
6	 Published by the IEEE Computer Society� 0272-1732/17/$33.00 © 2017 IEEE

Expert Opinion

All hardware companies face a conun-
drum. Should they continue the evolu-
tionary trend of their current products,
or build riskier products that have the
potential for greater reward but carry a
higher probability of failure? The safe
course, and one that many custom-
ers ask for, is the former. However, as
Clayton Christensen points out in The
Innovator’s Dilemma, “most companies
with a practiced discipline of listening
to their best customers and identify-
ing new products that promise greater
profitability and growth are rarely able
to build a case for investing in disrup-
tive technologies until it is too late.”1

Computer hardware companies
expend enormous resources to suc-
cessfully improve their products in an
evolutionary fashion. Single-threaded
processor performance has been improv-
ing at a rate of 15 to 20 percent per year
by utilizing both process technology
and architectural improvements.2 These
improvements, however, are increasingly
difficult to achieve. Using data from
Moein Khazraee and colleagues,3 Fig-
ure 1 shows that a processor’s cost per
operation, as defined by a combina-
tion of fabrication, nonrecurring engi-
neering (NRE), and packaging costs,
has not significantly improved in the
past decade. However, performance
improvements are flattening out due to

power restrictions and the breakdown
of Dennard scaling. For instance, Intel
is no longer relying on the tick-tock
model, which it rode to market dom-
inance for the past decade, due to the
declining benefits of process technol-
ogy scaling.4

Sustaining versus Disruptive
Technology
Christensen describes the evolutionary
process of improvements using the sus-
taining technology S-curve (see Figure 2).
For every successful technology, the per-
formance metric is initially flat during
development, rapidly improves for a
period of time, and flattens out again
when the product and/or technology
reaches maturity. Sustaining technolo-
gies are dominating the processor indus-
try, and these technologies are reaching
a plateau.

Sometimes a disruptive technol-
ogy with a new S-curve will enter the
landscape, as shown in Figure 2. Dis-
ruptive technologies do not go head
to head with mainstream technolo-
gies, but they do have features that a
few fringe markets value. Typically,
disruptive technologies initially under-
perform, but then rapidly match and
exceed the previous technology. Suc-
cessful companies not only ride their
sustaining S-curves but generate new,

disruptive curves to improve perfor-
mance as the current technology curve
flattens out. Microprocessors were
once a disruptive technology,1 and
the computing landscape over the past
few decades is littered with disruptive
technologies, from minicomputers to
PCs to smartphones to cloud comput-
ing. In all these cases, the disruptive
technology yielded worse performance
in the near-term when using the same
cost function as mainstream technology.
However, as Christensen maintains, dis-
ruptive technologies eventually redefine
how performance is measured.

Recent examples of disruptive
technologies in processor architecture
include GPUs and Arm servers. GPUs
were originally designed for 3D graph-
ics processing, but have made signifi-
cant inroads first in high-performance
computing (HPC) and more recently
in machine learning. For applications
that are similar to those found in
SPECint, GPUs underperform gen-
eral-purpose processors. However,
for targeted HPC applications and
machine learning, GPUs are over-
whelmingly superior.

Arm processors originally tar-
geted power-constrained embedded
domains, but have more recently
entered the server market with prod-
uct offerings from companies such as

If You Build It, Will They Come?

Srilatha Manne
Cavium

Bryan Chin
University of California, San Diego

Steven K. Reinhardt
Microsoft

www.computer.org/micro	 November/December 2017	� 7

Cavium and Qualcomm that address
multicore throughput computing.5,6
A new S-curve could develop for these
specialized throughput-based server
products—enabled by highly paralleliz-
able shared-memory applications—just
as it did with HPC and machine learn-
ing in the GPU market.

It took the GPU market nearly
two decades to make headway outside
of graphics applications, and the Arm
server market has resulted in several
failures. Christensen notes that this
commonplace in disruptive markets is
where “[it] is simply impossible to pre-
dict with any useful degree of precision
how disruptive products will be used
or how large their markets will be.”
So, how does one innovate in a rapidly
changing technology landscape where
the underlying cost function is in flux?
How does a company keep up with the
necessary and expensive evolutionary
changes, yet also prepare for and justify
expending valuable resources investi-
gating disruptive technologies that are
inevitable?

