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All hardware companies face a conun-
drum. Should they continue the evolu-
tionary trend of their current products, 
or build riskier products that have the 
potential for greater reward but carry a 
higher probability of failure? The safe 
course, and one that many custom-
ers ask for, is the former. However, as 
Clayton Christensen points out in The 
Innovator’s Dilemma, “most companies 
with a practiced discipline of listening 
to their best customers and identify-
ing new products that promise greater 
profitability and growth are rarely able 
to build a case for investing in disrup-
tive technologies until it is too late.”1

Computer hardware companies 
expend enormous resources to suc-
cessfully improve their products in an 
evolutionary fashion. Single-threaded 
processor performance has been improv-
ing at a rate of 15 to 20 percent per year 
by utilizing both process technology 
and architectural improvements.2 These 
improvements, however, are increasingly 
difficult to achieve. Using data from 
Moein Khazraee and colleagues,3 Fig-
ure 1 shows that a processor’s cost per 
operation, as defined by a combina-
tion of fabrication, nonrecurring engi-
neering (NRE), and packaging costs, 
has not significantly improved in the 
past decade. However, performance 
improvements are flattening out due to 

power restrictions and the breakdown 
of Dennard scaling. For instance, Intel 
is no longer relying on the tick-tock 
model, which it rode to market dom-
inance for the past decade, due to the 
declining benefits of process technol-
ogy scaling.4

Sustaining versus Disruptive 
Technology
Christensen describes the evolutionary 
process of improvements using the sus-
taining technology S-curve (see Figure 2). 
For every successful technology, the per-
formance metric is initially flat during 
development, rapidly improves for a 
period of time, and flattens out again 
when the product and/or technology 
reaches maturity. Sustaining technolo-
gies are dominating the processor indus-
try, and these technologies are reaching 
a plateau.

Sometimes a disruptive technol-
ogy with a new S-curve will enter the 
landscape, as shown in Figure 2. Dis-
ruptive technologies do not go head 
to head with mainstream technolo-
gies, but they do have features that a 
few fringe markets value. Typically, 
disruptive technologies initially under-
perform, but then rapidly match and 
exceed the previous technology. Suc-
cessful companies not only ride their 
sustaining S-curves but generate new, 

disruptive curves to improve perfor-
mance as the current technology curve 
flattens out. Microprocessors were 
once a disruptive technology,1 and 
the computing landscape over the past  
few decades is littered with disruptive 
technologies, from minicomputers to 
PCs to smartphones to cloud comput-
ing. In all these cases, the disruptive 
technology yielded worse performance 
in the near-term when using the same 
cost function as mainstream technology. 
However, as Christensen maintains, dis-
ruptive technologies eventually redefine  
how performance is measured.

Recent examples of disruptive 
technologies in processor architecture 
include GPUs and Arm servers. GPUs 
were originally designed for 3D graph-
ics processing, but have made signifi-
cant inroads first in high-performance 
computing (HPC) and more recently 
in machine learning. For applications 
that are similar to those found in 
SPECint, GPUs underperform gen-
eral-purpose processors. However, 
for targeted HPC applications and 
machine learning, GPUs are over-
whelmingly superior.

Arm processors originally tar-
geted power-constrained embedded 
domains, but have more recently 
entered the server market with prod-
uct offerings from companies such as 
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Cavium and Qualcomm that address 
multicore throughput computing.5,6 
A new S-curve could develop for these 
specialized throughput-based server 
products—enabled by highly paralleliz-
able shared-memory applications—just 
as it did with HPC and machine learn-
ing in the GPU market.

It took the GPU market nearly 
two decades to make headway outside 
of graphics applications, and the Arm 
server market has resulted in several 
failures. Christensen notes that this 
commonplace in disruptive markets is 
where “[it] is simply impossible to pre-
dict with any useful degree of precision 
how disruptive products will be used 
or how large their markets will be.” 
So, how does one innovate in a rapidly 
changing technology landscape where 
the underlying cost function is in flux? 
How does a company keep up with the 
necessary and expensive evolutionary 
changes, yet also prepare for and justify 
expending valuable resources investi-
gating disruptive technologies that are 
inevitable?

