinusoidal. Hence, the PWM switching
period, TS, matches the triangular signal’s
period, whereas the PWM temporal resolu-
tion is defined by the period of the used clock,
TTC�PWM�CLK ¼ 500ns. The TC-PWM cir-
cuit works with 208 duty-cycle increments, so
the PWM switching frequency is 208 times
slower than the used clock frequency (that is,



fS¼ fTC�PWM�CLK= 208¼ 9:6KHz). More-
over, the traction-control loop, TLOOP, is
closed every 10 PWM switching periods—
that is, TLOOP¼ 10�TS� 1ms.

The value of the PWM signals at every
TTC�PWM�CLK cycle is written to a set of out-
put LUTs in the TC-PWM circuit. Each
PWM phase is assigned two pairs of LUTs to
store 16 consecutive PWM samples for the
upper and bottom IGBT arms in the rectifier
bridge, respectively. Each pair of LUTs
assigned to the same IGBT arm operates in a
ping-pong fashion, odd and even. Although
the 16 PWM samples stored in the odd
LUTs are accessed by the HWlK through
the ICAP to be delivered to the FPGA output
pins, the even LUTs are filled with the next

16 PWM samples, and vice versa. Hence, the
LUT pairs alternate in operation every
16� 500ns ¼ 8 ls. This functioning is
mandatory for achieving a sufficiently high
throughput via the ICAP to work with a tem-
poral resolution of 500 ns.

The TC-PWM circuit also includes an
error flag LUT to indicate any deviation
from its expected functioning, such as no
pulse generation within a PWM switching
period, or a pulse duration shorter than
the minimum pulse width. To ease access
through the ICAP, these LUTs are mapped to
the same columns as output PWM LUTs.

With the objective of increasing the sys-
tem’s availability and diagnosing functioning
errors, three redundant TC-PWM circuit
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mapped to lookup tables (LUTs) and flip-flops.



instances are kept running on the FPGA.
Relocation is done only when a TC-PWM
circuit instance does not work correctly in
the original location (for example, error
flag¼‘1’) and scrubbing does not fix the
problem. The target location is decided by
the R3TOS allocator, and the configuration
data used in the relocation process is directly
read back from any of the other TC-PWM
circuit instances with error flag¼‘0’.

The three TC-PWM instances must be
synchronized every time any of them is relo-
cated to a different position on the FPGA.
The implemented synchronization mecha-
nism (SYNC) is based on a chain of flip-
flops. These are the only flip-flops that are
not masked to respond to the FPGA’s global
set reset (GSR) internal signal, and therefore
they generate a simultaneous reset pulse in
the three TC-PWM instances when the GSR
signal is toggled by the HWlK. The proper
instant to synchronize the triplicated TC-
PWM instances is when the reference sinus-
oidal crosses through 0. This instant is com-
puted using zero cross predictor logic,
accounting for the (fixed and known) delay
introduced by R3TOS when the GSR signal
is toggled, and written to a set of sync flag
LUTs.

Figure 2 shows the FPGA implementa-
tion of the TC-PWM circuit, spanning the
bottom half of a clock region and being
clocked from a local clock buffer (that is,
BUFR). The I/O LUTs, as well as the SYNC
logic, are allocated to dedicated columns in
the rightmost and leftmost edges of the cir-
cuit. Overall, the TC-PWM circuit uses 182
CLBs, one BRAM, and three DSP blocks.
The capability delivered by R3TOS for man-
aging FPGA resources at the finest chip gran-
ularity increases the vertical relocatability of
TC-PWM circuit instances (that is, enhances
system flexibility), thus increasing the chan-
ces of finding an allocation for the three TC-
PWM instances in which all damaged on-
chip resources are circumvented. Namely,
R3TOS brings a 4� relocatability improve-
ment factor over the state of the art when
using Virtex-4 FPGAs, as there are four
BRAMs in a Virtex-4 clock region, but this
factor can be as high as 20� when using
latest 7-Series FPGAs.

