
Guest Editors’ Introduction...

HETEROGENEOUS COMPUTING
......The microprocessor industry expe-
rienced a significant technology shift when
multicore processors were introduced. Not only
did parallelism immediately become pervasive,
but chip designers became chiefly responsible
for the nature of the parallelism that is exposed
to the user. They decide what type of core, how
many cores, which interconnect to use, and
how to distribute available area among caches,
cores, and other components. The chip archi-
tect makes much more complex decisions
about how to best use the available transistors
on the chip than ever before.

Soon, an additional design dimension
become apparent—what level of diversity of
computational resources should be supported
on chip? Initial general-purpose microprocessor
designs were all homogeneous, which had
advantages in design, testing, and programm-
ability. But those designs begged the ques-
tion—once you have placed one or more
identical cores onto the chip, is the very best
use of transistor budget (or power budget) to
continue to stamp out identical cores, or are
those transistors best used to provide more
diverse capabilities? That diversity can come in
the form of heterogeneous general-purpose
cores, specialized cores, accelerators, or even
configurable fabric.

The value of heterogeneous computing
becomes even more apparent when thread-level
parallelism falls short of hardware parallelism,
due to a lack of threads or to power constraints
(dark silicon). When three threads are running
on an eight-core homogeneous processor, those
five idle cores provide no value whatsoever. But
on a heterogeneous processor, even idle cores
provide value—they could present a more effi-
cient host for one of the running threads, either
now or in a future phase of execution.

In this issue
There are many different ways to introduce

heterogeneity to the computing landscape,

and the articles in this special issue reflect the
spectrum of approaches taken to add diversity
to our computational capabilities. Perhaps the
most natural way to introduce diversity on the
chip is to aggregate computing resources that
were already diverse. GPUs have evolved into
more general-purpose (GPGPU) engines,
which allowed us to separate regular, parallel,
streaming segments of our workload from the
less parallel, control-intensive segments that
still run most effectively on the CPU. In
“Scalable Heterogeneous CPU-GPU Compu-
tations for Unstructured Tetrahedral Meshes,”
Johannes Langguth et al. study this partition-
ing between CPUs (Intel Xeon Phi and Xeon
E5-26xx processors) and GPUs (Nvidia K20
GPUs) for unstructured 3D tetrahedral meshes.
They analyze the performance on two plat-
forms and show that combining the CPU and
GPU execution capacity clearly provides a
performance advantage over the GPU-only
approach for irregular applications.

“Enabling Portable Optimizations of Data
Placement on GPU” by Guoyang Chen et al.
addresses the dynamic data placement chal-
lenge and its impact on GPU performance.
The authors introduce a new framework called
Porple, which allows for customized, on-the-
fly placement in memory based on memory
type and the input dataset. They show signifi-
cant performance improvements compared to
typical programmer-driven data placement.
Their data placement engine adapts to new
memory systems and should provide insights
to the reader for possible future memory hier-
archy optimizations.

In “Achieving Exascale Capabilities thro-
ugh Heterogeneous Computing,” by Michael
Schulte et al., the authors describe the hard-
ware and software challenges in building heter-
ogeneous exascale systems with integrated
CPUs and GPUs. They describe AMD’s vision
for exascale computing, outlining the APU
approach, necessary hardware support, and

Ravi Iyer

Intel

Dean Tullsen

University of California,

San Diego

...

4 Published by the IEEE Computer Society 0272-1732/15/$31.00�c 2015 IEEE

memory and programming challenges. They
also describe physical constraints, including
power, thermal, reliability, and resilience. The
article gives the reader an inside view into con-
siderations for developing real heterogeneous
solutions for exascale computing.

In addition to providing CPU-GPU het-
erogeneity, we can provide diversity within
the CPU array via heterogeneous CPU cores,
each targeted at a distinct workload segment
or a distinct performance/power level. In
“Kernel-to-User-Mode Transition-Aware Hard-
ware Scheduling,” Nikola Markovic et al.
take a new approach to thread scheduling by
identifying specific multithreaded application
bottlenecks (such as thread synchronization)
and proposing a scheduling mechanism that
can be implemented in hardware. The pro-
posed KUTHS policy recognizes critical sec-
tions by monitoring kernel transitions and
then maps the execution of critical code sec-
tions on large cores to achieve performance
gains.

As systems become more heterogeneous,
programming those systems becomes more
challenging. “Understanding Portability of a
High-Level Programming Model on Con-
temporary Heterogeneous Architectures” by
Amit Sabne et al. addresses one of those chal-
lenges—the wide diversity of programming
models, memory models, and architectures of
existing accelerators. The authors present a
single high-level programming model that
can be ported to various accelerator architec-
tures. They propose HeteroIR, a high-level
architecture-independent intermediate repre-
sentation to map high-level programming
models to heterogeneous architectures, and
they study the performance portability on
three different platforms and show the effi-
cacy and tradeoffs.

The value of heterogeneity is not exclusive
to the processing elements, because programs
also use the interconnect and memory hierarchy
in diverse ways. “Designing Efficient Heteroge-
neous Memory Architectures” by Evgeny
Bolotin et al. presents a model and analysis of
energy, bandwidth, and latency for current and
emerging DRAM technologies. This enables a
detailed study of heterogeneous memory sys-
tems that combine memory technologies with
different attributes. We hope readers find the
analysis useful in determining the best configu-

ration for heterogeneous memory systems and
making tradeoff decisions in the future.

The first six articles exploit intentional het-
erogeneity. The last article examines uninten-
tional heterogeneity, which is introduced
by process variation. In “Decoupled Control
and Data Processing for Approximate Near-
Threshold Voltage Computing,” Ismail
Akturk et al. describe how process variation
due to near-threshold voltage operation
introduces both error-prone and reliable cores.
The authors use control and data partitioning
to develop error-tolerant architectures. Some
emerging applications, such as Recognition,
Mining, and Synthesis (RMS) applications, can
tolerate errors in data processing but still require
reliable cores for control processing. Therefore,
the authors propose the decoupled control and
data processing solution for approximate near-
threshold voltage computing.

T he seven articles in this special issue
should give insight into the opportuni-

ties and challenges in heterogeneous architec-
tures, ranging in topics from heterogeneous
CPUs, GPUs, accelerators, control and data
decoupling, data placement, memory hierar-
chies, and programming models. We hope
you enjoy exploring the potential insights
and advances in heterogeneous architecture
research that these articles provide. MICRO

Ravi Iyer is a senior principal engineer, CTO,
and director in New Business Initiatives at
Intel. His interests include systems on chip and
chip multiprocessors, including novel cores,
accelerators, innovative cache and memory
hierarchies, quality of service, heterogeneous
architectures, algorithms and workloads, and
performance and power analysis. Iyer has a
PhD in computer science from Texas A&M
University. He is an IEEE Fellow. Contact him
at ravishankar.iyer@intel.com.

Dean Tullsen is a professor in the Computer
Science and Engineering Department at the
University of California, San Diego. His
research focuses on parallel architectures, in-
cluding multithreading, multicores, and data-
centers. Tullsen has a PhD from the University
of Washington. He is a fellow of IEEE and the
ACM. Contact him at tullsen@cs.ucsd.edu.

...

JULY/AUGUST 2015 5

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