The Case for Agility
Companies and their mainstream cus-
tomers alike are notoriously bad at pre-
dicting what disruptive products will 
take root in the marketplace. There are 
many instances of high-profile devel-
opments that flopped. For example, it 
is unlikely you are reading this article 
on your Apple Newton while listen-
ing to music on your Microsoft Zune. 
Conversely, some disruptive technol-
ogies have found success in surprising 
places such as GPUs. Innovation in a 
rapidly changing landscape is difficult 
and prone to failure. Therefore, we 
posit that architects, rather than trying 
to predict the future, should pursue 
agility in order to accelerate innova-
tion while minimizing costs. Hard-
ware companies, architects, and the 
underlying design methodologies and 
infrastructure must be nimble enough 
to deal with disruptive technologies 
that come from within and outside the 

current technology landscape. The rest 
of the article presents some ideas on 
how this may be accomplished.

Agile Architecture
In his book The Lean Startup: How 
Today’s Entrepreneurs Use Continuous 
Innovation to Create Radically Success-
ful Business,7 Eric Ries writes about 
software companies that use agile 
software development strategies. The 
premise is to deliver prototypes as 
quickly as possible, even if haphazardly 
put together, to get early customer 
feedback. The goal is to use customer 
feedback to drive product features and 
direction through a process of continu-
ous development. If you consider how 
frequently the apps on your phone are 
updated, or the look and feel of social 
networking sites evolve, you have seen 
agile software practices in action.

Facebook, for example, uses agile  
coding practices. As Kent Beck 
explains,8 one of the basic practices at 
Facebook is reversibility. If a decision is 
reversible, it does not require the rig-
orous testing that irreversible decisions 
require. Code is also released incremen-
tally to a small subset of users, which 
enables changes to be rolled back with 
minimal disruption if a problem is 
found.9 The challenge for the hard-
ware industry is how to adapt a similar  
agile methodology without incur-
ring large overheads. We address this 

challenge in both traditional processor 
hardware methodologies and innova-
tive methodologies utilized by large 
computing companies.

Processor Agility
Prior to the ASIC revolution of the 
past few decades, hardware prototypes 
were a common means of achieving 
the rapid development and early feed-
back cycle. Old technologies such as 
wire-wrap, breadboards, programma-
ble logic devices (PLDs), and low-cost 
printed circuit boards (PCBs) enabled 
hardware companies to quickly build 
and iterate on products. This meth-
odology is no longer feasible given the 
complexity and cost of processor devel-
opment both in terms of engineering 
time and fabrication costs.3
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Figure 1. Processor computation cost as a function of time. Cost is defined as a 
combination of fabrication, nonrecurring engineering (NRE), and packaging costs.3
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Automated design methodology and  
reuse. Companies today rely on 
improved design methodologies and 
reusability to reduce design time and 
cost. Design methodologies have made 
great strides in the past two decades, 
resulting in shorter design cycle times and 
an expanded product portfolio using the 
same fundamental components. Most 
processors, even those designed for high 
performance, are mostly or completely 
synthesized. The Arm roadmap has 
synthesized cores operating at 3 GHz, 
and AMD, Intel, and IBM extensively 
use automated tools throughout their 
design.10–12 In addition, companies uti-
lize a modular design methodology such 
that multiple products can be developed 
using the same basic components.

Both Intel and AMD use their 
respective base core designs and inno-
vative packaging technologies to build 
products ranging from low-power 
mobile parts to multicore server  
products.13 Similarly, silicon compa-
nies such as Cavium and Nvidia have 
been able to create a family of devices 
with varying price/performance points 
from the same basic design by utilizing 
flexible chip layouts that let designers 
vary the number of computational 
units and/or the amount of on-die 
memory. Intel has taken this one  
step further by collaborating with 
Facebook to develop a specialized  
version of Broadwell (referred to as 
Broadwell-D) to meet the specific 
needs of Facebook.14

The technologies mentioned so far 
reduce design cycle time, but there is 
still significant overhead associated with 
bringing a chip to production. Post- 
silicon functional and performance 
debug is a formidable challenge for 
modern processors that may encompass 
multiple sockets, heterogeneous and/or 
multithreaded cores, many cores com-
bined with multiple levels of memory 
hierarchy, complex memory coherence 
and consistency protocols, and extensive 
power and performance management 
via on-chip controllers. In addition, 

modern processors may operate under 
complex software stacks containing one 
or more nested virtual environments. 
For these reasons, even with mostly 
synthesized methodologies and reuse 
of existing components, the transition 
from first silicon to full production part 
can take up to a year or more.15