I/O static circuitry
The input circuit handles the FPGA input

pins through which the measured and target
train speed values are received. Likewise, the
output circuit handles the FPGA output pins

Figure 2. Field-programmable gate array (FPGA) implementation of the TC-PWM circuit. Note

that the only signal that crosses the boundaries of the circuit is the clock. The LUTs and flip-

flops used to implement the interface of the circuit are mapped to different FPGA resource

columns, allowing independent access to them through the internal configuration access port

(ICAP).



through which the PWM control signals are
issued. The latter circuit is based on LUTs
that mimic the scheme used in the TC-
PWM circuit—that is, a pair of LUTs work-
ing in a ping-pong fashion, even and odd,
alternating in operation every 8 ls. These
LUTs use the same clock signal as the TC-
PWM circuit, thus delivering a PWM sample
to the IGBTs every 500 ns.

R3TOS-driven functioning
In this application, R3TOS is responsible

for carrying out ICAP-based communica-
tions between the TC-PWM circuit instances
and the static I/O LUTs, as well as ensuring
that the system is functioning correctly. As
Figure 3 shows, this functionality is imple-
mented in cyclic ICAP phases of duration
TICAP. It is vitally important to ensure the
ICAP phases are correctly synchronized with
the functioning of TC-PWM circuitry,
namely with the output LUT ping-pong
switch. Hence, the ICAP phases must span
exactly 16 TC-PWM clock cycles (that is,
8 ls).

As Figure 3 shows, every ICAP phase allo-
cates time for both reading back the PWM
bits from the output LUTs in the TC-PWM
circuitry and writing the majority-voted val-
ues to static LUTs connected to FPGA out-
put pins. Additionally, each ICAP phase
allocates a time slot for carrying out other
custom operations that can be executed at a

slower rate. These operations include deliver-
ing input data to the TC-PWM circuitry at
every control loop, checking the configura-
tion correctness of the R3TOS HWlK, relo-
cating TC-PWM circuit instances, and
injecting faults into the system. To reduce the
time overheads, the configuration templates
of the next operations to be executed are
adjusted while the previous operations are
executed by the FPGA’s configuration logic
(see the dotted-line rectangles in Figure 3).

There are five types of operations:

� Type A operations (data delivery). Type
A operations invoke RBF and WMF2S
configuration functions and are peri-
odically executed at every TLOOP to
deliver the same input speed values to
the three TC-PWM circuit instances.

� Type B operations (read back). Type B
operations invoke an RBF configura-
tion function and allow some com-
puting time. They are used to start a
read-modify-write cycle when fol-
lowed by a Type C operation. The
computing time can be used to
check the correctness of the ECC
codes associated with the read-back
frame, invert a bit in the read-back
frame when injecting a fault, or
modify some specific configuration
data when relocating a TC-PWM
instance (for example, ECC values in
a frame).
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� Type C operations (write). Type C oper-
ations invoke WSF2S and RBF config-
uration functions and allow some
computing time. Like Type B opera-
tions, these are used when scrubbing a
soft error, injecting faults, or relocating
a TC-PWM circuit.

� Type D operations (computing). Type
D operations extend the computing
time of Type B and C operations.
This can be used for decoding a
Frame ECC syndrome to find the
upset bit in a frame, or for computing
a relocated frame’s ECC values.

� Type E operations (synchronization).
Type E operations are used to toggle
the GSR signal to synchronize the
three TC-PWM instances when one
of them is relocated. Because of the
strict timing requirements, Type E
operations are executed only when a
synchronization instant is detected,
and they have the highest priority.

The functioning of the R3TOS-based
traction controller can be thus compared
with a (highly predictable) time-triggered sys-
tem, where the micro-tick period is equal to
TTC�PWM�CLK and the macro-tick period is
equal to TICAP.

Experimental results
To characterize the fault-tolerance capabil-

ities of the R3TOS-based traction controller
prototype, which was implemented on a
Xilinx VC4LX160 FPGA, we conducted a
set of fault-injection campaigns. We pseudor-
andomly injected the faults at equal time
intervals, and only in the used FPGA area
(that is, TC-PWM circuit instances and the
HWlK). Namely, a list with the relative
position within the HWlK and TC-PWM
circuit of the configuration bits to be cor-
rupted was randomly generated offline fol-
lowing a uniform fault distribution and used
online to determine the position of the
injected faults based on the location of the
TC-PWM circuit instances at each time. For
simplicity’s sake, the used fault model
neglected the fact that different FPGA
resources have distinct fault rates, but it did
consider the fact that most used FPGA
resources are more prone to failure. The

injected faults to the R3TOS HWlK were
assumed to be correctable (that is, soft
errors), whereas five per 1,000 of the faults
injected to the TC-PWM circuitry were
stuck-at faults aimed at modeling noncorrect-
able hardware damage. To simplify the
implementation, no diagnostic test was used
to detect the simulated damage; the corre-
sponding resources were directly identified as
damaged to the R3TOS allocator.

