
..

Thoughts on Winning the 2014
Eckert–Mauchly Award

TREVOR MUDGE
University of Michigan

......I’d like to thank Erik Altman and

Lieven Eeckhout for the opportunity to

summarize some of the remarks I made

in my Eckert–Mauchly Award accept-

ance speech at the 41st International

Symposium of Computer Architecture in

June 2014. I am very honored to have

received the Eckert–Mauchly award, but,

as many of you know, I have supervised

50 PhD students, and it would be

improbable if I didn’t acknowledge their

large contribution to work that some-

times gets attributed to me. My principal

hope is that I have played the role of con-

structive critic so that their work has

been improved or, better, has taken a

novel turn that perhaps they didn’t fore-

see. As you may have guessed, the

aspect of academia, and research in aca-

demia in particular, that I most enjoy is

the opportunity to work with graduate

students on research problems.

Coming to America
I received my undergraduate degree

from the Applied Physics and Mathe-

matics program at the University of Read-

ing in England. In the fall of 1969 I moved

to the Computer Science Department at

the University of Illinois in Urbana–Cham-

paign on an English Speaking Union schol-

arship (I’m monolingual, so my options

were limited). It was an eventful time in

the United States: the Vietnam War draft

soon started, and some of my new class-

mates were sent to war. On the com-

puter front, Illinois was one of the few

universities that built computers. It is also

the alma mater of over a quarter of the

Eckert–Mauchly winners. The Illinois tra-

dition of building experimental computers

started with ORDVAC (Ordnance Dis-

crete Variable Automatic Computer), and

its twin, Illiac I. When I got there, Illiac II

had just been decommissioned, and Illiac

III and IV were under construction.

The faculty was made up of mathema-

ticians, physicists, and electrical engi-

neers. Computer science was not well

defined then. There were more courses

in quantum mechanics than software. My

first research assistantship in computer

science was to design digital circuits for

experimental digital systems. I also

worked on Illiac III. It was built with asyn-

chronous logic like its predecessor, Illiac

II. There was a strong focus on asynchro-

nous logic designs, and some of the basic

theory was created by the faculty, David

Muller (of C-element fame) in particular.

Illiac III was one of the most interest-

ing machines of its day. It was designed

primarily as a single-instruction, multiple-

data (SIMD) pattern-processing machine,

with a novel addition: a pattern articula-

tion unit that received images from a 2D

array of photo diodes and processed

them in parallel. Each photo diode had a

bit serial processor behind it and a shift

register so that several images could be

stored and pairwise image operations

could be performed. It was similar to the

later Massively Parallel Processor (MPP),

a supercomputer built by Goodyear (the

blimp people). In the ’80s, many of the

ideas in the MPP reappeared in mas-

sively parallel supercomputers like Think-

ing Machine’s Connection Machine.

My first computer architecture class

was taught by David Kuck, who pioneered

many of the ideas we now take for

granted in the parallel processing world.

Despite enjoying the class and deciding to

work in the area, I got a C grade, which

for all practical purposes was a failing

grade—not very auspicious. I worked

with Ted Poppelbaum for my master’s

degree and Gerry Metze for my PhD—I

believe Gerry was the advisor to the larg-

est number of Eckert–Mauchly winners. I

developed a hardware design language

for my PhD thesis that translated down to

asynchronous logic. I learned a lot, but

mostly never to use asynchronous logic.

The University of Michigan
In 1977, I started as an assistant pro-

fessor at the University of Michigan in

the ECE department, where I’ve been

since—a remarkable example of lack of

imagination. Ann Arbor was a pleasant

change from east central Illinois.

I gravitated to dataflow machines,

particularly the work of Jack Dennis’s

group at the Massachusetts Institute of

Technology. They started from asynchro-

nous logic, and his group used the same

composable asynchronous modules as I

...

144 Published by the IEEE Computer Society 0272-1732/15/$31.00�c 2015 IEEE

Awards

had used in my thesis. Asynchronous

logic naturally leads to dataflow because

it is event driven. Using these modules,

Dennis’s group had created an elegant

implementation of the CDC 6600 score-

board. My thesis did something similar,

but with a design language, and used the

example of Tomasulo’s algorithm, which

I viewed as a data-driven machine.

The 1980s
During the first half of the ’80s I

became enamored with the Intel 432 and

capability machines in general. The 432

was another heroic attempt by Intel to

replace the x86 line. It was an unmitigated

disaster. It gave the reduced-instruction-

set computing (RISC) movement (begin-

ning at that time) abundant ammunition to

support a minimalist philosophy of keeping

CPU design simple. Support for capabil-

ities does not have to be inimical to sim-

plicity. The basic concept of the 432 was

impressive and far ahead of its time. In

addition to capabilities, it supported seam-

less, fault-tolerant multiprocessing on

interconnected multiple cores. This was

30 years ago. It could have been ground-

breaking if it had been implemented sensi-

bly. For example, it was often possible to

experience six levels of indirection to

access a 32-bit integer.1 Given current

concerns with privacy and security, it may

well be worthwhile to revisit capabilities.