Functional verification and bug  
mitigation. Post-production bugs are  
commonplace, and fixing bugs in 
shipped products often involves errata, 
metal and full-layer spins, and/or 
replacing existing silicon. Infamous 
examples of such bugs are the Pentium 
FDIV bug,16 the Haswell/Broadwell 
transactional memory bug,17 and the 
AMD TLB bug.18 These bugs cost the 
respective companies millions of dol-
lars in lost revenue, and in AMD’s case, 
contributed to its loss of momentum 
in the server market. All processors 
have a large list of errata. The table of 
known errata in Haswell, for instance, 
covers six pages.19

To meet market needs and address 
the complexity and cost of post-silicon  
debug, architects must focus on 
hardware and software solutions for 
exposing, analyzing, and mitigating 
functional and performance bugs. 
Processor vendors must provide tools 
that rapidly expose and identify bugs 
and have systems in place for mitigat-
ing these bugs without the need for 
extensive silicon changes. Efforts such 
as Arm’s hardware debug architecture 
attempt to standardize the infrastruc-
ture so that common tools can be 
made available to the Arm hardware 
development ecosystem.20

Both software and hardware solu-
tions should be explored for mitigating 
hardware bugs in the field. On the hard-
ware front, microcode fixes on tradi-
tional CISC processors come to mind, 
as does the PAL (Privileged Architecture 
Library) code feature of DEC’s Alpha 
processors. A similar technology that 
might help processor vendors mitigate 
bugs is virtual machine environments. 

Much software these days is compiled 
to an abstract machine. Two examples 
of such abstraction layers, one cur-
rent and one historical, are Oracle’s 
Java Virtual Machine (JVM)21 and 
IBM’s AS/400 Series.22 If an entire 
processor is designed to execute only 
a JVM, then the JVM itself provides 
the instruction set architecture (ISA) of 
the machine, and the underlying phys-
ical machine may have bugs or features 
that are invisible to the JVM. The JVM 
addresses ISA-related bugs. Similarly, 
more fully specified virtual machine 
environments, such as VMware’s 
vSphere and Microsoft’s Hyper-V, vir-
tualize system aspects of the machine, 
such as memory management and I/O. 
Machines such as IBM’s AS/400 man-
aged to maintain a stable abstract archi-
tecture through multiple generations  
of hardware. By expecting and archi-
tecting for bug discovery, analysis, 
and mitigation, processor vendors can 
reduce the number of bugs that reach 
production silicon, and respond to 
issues in post-production parts quickly 
and effectively. This shortens the 
designer-customer feedback loop and 
leads to a faster development cycle and 
improved successor products.

Performance verification and  
optimization. Another critical facet 
of bringing a processor to production 
is performance tuning. Processors are 
designed with dozens of control bits 
(also referred to as chicken bits) to 
manage system performance. Some 
chicken bits are exposed to the user 
(for example, disabling prefetching or 
simultaneous multithreading mode, or 
restricting power management), and 
others are known only by the manufac-
turer. Regardless, how these bits are set 
and tuned can have a significant impact 
on performance. Unfortunately, there 
are hundreds of these interdependent 
knobs, and tuning them by hand is 
impractical. However, self-tuning sys-
tems, either integrated into the oper-
ating system or as separate tools,23 
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that can dynamically adjust these bits 
according to application needs may be 
an innovative mechanism for achiev-
ing optimal performance. Best of all, 
these tuners can be deployed on-site, 
which means they do not gate product 
release to customers. Finally, the same 
techniques for fixing bugs via low-level 
software or implementing a virtual 
machine can also be used to adapt sil-
icon to new applications. Hardware 
designers can enable and deploy new 
instructions and features through 
the same mechanisms used to patch 
around bugs. New versions of a JVM 
implementation, for example, may 
exploit optimizations that are relevant 
to new application areas.

Computational Agility
So far, we have addressed agility at 
the processor level. However, with 
the advent of warehouse-scale systems 
driven by cloud computing, the pro-
cessor becomes one piece of a larger 
computational problem. New com-
panies entering the computing arena 
include numerous startups and large, 
established companies from outside 
the traditional chip design industry, 
such as Google, Microsoft, and Ama-
zon. Few if any of these companies 
are choosing to go head-to-head in 
the general-purpose processor market 
with traditional designs such as Intel 
and AMD. Rather, they are achieving 
agility via specialized devices targeting 
narrower but highly relevant domains.