The fault-injection campaigns were con-
ducted both on the developed R3TOS-based
traction controller and a standard controller
protected with static TMR that does not
implement any recovery mechanism. The
comparison between these two antagonistic
approaches (flexible yet complex versus fixed
and simple) is useful for evaluating the influ-
ence of R3TOS HWlK on reliability. Note
that, unlike in the R3TOS-based controller,
the critical part of the standard controller
(that is, the voter) is a nearly negligible por-
tion of the system. We let both systems run
for 1 minute, repeating the experiments up
to 25 times for each fault rate. We considered
that a failure occurred when all of the error
flags of the TC-PWM circuit instances were
activated, all the TC-PWM circuit instances
generated different PWM bits, or the
R3TOS HWlK was stuck.

Figure 4 depicts the average failure rate
observed in both systems. Although this
grows in the standard controller with the
injected fault rate, it is only significant (that
is, greater than 40 percent) in the R3TOS-
based controller for fault-injection rates
higher than 32 faults per second. For higher
injection rates, the time needed to completely
check (and scrub) the configuration of the
R3TOS HWlK, which is on the order of
tens of milliseconds, approaches the time
interval at which faults are injected, and
therefore, faults start to accumulate and even-
tually lead to an R3TOS HWlK failure.
Nonetheless, the failure rate of the R3TOS-
based controller is still 40 percent lower than
that of the standard controller. On the other
hand, for injection rates lower than 32 faults
per second, the R3TOS-based controller fails
only when faults randomly affect critical ele-
ments in the HWlK (that is, less than 10
percent of the time), showing an improve-
ment in the failure rate greater than 80



percent with regard to the standard control-
ler. A fault rate as high as tens of upsets per
second is aggressive. For instance, the highest
amount of upsets measured by NASA’s space-
craft operating at low Earth orbit (700 km)
in one day is about 1,200 (less than one upset
per minute).6

These results are promising because they
show that the benefit derived from the in-
creased TL2 flexibility provided by R3TOS
is far more important than its vulnerability,
owing to the existence of a single point of
failure, which indeed seems to be robust
enough. We posit that currently available
quasi-TL3 approaches (such as competitive
runtime reconfiguration7) that also have a
single point of failure (that is, a reconfigura-
tion controller) would show worse behavior,
owing to the long time required to con-
verge into a valid solution, if reached. Even
worse, in safety-critical applications—such as
the railway traction controller we present in
this article—using randomly generated
FPGA configurations that are not certified
is completely forbidden by certification enti-
ties. Nonetheless, in noncritical applications,
these approaches could be a last chance to
recover from situations where accumulated
faults have completely ruined the system con-
figuration, or when the FPGA is notably
damaged and it is impossible to find enough

adjacent functional resources for the relocat-
able circuitry.

F uture work includes extending the TL2
AFTS prototype toward adaptivity and

efficiency, as well as testing it in a real harsh 
environment, such as space. In this vein, we 
are providing support for using R3TOS in 
the SUPSAT CubeSat (http://supsat.eu), 
where the traction-controlling circuit we 
present in this article might well be replaced 
with a larger set of circuits, each specialized 
in efficiently processing each type of data col-
lected from the sensorized environment. On-
board data processing will enable the Cube-
Sat to autonomously decide what to do next 
(that is, which circuit to configure next), 
while also helping it to improve energy effi-
ciency, because only the significant pieces of 
information will need to be sent down to 
Earth. In this context, R3TOS could help to 
extend the lifetime of the CubeSat as the 
device ages and degrades by reassigning the 
FPGA resources assigned to peripheral 
func-tionality to vital computations. 
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