Also in this time period, Mead and Con-

way started a revolution in teaching inte-

grated circuit design. An important

component was support for the fabrication

of chips in “multiproject wafers” through

MOSIS (supported by NSF and DARPA).

For the first time, students could design

and fabricate their own prototype inte-

grated circuits. It resonated with my back-

ground at Illinois of building prototypes. It

led to a new wave of computer hardware

companies. Most notable were the Berke-

ley and Stanford spin-offs of the RISC

machines, but there were many others.

On the architecture side, we at Michi-

gan obtained an early n-cube—a 64 pro-

cessor connected as a hypercube.2 This

was one of the many massively parallel

machines that borrowed from microproc-

essor technology and included the Cosmic

Cube, Intel’s iPSC, and the Connection

Machine mentioned earlier. These took

over the high-performance computing

space. It was clear that traditional super-

computers were no longer trendsetters

as they had been in the era of the Cray 1.

Rather, the rise of the microprocessor and

its associated volumes meant that much

of the innovation was now found in the

microprocessor world. As a result, my

interests moved back into this area, partic-

ularly with the advent of cell phones in the

1990s, where high-performance require-

ments added the challenge of stringent

energy requirements.

High-performance Gallium
Arsenide (GaAs) computers

By the late ’80s and early ’90s, Michi-

gan had built a significant ability to pro-

duce chips. Thanks to my then-colleague

Rich Brown, we had replaced early design

tools, mostly produced by researchers,

with commercial tools from Mentor

Graphics and later Cadence and Synopsis.

This meant we had a stable industrial-

strength design environment. We initiated

some ambitious projects. The first was a

MIPS-like processor that was imple-

mented in GaAs. The attraction of GaAs

was its high electron mobility, which

translated into much faster switching

times—2 to 3 times that of silicon. We

were successful in producing a 200 MHz

processor when most processors were

operating at 50 MHz.3 Unfortunately, DEC

demonstrated a 200 MHz Alpha at about

the same time. It was clear that silicon

would not soon be replaced. We missed a

key point: GaAs operated at 1 V when sili-

con was at 3.3 or 5 V. We should have

sold it as a low-power technology. No one

was interested in low power then: chip

manufacturers were selling frequency.

We designed and fabricated a follow-up

chip. It was a much more complex out-of-

order machine, which didn’t work prop-

erly. We were too ambitious. It reinforced

for me the need to keep hardware mecha-

nisms as simple as possible.

The chip design work inspired a lot of

related research. We developed new

static-timing techniques for latch-based

designs, and I started to look at processor

interconnect, particularly crossbars. I con-

vinced three undergraduates (one was

Kunle Olukotun) in our VLSI class to fabri-

cate a crossbar in 3-micron technology. It

was clear from the layout, which we struc-

tured as a static RAM layout, that area was

not an issue. Their Oðn2Þ growth was not

a concern for n < 100, and they offered a

way to build tightly coupled computing

nodes with a flat memory space that

avoided the headaches of nonuniform-

memory-access machines. I have contin-

ued with this “obsession” and recently

convinced my colleagues to fabricate a ser-

ies of 64� 64� 128 interconnects.4

I also continued a line of research into

traditional microarchitecture that goes

back to my early papers inspired by Bob

Keller and the dataflow work mentioned

earlier. I was interested in getting per-

formance without too much complexity.

This led to ideas like “run-ahead” and the

use of larger logical register files. To do

this, a group of my graduate students—

Dave Greene, Matt Postiff, Dave

Oehmke, and Kris Flautner—built MIRV,

a compiler to improve register file usage,

which included link time register optimi-

zation. This line of work eventually led to

a scheme for virtualizing registers called

the virtual context architecture. Among

other things, it allowed register windows

to be extended, simplifying function calls

and multithreading.5

Late 1990s energy-aware
computing

In the late 1990s, my interests

changed from high performance to

energy aware. This was largely due to

conversations I had with Bob Colwell,

who was responsible for the highly suc-

cessful Intel P6 core. He suggested that a

few of us put together a workshop on

computer architecture to discuss the

impact of power. At ISCA 29 in Barcelona,

Dirk Grunwald, Bobbie Manne, and I

organized the “Power Driven Microarchi-

tecture Workshop.” Given my new inter-

est in power, and with a sabbatical

coming up for the 1999–2000 academic
...

MAY/JUNE 2015 145

year, it seemed natural to contact ARM

about a sabbatical. ARM by then was

gaining a reputation as a designer of low-

power processors. I called Mike Muller,

their CTO, out of the blue and asked him

if they had a place for me. Surprisingly, he

said yes, and I spent much of that year at

ARM in Cambridge, England.

Upon my return from Cambridge, I

started the ARM lab at Michigan. I also

summarized my thoughts about the

importance of power in processor design

in an article for Computer called “Power:

A First-Class Architectural Design Con-

straint.”6 Looking back, it seems trite, but

at that time the leading processor manu-

facturers were still selling clock frequency.

Herbert Stein noted, “If something cannot

go on forever, it will stop,” and this indeed

happened to clock frequency.