The Case for Agility
Companies and their mainstream cus-
tomers alike are notoriously bad at pre-
dicting what disruptive products will
take root in the marketplace. There are
many instances of high-profile devel-
opments that flopped. For example, it
is unlikely you are reading this article
on your Apple Newton while listen-
ing to music on your Microsoft Zune.
Conversely, some disruptive technol-
ogies have found success in surprising
places such as GPUs. Innovation in a
rapidly changing landscape is difficult
and prone to failure. Therefore, we
posit that architects, rather than trying
to predict the future, should pursue
agility in order to accelerate innova-
tion while minimizing costs. Hard-
ware companies, architects, and the
underlying design methodologies and
infrastructure must be nimble enough
to deal with disruptive technologies
that come from within and outside the

current technology landscape. The rest
of the article presents some ideas on
how this may be accomplished.

Agile Architecture
In his book The Lean Startup: How
Today’s Entrepreneurs Use Continuous
Innovation to Create Radically Success-
ful Business,7 Eric Ries writes about
software companies that use agile
software development strategies. The
premise is to deliver prototypes as
quickly as possible, even if haphazardly
put together, to get early customer
feedback. The goal is to use customer
feedback to drive product features and
direction through a process of continu-
ous development. If you consider how
frequently the apps on your phone are
updated, or the look and feel of social
networking sites evolve, you have seen
agile software practices in action.

Facebook, for example, uses agile
coding practices. As Kent Beck
explains,8 one of the basic practices at
Facebook is reversibility. If a decision is
reversible, it does not require the rig-
orous testing that irreversible decisions
require. Code is also released incremen-
tally to a small subset of users, which
enables changes to be rolled back with
minimal disruption if a problem is
found.9 The challenge for the hard-
ware industry is how to adapt a similar
agile methodology without incur-
ring large overheads. We address this

challenge in both traditional processor
hardware methodologies and innova-
tive methodologies utilized by large
computing companies.

Processor Agility
Prior to the ASIC revolution of the
past few decades, hardware prototypes
were a common means of achieving
the rapid development and early feed-
back cycle. Old technologies such as
wire-wrap, breadboards, programma-
ble logic devices (PLDs), and low-cost
printed circuit boards (PCBs) enabled
hardware companies to quickly build
and iterate on products. This meth-
odology is no longer feasible given the
complexity and cost of processor devel-
opment both in terms of engineering
time and fabrication costs.3

1996

1.2

1.0

0.8

0.6

C
os

t/
op

/s

0.4

0.2

0
1998 2000 2002 2004 20082006 2010 2012 2014 2016

Figure 1. Processor computation cost as a function of time. Cost is defined as a
combination of fabrication, nonrecurring engineering (NRE), and packaging costs.3

Time

Development

Rapid improvement

Discontinuity

Disruptive
technology

Maturity

Sustaining
technologyPe

rf
or

m
an

ce

Figure 2. The sustaining technology
and disruptive technology S-curves.

8	 IEEE Micro

Expert Opinion

Automated design methodology and
reuse. Companies today rely on
improved design methodologies and
reusability to reduce design time and
cost. Design methodologies have made
great strides in the past two decades,
resulting in shorter design cycle times and
an expanded product portfolio using the
same fundamental components. Most
processors, even those designed for high
performance, are mostly or completely
synthesized. The Arm roadmap has
synthesized cores operating at 3 GHz,
and AMD, Intel, and IBM extensively
use automated tools throughout their
design.10–12 In addition, companies uti-
lize a modular design methodology such
that multiple products can be developed
using the same basic components.

Both Intel and AMD use their
respective base core designs and inno-
vative packaging technologies to build
products ranging from low-power
mobile parts to multicore server
products.13 Similarly, silicon compa-
nies such as Cavium and Nvidia have
been able to create a family of devices
with varying price/performance points
from the same basic design by utilizing
flexible chip layouts that let designers
vary the number of computational
units and/or the amount of on-die
memory. Intel has taken this one
step further by collaborating with
Facebook to develop a specialized
version of Broadwell (referred to as
Broadwell-D) to meet the specific
needs of Facebook.14

The technologies mentioned so far
reduce design cycle time, but there is
still significant overhead associated with
bringing a chip to production. Post-
silicon functional and performance
debug is a formidable challenge for
modern processors that may encompass
multiple sockets, heterogeneous and/or
multithreaded cores, many cores com-
bined with multiple levels of memory
hierarchy, complex memory coherence
and consistency protocols, and extensive
power and performance management
via on-chip controllers. In addition,

modern processors may operate under
complex software stacks containing one
or more nested virtual environments.
For these reasons, even with mostly
synthesized methodologies and reuse
of existing components, the transition
from first silicon to full production part
can take up to a year or more.15