The need for specialization. The end 
of Dennard scaling and the slowdown 
and imminent demise of Moore’s law 
drive the need for specialization, just 
as they demand agility in processor 
design. During the steep part of the 
S-curve for general-purpose processors, 
specialized architectures were quickly 
outpaced by these cheaper commodity 
devices. The slowing rate of improve-
ment in general-purpose designs both 
creates opportunity for specialized 
architectures and drives demand, as 

customers can no longer rely on the 
commodity market to satisfy their 
computing needs.

A prerequisite for specialization is 
identifying an application or applica-
tion domain narrow enough to benefit 
from specialization but large enough 
to justify a specialized device. Focusing 
on smaller and smaller domains (down 
to specific applications) increases the 
amount of potential performance 
uplift through specialization, while 
decreasing the potential market. To 
be successful, the total value cre-
ated through specialization (roughly 
speaking, the value per device times 
the number of devices) must exceed 
the cost of developing the specialized 
device. By developing agile methodol-
ogies that reduce engineering costs, we 
can enable specialization for smaller 
domains and allow specialized devices 
to emerge sooner in growing markets.

Figure 3 shows the specializa-
tion trend over time, starting with 
CPUs and ending with custom ASICs. 
Cryptocurrency mining followed this 
trend,24 and deep learning, one of the 
most prominent new markets attract-
ing specialized architectures, is follow-
ing suit. GPUs offer better performance 
than CPUs for certain tasks, such as 
training for AI, whereas state-of-the 

art field-programmable gate arrays 
(FPGAs) can outperform standard 
GPUs for certain computations such 
as low-precision arithmetic.25 Finally, 
custom ASIC accelerators provide the 
highest performance efficiency.

Multiple startups such as Graph-
core, Wave Computing, Nervana (now 
part of Intel), and Groq are developing 
or have developed customized deep 
learning accelerators that occupy the 
upper right corner of Figure 3. How-
ever, one of the earliest and most pub-
licized deep learning accelerators is not 
from a startup but from an established 
company without a history of chip 
design. The Google Tensor Processing 
Unit (TPU) was developed in a short 
15 months.26 To achieve a rapid pro-
duction cycle, Google used an older 
and more stable process technology 
(28 nm) and existing communication 
interfaces. The first-generation TPU 
was for internal use and had compu-
tational and memory bandwidth lim-
itations. However, the TPU is now on 
its second iteration, and it not only 
supports higher computational capa-
bility and memory bandwidth, but will 
reportedly be made accessible to third 
parties.27

Even in an agile environment, the 
delay from the initial ASIC concept 
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to fully deployed device is measured 
in years. Once deployed, ASICs must 
continue to provide value for multi-
ple additional years before replace-
ment. Thus, an ASIC must accelerate 
a function that, from the point of con-
ception, will still be valuable four to 
five years in the future. While some 
functions, such as compression and 
encryption algorithms, tend to be sta-
ble over these time frames, those in 
rapidly evolving fields such as deep 
learning may develop new and differ-
ent requirements in the interval from 
design start to deployment. Stable, 
high-volume accelerators can easily 
justify an ASIC’s higher nonrecurring 
engineering cost. Because an ASIC 
design needs larger markets and longer 
lifetimes, an ASIC accelerator typically 
includes as much flexibility as design-
ers can afford in the form of configura-
tion parameters, options, and software 
programmability.

To achieve a more agile acceler-
ation framework, Microsoft took an 
unusual approach to specialization by 
focusing on FPGAs rather than ASICs 
for datacenter acceleration.28 For a 
given accelerator design, an FPGA 
implementation could be several times 
slower and less energy efficient than 
an ASIC implementation. However, 
by using hardware devices that can be 
reprogrammed after deployment, Mic-
rosoft gains agility at the expense of 
computational efficiency. FPGA-based 
accelerators not only are tolerant to 
the changing requirements of a given 
application, but can be completely 
retargeted as new applications emerge 
or demand shifts. An FPGA accelera-
tor design can afford to be less config-
urable and more customized to specific 
situations, as the design itself can be 
incrementally modified after initial 
deployment to address new circum-
stances. In this fashion, the FPGA’s 
agility as a platform can be used to 
recover a portion of the efficiency that 
it sacrifices to an equivalent ASIC-
based design.