My research also focused on lowering

power and energy in processors. In 2002,

together with Nam Sung Kim, Kris Flautner,

and David Blaauw, I developed the idea of

drowsy caches—a way to retain state

while lowering voltage on accessed cells in

a cache. Shortly afterward, David Blaauw,

Todd Austin, and I developed the idea of

Razor as a way to save power by lowering

voltage below the usual design margins—

the circuits were operating on the hairy

edge, so Razor seemed an apt description.

It also guarded against variability. A proto-

type was fabricated, and a number of pat-

ents ensued. Interested readers can see

some of them at my website (http://web

.eecs.umich.edu/�tnm). The ARM engi-

neers showed interest and greatly cleaned

up the original idea. A new transition detec-

tor was created, and the hazard detection

logic was shown to be unnecessary. David

Blaauw and his students continue to create

new, improved versions.

Energy efficiency proved to be a fruit-

ful area of research, and several other proj-

ects were started in the decade since my

first sabbatical at ARM (I liked ARM so

much I returned for another sabbatical

seven years later). Through my associa-

tion with ARM, I became interested in

mobile phones. Initially I was interested in

making the baseband processor program-

mable. It had traditionally been imple-

mented as an application-specific

integrated circuit (ASIC) for power reasons

(key parts still are). It seemed to me to be

the ultimate challenge for power-aware

computing—tens of giga operations per

second in a subwatt envelope. I, together

with several others, wrote a paper called

“Mobile Supercomputers” that outlined

that challenge.7 Subsequently, baseband

processors have become more program-

mable to support changing standards and

algorithms. We produced several paper

designs that later were influential in com-

mercial spin-offs from ARM.8

The search for techniques that could

reduce power also led me to investigate

3D die stacking, and with my then gradu-

ate student Tae-ho Kgil, I looked at it in

the context of servers. This led to a series

of papers on PICO servers.9 We later

extended this to incorporate Flash as a

way to further reduce power. More

recently, we started to look at operating

logic at much lower voltage levels—a

regime we called near threshold comput-

ing (NTC). This naturally combined with

3D stacking because NTC reduces ther-

mal worries. To test the idea, a group of

us, led by Ron Dreslinski and Dave Fick,

designed and fabricated a 128-core NTC

multiprocessor, Centip3De, that stacked

processors, caches, and DRAMs.10 It was

a large undertaking that stretched our

design environment because of the lack

of 3D tools and the size of the design.

T o conclude, much of my research has

been informed by the impact of tech-

nology on computer design. My thesis is

that the field of computer architecture offers

new challenges as the implementation tech-

nology changes, which it does at an incredi-

ble rate. The number of challenges has also

grown because more requirements have to

be satisfied. It’s not just about pure perform-

ance—power, and more recently, size, have

emerged as design constraints. New tech-

nologies are being proposed constantly.

Only a tiny few will end up being useful—it’s

impossible to pick winners early on. Their

characteristics will lead to new possibilities

for revolutionary computing machines. It’s

an exciting time. MICR O

..
References
1. T. Mudge et al., “Object-Based Com-

puter Architectures,” Proc. Conf. In-

formation Sciences and Systems,

1983, pp. 733–741.

2. J. Hayes et al., “A Microprocessor-

based Hypercube Supercomputer,”

IEEE Micro, Oct. 1986, pp. 6–17.

3. M. Upton et al., “A 160,000 Transistor

GaAs Microprocessor,” Proc. Int’l Solid-

State Circuits Conf., vol. 36, 1993, pp.

92–93.

4. R. Dreslinski et al., “Swizzle Switch: A

Self-Arbitrating High-Radix Crossbar

for NoC Systems,” Hot Chips 24,

2012, pp. 380–403.

5. D. Oehmke et al., “How to Fake 1000

Registers,” Proc. 38th Ann. IEEE/ACM

Symp. Microarchitecture, 2005, pp.

7–18.

6. T. Mudge, “Power: A First Class Archi-

tectural Design Constraint,” Com-

puter, vol. 34, no. 4, 2001, pp. 52–57.

7. T. Austin et al., “Mobile Super-

computers,” Computer, vol. 37, no. 5,

2004, pp. 81–83.

8. M. Woh et al., “From SODA to

Scotch: The Evolution of a Wireless

Baseband Processor,” Proc. 41st

IEEE/ACM Int’l Symp. Microarchitec-

ture, 2008, pp. 152–163.

9. T. Kgil et al., “PicoServer: Using 3D

Stacking Technology to Enable a Com-

pact Energy Efficient Chip Multiproc-

essor,” Proc. 12th Int’l Conf. Archi-

tectural Support for Programming Lan-

guages and Operating Systems, 2006,

pp. 117–128.

10. D. Fick et al., “Centip3De: A 3930

DMIPS/W Configurable Near-Thresh-

old 3D Stacked System with 64 ARM

Cortex-M3 Cores,” Proc. IEEE Int’l

Solid-State Circuits Conf., 2012, pp.

190–191.

Trevor Mudge is the Bredt Family Pro-

fessor of Engineering in the Electrical

Engineering and Computer Science

Department at the University of Michi-

gan. Contact him at tnm@umich.edu.

..

AWARDS

..

146 IEEE MICRO

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