Functional verification and bug
mitigation. Post-production bugs are
commonplace, and fixing bugs in
shipped products often involves errata,
metal and full-layer spins, and/or
replacing existing silicon. Infamous
examples of such bugs are the Pentium
FDIV bug,16 the Haswell/Broadwell
transactional memory bug,17 and the
AMD TLB bug.18 These bugs cost the
respective companies millions of dol-
lars in lost revenue, and in AMD’s case,
contributed to its loss of momentum
in the server market. All processors
have a large list of errata. The table of
known errata in Haswell, for instance,
covers six pages.19

To meet market needs and address
the complexity and cost of post-silicon
debug, architects must focus on
hardware and software solutions for
exposing, analyzing, and mitigating
functional and performance bugs.
Processor vendors must provide tools
that rapidly expose and identify bugs
and have systems in place for mitigat-
ing these bugs without the need for
extensive silicon changes. Efforts such
as Arm’s hardware debug architecture
attempt to standardize the infrastruc-
ture so that common tools can be
made available to the Arm hardware
development ecosystem.20

Both software and hardware solu-
tions should be explored for mitigating
hardware bugs in the field. On the hard-
ware front, microcode fixes on tradi-
tional CISC processors come to mind,
as does the PAL (Privileged Architecture
Library) code feature of DEC’s Alpha
processors. A similar technology that
might help processor vendors mitigate
bugs is virtual machine environments.

Much software these days is compiled
to an abstract machine. Two examples
of such abstraction layers, one cur-
rent and one historical, are Oracle’s
Java Virtual Machine (JVM)21 and
IBM’s AS/400 Series.22 If an entire
processor is designed to execute only
a JVM, then the JVM itself provides
the instruction set architecture (ISA) of
the machine, and the underlying phys-
ical machine may have bugs or features
that are invisible to the JVM. The JVM
addresses ISA-related bugs. Similarly,
more fully specified virtual machine
environments, such as VMware’s
vSphere and Microsoft’s Hyper-V, vir-
tualize system aspects of the machine,
such as memory management and I/O.
Machines such as IBM’s AS/400 man-
aged to maintain a stable abstract archi-
tecture through multiple generations
of hardware. By expecting and archi-
tecting for bug discovery, analysis,
and mitigation, processor vendors can
reduce the number of bugs that reach
production silicon, and respond to
issues in post-production parts quickly
and effectively. This shortens the
designer-customer feedback loop and
leads to a faster development cycle and
improved successor products.

Performance verification and
optimization. Another critical facet
of bringing a processor to production
is performance tuning. Processors are
designed with dozens of control bits
(also referred to as chicken bits) to
manage system performance. Some
chicken bits are exposed to the user
(for example, disabling prefetching or
simultaneous multithreading mode, or
restricting power management), and
others are known only by the manufac-
turer. Regardless, how these bits are set
and tuned can have a significant impact
on performance. Unfortunately, there
are hundreds of these interdependent
knobs, and tuning them by hand is
impractical. However, self-tuning sys-
tems, either integrated into the oper-
ating system or as separate tools,23

www.computer.org/micro	 November/December 2017	� 9

that can dynamically adjust these bits
according to application needs may be
an innovative mechanism for achiev-
ing optimal performance. Best of all,
these tuners can be deployed on-site,
which means they do not gate product
release to customers. Finally, the same
techniques for fixing bugs via low-level
software or implementing a virtual
machine can also be used to adapt sil-
icon to new applications. Hardware
designers can enable and deploy new
instructions and features through
the same mechanisms used to patch
around bugs. New versions of a JVM
implementation, for example, may
exploit optimizations that are relevant
to new application areas.

Computational Agility
So far, we have addressed agility at
the processor level. However, with
the advent of warehouse-scale systems
driven by cloud computing, the pro-
cessor becomes one piece of a larger
computational problem. New com-
panies entering the computing arena
include numerous startups and large,
established companies from outside
the traditional chip design industry,
such as Google, Microsoft, and Ama-
zon. Few if any of these companies
are choosing to go head-to-head in
the general-purpose processor market
with traditional designs such as Intel
and AMD. Rather, they are achieving
agility via specialized devices targeting
narrower but highly relevant domains.