FPGAs can also close the gap 
with ASICs by incorporating larger 
and more complex hard logic blocks 
on chip. Current FPGAs include  
multiply-accumulate units and even 
full microprocessor cores as hard logic. 
Researchers have also proposed devices 
that are mostly hard logic, but with 
configurable interconnect, referred to 
as coarse-grained reconfigurable accel-
erators (CGRAs).29 The line between 
FPGAs and ASICs is further blurred 
by integrated multichip packages 
that incorporate both an FPGA and 
ASIC die.30 The ability for customers 
to specify which ASICs are included 
in the package provides yet another 
dimension of flexibility.

The computational marketplace. 
Amazon has also developed hardware 
for internal consumption from custom 
routers to chipsets used in its servers.31 
This enables Amazon to optimize the 
hardware for its specific needs with full 
control of both the hardware and soft-
ware stack. Amazon also provides hard-
ware agility to its customers by offering 
platforms for custom programmable 
hardware as part of the AWS services 
plan.32 The goal is to encourage com-
panies to develop accelerators using 
Amazon’s FPGA framework for inter-
nal use and/or sell the resulting com-
putational capability to end customers 
on the AWS Marketplace. Amazon’s 
EC F1 instances with FPGAs offer two 
significant benefits for custom solution 
developers. First, Amazon provides the 
FPGA hardware, tools, and infrastruc-
ture, significantly lowering the cost 
and convenience threshold for devel-
oping customized hardware. Second, 
Amazon provides a deployment model 
(via AWS) and a ready marketplace of 
potential customers for the final prod-
uct. No longer are hardware developers 
restricted to products with a large Tier 
One customer base. They can rapidly 
develop and deploy niche hardware and 
test its viability in the AWS computa-
tional marketplace with many small 

customers across the country and the 
world. The computational marketplace 
scenario comes closest to achieving the 
rapid deployment model highlighted 
in The Lean Startup.7 Finally, if any 
of these customized solutions become 
pervasive, they can eventually be reim-
plemented as an ASIC, as noted by 
Khazraee,3 or integrated into a general- 
purpose processor architecture.

Standardized ecosystem. A successful 
computational marketplace requires 
standardized interfaces for interacting 
with accelerators. On the hardware 
side, current solutions from Amazon, 
Microsoft, Google, and others rely 
on PCIe for accelerator integration. 
PCIe has been the de facto standard 
for peripherals for many years, and a 
part of its success can be attributed to 
having an open standard. However, for 
processor designers wanting to create 
specialized accelerators, PCIe may not 
offer the tightly coupled memory sys-
tem integration desired or required by 
the application. Proprietary coherent 
processor interconnects such as Intel’s 
QPI and AMD’s Infinity Fabric offer 
the memory system integration that a 
specialized accelerator might require, 
while Nvidia’s NVLink is a proprietary 
interconnect for GPUs. Nonpropri-
etary standards from different consor-
tia such as OpenCAPI (www.opencapi 
.org), Gen-Z (www.genzconsortium 
.org), and CCIX (www.ccixconsortium 
.com) might also supplement PCIe as 
these standards evolve. What is clear, 
from the PCIe example, is that the new 
standard should be easily licensable 
and controlled by an open standards 
organization to enable a level playing 
field.

While we have thus far empha-
sized agility in hardware development 
and deployment, software agility is also 
a critical requirement. An environment 
in which hardware capabilities change 
and evolve rapidly is impossible to use 
unless low-level software can adapt 
equally rapidly, while providing stable 
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APIs to higher-level services so that 
the bulk of the code base can remain 
independent of the underlying imple-
mentation’s details. Software stacks 
can provide additional agility when 
they help to automate the mapping of 
applications to accelerators, and enable 
hardware bug workarounds to cope 
with issues that may slip through an 
accelerated development and testing 
schedule.

P rocessor architecture has changed 
significantly over the past few 

decades with the advent of multicore 
designs, design for low power, het-
erogeneous systems, and many-core 
processors that can run a hundred or 
more threads. With cloud computing 
and the emerging customizable mar-
ketplace of products, we are once again 
witnessing a sea change in the way 
computing takes place.

In this article, we have made a 
case for agility because we cannot pre-
dict the future with any level of accu-
racy. We need agility not only for rapid 
evolution of conventional architec-
ture, but also for lowering the barrier 
for specialized architectures. As Bill 
Gates once noted, “We always overes-
timate the change that will occur in the 
next two years and underestimate the 
change that will occur in the next ten. 
Don’t let yourself be lulled into inac-
tion.”33 As architects, we must develop 
the infrastructure and mindset that 
enable us to be agile and take risks in 
order to evolve with a rapidly changing 
environment and create the next dis-
ruptive technology. 
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