The need for specialization. The end
of Dennard scaling and the slowdown
and imminent demise of Moore’s law
drive the need for specialization, just
as they demand agility in processor
design. During the steep part of the
S-curve for general-purpose processors,
specialized architectures were quickly
outpaced by these cheaper commodity
devices. The slowing rate of improve-
ment in general-purpose designs both
creates opportunity for specialized
architectures and drives demand, as

customers can no longer rely on the
commodity market to satisfy their
computing needs.

A prerequisite for specialization is
identifying an application or applica-
tion domain narrow enough to benefit
from specialization but large enough
to justify a specialized device. Focusing
on smaller and smaller domains (down
to specific applications) increases the
amount of potential performance
uplift through specialization, while
decreasing the potential market. To
be successful, the total value cre-
ated through specialization (roughly
speaking, the value per device times
the number of devices) must exceed
the cost of developing the specialized
device. By developing agile methodol-
ogies that reduce engineering costs, we
can enable specialization for smaller
domains and allow specialized devices
to emerge sooner in growing markets.

Figure 3 shows the specializa-
tion trend over time, starting with
CPUs and ending with custom ASICs.
Cryptocurrency mining followed this
trend,24 and deep learning, one of the
most prominent new markets attract-
ing specialized architectures, is follow-
ing suit. GPUs offer better performance
than CPUs for certain tasks, such as
training for AI, whereas state-of-the

art field-programmable gate arrays
(FPGAs) can outperform standard
GPUs for certain computations such
as low-precision arithmetic.25 Finally,
custom ASIC accelerators provide the
highest performance efficiency.

Multiple startups such as Graph-
core, Wave Computing, Nervana (now
part of Intel), and Groq are developing
or have developed customized deep
learning accelerators that occupy the
upper right corner of Figure 3. How-
ever, one of the earliest and most pub-
licized deep learning accelerators is not
from a startup but from an established
company without a history of chip
design. The Google Tensor Processing
Unit (TPU) was developed in a short
15 months.26 To achieve a rapid pro-
duction cycle, Google used an older
and more stable process technology
(28 nm) and existing communication
interfaces. The first-generation TPU
was for internal use and had compu-
tational and memory bandwidth lim-
itations. However, the TPU is now on
its second iteration, and it not only
supports higher computational capa-
bility and memory bandwidth, but will
reportedly be made accessible to third
parties.27

Even in an agile environment, the
delay from the initial ASIC concept

FPGA

ASIC

More general purpose

C
om

pu
te

 e
ff

ic
ie

nc
y More specialization

GPU

Time

CPU

Figure 3. Specialization trend over time.

10	 IEEE Micro

Expert Opinion

to fully deployed device is measured
in years. Once deployed, ASICs must
continue to provide value for multi-
ple additional years before replace-
ment. Thus, an ASIC must accelerate
a function that, from the point of con-
ception, will still be valuable four to
five years in the future. While some
functions, such as compression and
encryption algorithms, tend to be sta-
ble over these time frames, those in
rapidly evolving fields such as deep
learning may develop new and differ-
ent requirements in the interval from
design start to deployment. Stable,
high-volume accelerators can easily
justify an ASIC’s higher nonrecurring
engineering cost. Because an ASIC
design needs larger markets and longer
lifetimes, an ASIC accelerator typically
includes as much flexibility as design-
ers can afford in the form of configura-
tion parameters, options, and software
programmability.

To achieve a more agile acceler-
ation framework, Microsoft took an
unusual approach to specialization by
focusing on FPGAs rather than ASICs
for datacenter acceleration.28 For a
given accelerator design, an FPGA
implementation could be several times
slower and less energy efficient than
an ASIC implementation. However,
by using hardware devices that can be
reprogrammed after deployment, Mic-
rosoft gains agility at the expense of
computational efficiency. FPGA-based
accelerators not only are tolerant to
the changing requirements of a given
application, but can be completely
retargeted as new applications emerge
or demand shifts. An FPGA accelera-
tor design can afford to be less config-
urable and more customized to specific
situations, as the design itself can be
incrementally modified after initial
deployment to address new circum-
stances. In this fashion, the FPGA’s
agility as a platform can be used to
recover a portion of the efficiency that
it sacrifices to an equivalent ASIC-
based design.

FPGAs can also close the gap
with ASICs by incorporating larger
and more complex hard logic blocks
on chip. Current FPGAs include
multiply-accumulate units and even
full microprocessor cores as hard logic.
Researchers have also proposed devices
that are mostly hard logic, but with
configurable interconnect, referred to
as coarse-grained reconfigurable accel-
erators (CGRAs).29 The line between
FPGAs and ASICs is further blurred
by integrated multichip packages
that incorporate both an FPGA and
ASIC die.30 The ability for customers
to specify which ASICs are included
in the package provides yet another
dimension of flexibility.

The computational marketplace.
Amazon has also developed hardware
for internal consumption from custom
routers to chipsets used in its servers.31
This enables Amazon to optimize the
hardware for its specific needs with full
control of both the hardware and soft-
ware stack. Amazon also provides hard-
ware agility to its customers by offering
platforms for custom programmable
hardware as part of the AWS services
plan.32 The goal is to encourage com-
panies to develop accelerators using
Amazon’s FPGA framework for inter-
nal use and/or sell the resulting com-
putational capability to end customers
on the AWS Marketplace. Amazon’s
EC F1 instances with FPGAs offer two
significant benefits for custom solution
developers. First, Amazon provides the
FPGA hardware, tools, and infrastruc-
ture, significantly lowering the cost
and convenience threshold for devel-
oping customized hardware. Second,
Amazon provides a deployment model
(via AWS) and a ready marketplace of
potential customers for the final prod-
uct. No longer are hardware developers
restricted to products with a large Tier
One customer base. They can rapidly
develop and deploy niche hardware and
test its viability in the AWS computa-
tional marketplace with many small

customers across the country and the
world. The computational marketplace
scenario comes closest to achieving the
rapid deployment model highlighted
in The Lean Startup.7 Finally, if any
of these customized solutions become
pervasive, they can eventually be reim-
plemented as an ASIC, as noted by
Khazraee,3 or integrated into a general-
purpose processor architecture.

Standardized ecosystem. A successful
computational marketplace requires
standardized interfaces for interacting
with accelerators. On the hardware
side, current solutions from Amazon,
Microsoft, Google, and others rely
on PCIe for accelerator integration.
PCIe has been the de facto standard
for peripherals for many years, and a
part of its success can be attributed to
having an open standard. However, for
processor designers wanting to create
specialized accelerators, PCIe may not
offer the tightly coupled memory sys-
tem integration desired or required by
the application. Proprietary coherent
processor interconnects such as Intel’s
QPI and AMD’s Infinity Fabric offer
the memory system integration that a
specialized accelerator might require,
while Nvidia’s NVLink is a proprietary
interconnect for GPUs. Nonpropri-
etary standards from different consor-
tia such as OpenCAPI (www.opencapi
.org), Gen-Z (www.genzconsortium
.org), and CCIX (www.ccixconsortium
.com) might also supplement PCIe as
these standards evolve. What is clear,
from the PCIe example, is that the new
standard should be easily licensable
and controlled by an open standards
organization to enable a level playing
field.

While we have thus far empha-
sized agility in hardware development
and deployment, software agility is also
a critical requirement. An environment
in which hardware capabilities change
and evolve rapidly is impossible to use
unless low-level software can adapt
equally rapidly, while providing stable

www.computer.org/micro	 November/December 2017	� 11

APIs to higher-level services so that
the bulk of the code base can remain
independent of the underlying imple-
mentation’s details. Software stacks
can provide additional agility when
they help to automate the mapping of
applications to accelerators, and enable
hardware bug workarounds to cope
with issues that may slip through an
accelerated development and testing
schedule.

P rocessor architecture has changed
significantly over the past few

decades with the advent of multicore
designs, design for low power, het-
erogeneous systems, and many-core
processors that can run a hundred or
more threads. With cloud computing
and the emerging customizable mar-
ketplace of products, we are once again
witnessing a sea change in the way
computing takes place.

In this article, we have made a
case for agility because we cannot pre-
dict the future with any level of accu-
racy. We need agility not only for rapid
evolution of conventional architec-
ture, but also for lowering the barrier
for specialized architectures. As Bill
Gates once noted, “We always overes-
timate the change that will occur in the
next two years and underestimate the
change that will occur in the next ten.
Don’t let yourself be lulled into inac-
tion.”33 As architects, we must develop
the infrastructure and mindset that
enable us to be agile and take risks in
order to evolve with a rapidly changing
environment and create the next dis-
ruptive technology.

References
1.	 C.M. Christensen, The Innovator’s

Dilemma: When New Technologies
Cause Great Firms to Fail, Harvard
Business School Press, 1997.

2.	 “A Look Back at Single-
Threaded CPU Performance,”
blog, 8 Feb. 2012; http://preshing
. c o m / 2 0 1 2 0 2 0 8 / a - l o o k

-back-at-single-threaded-cpu
-performance.

3.	 M. Khazraee et al., “Moonwalk:
NRE Optimization in ASIC
Clouds,” Proc. 22nd Int’l Conf.
Architectural Support for Program-
ming Languages and Operating
Systems, 2017, pp. 511–526.

4.	 J. Hruska, “Intel Formally Kills
its Tick-Tock Approach to Pro-
cessor Development,” blog, 23
Mar. 2016; www.extremetech.com
/extreme/225353-intel-formally
-kil ls- its-tick-tock-approach
-to-processor-development.

5.	 T.P. Morgan, “Qualcomm Fires
ARM Server Salvo, Broadcom
Silences Guns,” 7 Dec. 2016; www
.nextplatform.com/2016/12/07
/qualcomm-fires-arm-server-salvo
-broadcom-silences-guns.

6.	 R. Brueckner, “Cavium Thun-
derX2 Processors Power New
Baymax HyperScale Server Plat-
forms,” blog, 29 May 2017;
http://insidehpc.com/2017/05
/cavium-thunderx2-processors
-power-new-baymax-hyperscale
-server-platforms.

7.	 E. Ries, The Lean Startup:
How Today’s Entrepreneurs Use
Continuous Innovation to Cre-
ate Radically Successful Busi-
ness, Crown Publishing Group,
2011.

8.	 C. Murphy, “Facebook Guru
and Agile Pioneer Kent Beck
Reveals the Mind of the
Modern Programmer,” Forbes, 9
Jan. 2017; www.forbes.com/sites
/oracle/2017/01/09/facebook
-guru-and-agile-pioneer-kent
-beck-reveals-the-mind-of-the
-modern-programmer.

9.	 J. Bird, “This Is How Facebook
Develops and Deploys Software.
Should You Care?” blog, 4 Sept.
2013; http://dzone.com/articles
/how-facebook-develops-and.

10.	 M. Humrick, “Exploring Dy-
namIQ and ARM’s New CPUs:
Cortex-A75, Cortex-A55,” blog,

29 May 2017; www.anandtech
.com/show/11441/dynamiq-and
-a rms-new-cpus-cor tex-a75
-a55.

11.	 P. Gelsinger et al., “Such a CAD!
Coping with the Complexity of
Microprocessor Design at Intel,”
IEEE Solid-State Circuits, vol. 2,
no. 3, 2010, pp. 32–43.

12.	 M. Ziegler, R. Puri, and B. Phil-
hower, “POWER8 Design Meth-
odology Innovations for Improving
Productivity and Reducing Power,”
Proc. IEEE Custom Integrated Cir-
cuits Conf., 2014, pp. 1–9.

13.	 A. Patrizio, “Intel Shakes Up
Its Chip Design Process,” blog,
23 May 2014; www.itworld
.com/article/2699164/hardware
/intel-shakes-up-its-chip-design
-process.html.

14.	 V. Rao and E. Smith, “Facebook’s
New Front-End Server Design
Delivers on Performance with-
out Sucking Up Power,” blog, 9
Mar. 2016; http://code.facebook
.com/posts/1711485769063510
/facebook-s-new-front-end-server
-design-delivers-on-performance
-without-sucking-up-power.

15.	 M. Abramovici and P. Bradley,
“A New Approach to In-System
Silicon Validation and De-
bug,” EE Times, 16 Sept. 2007;
www.eetimes.com/document
.asp?doc_id51276099.

16.	 “Pentium FDIV Bug,” blog; www
.cs.earlham.edu/~dusko/cs63
/fdiv.html.

17.	 S. Wasson, “Errata Prompts Intel
to Disable TSX in Haswell, Early
Broadwell CPUs,” blog, 12 Aug.
2014; http://techreport.com/news
/26911/errata-prompts-intel-to
-disable-tsx-in-haswell-early
-broadwell-cpus.

18.	 K. Kubicki, “Understanding AMD’s
‘TLB’ Processor Bug,” blog, 5
Dec. 2007; www.dailytech.com
/Understanding11AMDs1TLB
1Processor1Bug/article9915
.htm.

12	 IEEE Micro

Expert Opinion

19.	 Desktop 4th Generation Intel Core
Processor Family, Desktop Intel Pen-
tium Processor Family, and Desktop
Intel Celeron Processor Family, re-
port 328899-037US, Mar. 2017.

20.	 “Debug Architecture Overview,”
ARM, 2017; http://developer.arm
.com/products/architecture/debug
-architecture

21.	 T. Lindholm et al., The Java Vir-
tual Machine Specification: Java SE
7 Edition, 28 Feb. 2013.

22.	 F.G. Soltis, Inside the AS/400: Fea-
turing the AS/400e Series, 2nd ed.,
29th Street Press, 1997.

23.	 T. Morad, The Era of Self-
Tuning Servers, 7 Feb. 2017; www
.hpcadvisorycouncil.com/events
/2017/stanford-workshop/pdf
/Morad_TheEraOfSelfTuning
Servers.pdf.

24.	 P. Jama, “The Future of Machine
Learning Hardware,” blog, 10 Sept.
2016; http://hackernoon.com/the
-future-of-machine-learning
-hardware-c872a0448be8.

25.	 L. Barney, “Can FPGAs Beat GPUs
in Accelerating Next-Generation
Deep Learning?” blog, 21 Mar.
2017; www.nextplatform.com
/2017/03/21/can-fpgas-beat-gpus
-accelerating-next-generation-deep
-learning.

26.	 K. Sato, C. Young, and D.
Patterson, “An In-Depth Look at
Google’s First Tensor Processing

Unit (TPU),” blog, 12 May 2017;
http://cloud.google.com/blog
/big-data/2017/05/an-in-depth
-look-at-googles-first-tensor
-processing-unit-tpu.

27.	 P. Teich, “Under the Hood of
Google’s TPU2 Machine Learning
Clusters,” blog, 22 May 2017; www
.nextplatform.com/2017/05/22
/hood-googles-tpu2-machine
-learning-clusters.

28.	 A. Putnam et al., “A Reconfig-
urable Fabric for Accelerating
Large-Scale Datacenter Services,”
blog, 1 June 2014; www.microsoft
.com/en-us/research/publication
/a-reconf igurable- fabr ic- for
-accelerating-large-scale-datacenter
-services.

29.	 M. Gao and C. Kozyrakis, “HRL:
Efficient and Flexible Reconfig-
urable Logic for Near-Data Pro-
cessing,” Proc. IEEE Int’l Symp.
High Performance Computer Ar-
chitecture, 2016, doi: 10.1109
/HPCA.2016.7446059.

30.	 M. Deo, Enabling Next-
Generation Platforms Using Intel’s
3D System-in-Package Technology,
white paper WP-01251-1.5, Intel,
Aug. 2017.

31.	 D. Richman, “Amazon Web Services’
Secret Weapon: Its Custom-Made
Hardware and Network,” blog,
19 Jan. 2017; www.geekwire
.com/2017/amazon-web-services

-secret-weapon-custom-made
-hardware-network.

32.	 “Amazon EC2 F1 Instances,
Customizable FPGAs for Hard-
ware Acceleration Are Now
Generally Available,” blog, 19
Apr. 2017; http://aws.amazon
. com/about-aws/what s -new
/2017/04/amazon-ec2-f1-instances
-customizable-fpgas-for-hardware
-acceleration-are-now-generally
-available.

33.	 B. Gates, The Road Ahead, Viking
Penguin, 1996.

Srilatha Manne is a principal hardware
architect at Cavium. Contact her at
bobbiemanne12@gmail.com.

Bryan Chin is a lecturer in the Com-
puter Science and Engineering Depart-
ment at the University of California,
San Diego. Contact him at b5chin
@ucsd.edu.

Steven K. Reinhardt is a partner hard-
ware engineering manager at Micro-
soft. Contact him at stever@microsoft
.com.

Read your subscriptions
through the myCS
publications portal at

http://mycs.computer.org

IEEE Internet Computing reports emerging tools,
technologies, and applications implemented through the
Internet to support a worldwide computing environment.

For submission information and author guidelines,
please visit www.computer.org/internet/author.htm

Engineering and Applying the Internet

