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Abstract—Many recent works have designed accelerators for
Convolutional Neural Networks (CNNs). While digital acceler-
ators have relied on near data processing, analog accelerators
have further reduced data movement by performing in-situ com-
putation. Recent works take advantage of highly parallel analog
in-situ computation in memristor crossbars to accelerate the
many vector-matrix multiplication operations in CNNs. However,
these in-situ accelerators have two significant short-comings that
we address in this work. First, the ADCs account for a large
fraction of chip power and area. Second, these accelerators adopt
a homogeneous design where every resource is provisioned for the
worst case. By addressing both problems, the new architecture,
Newton, moves closer to achieving optimal energy-per-neuron for
crossbar accelerators.

We introduce multiple new techniques that apply at different
levels of the tile hierarchy. Two of the techniques leverage hetero-
geneity: one adapts ADC precision based on the requirements of
every sub-computation (with zero impact on accuracy), and the
other designs tiles customized for convolutions or classifiers. Two
other techniques rely on divide-and-conquer numeric algorithms
to reduce computations and ADC pressure. Finally, we place
constraints on how a workload is mapped to tiles, thus helping
reduce resource provisioning in tiles. For a wide range of
CNN dataflows and structures, Newton achieves a 77% decrease
in power, 51% improvement in energy efficiency, and 2.2×

higher throughput/area, relative to the state-of-the-art ISAAC
accelerator.

I. INTRODUCTION

Accelerators are in vogue today, primarily because it is ev-

ident that annual performance improvements can be sustained

via specialization. There are also many emerging applications

that demand high-throughput low-energy hardware, such as

the machine learning tasks that are becoming commonplace

in enterprise servers, self-driving cars, and mobile devices.

The last two years have seen a flurry of activity in designing

machine learning accelerators [5], [7], [9], [19], [8], [30],

[27], [24], [16]. Similar to our work, most of these recent

works have focused on inference in artificial neural networks,

and specifically deep convolutional networks, that achieve

state-of-the-art accuracies on challenging image classification

workloads.

While most of these recent accelerators have used digital

architectures [5], [7], a few have leveraged analog acceleration

on memristor crossbars [26], [8], [4]. Such accelerators take

advantage of in-situ computation to dramatically reduce data

movement costs. Each crossbar is assigned to execute parts

of the neural network computation and programmed with the

corresponding weight values. Input neuron values are fed to

the crossbar, and by leveraging Kirchoff’s Law, the crossbar

outputs the corresponding dot product. The neuron output

undergoes analog-to-digital conversion (ADC) before being

sent to the next layer. Multiple small-scale prototypes of this

approach have also been demonstrated [1], [21].

The design constraints for digital accelerators are very

different from their analog designs. High communication over-

head and the memory bottleneck are still first order design

constraints in digital, whereas the computation overhead aris-

ing from analog-to-digital and digital-to-analog conversions,

and balancing the extent of digital computation in an analog

architecture are more critical in analog accelerators. In this

work, we show that computation is a critical problem in

analog and leverage numeric algorithms to reduce conversion

overheads. Once we improve the efficiency of computation, the

next major overhead comes from communication and storage.

Towards this end, we discuss mapping techniques and buffer

management strategies to further improve analog accelerator

efficiency.

With these innovations in place, our new design, Newton,

moves the analog architecture closer to the bare minimum en-

ergy required to process one neuron. We define an ideal neuron

as one that keeps the weight in-place adjacent to a digital ALU,

retrieves the input from an adjacent single-row eDRAM unit,

and after performing one digital operation, writes the result

to another adjacent single-row eDRAM unit. This energy is

lower than that for a similarly ideal analog neuron because of

the ADC cost. This ideal neuron operation consumes 0.33 pJ.

An average DaDianNao operation consumes 3.5 pJ because it

pays a high price in data movement for inputs and weights.

ISAAC [26] is a state-of-the-art analog design that achieves an

order of magnitude better performance than digital accelerators

such as DaDianNao. An average ISAAC operation consumes

1.8 pJ because it pays a moderate price in data movement

for inputs (weights are in-situ) and a high price for ADC. An

average Eyeriss [6] operation consumes 1.67 pJ because of

an improved dataflow to maximize reuse. The innovations in

Newton push the analog architecture closer to the ideal neuron

by consuming 0.85 pJ per operation. Relative to ISAAC,

Newton achieves a 77% decrease in power, 51% decrease in

energy, and 2.2× increase in throughput/area.

http://arxiv.org/abs/1803.06913v1


II. BACKGROUND

A. Workloads

We consider different CNNs presented in the ILSVRC

challenge of image classification for the IMAGENET [25]

dataset. The suite of benchmarks considered in this paper is

representative of the various dataflows in such image classifi-

cation networks. For example, Alexnet is the simplest of CNNs

with a reasonable accuracy, where a few convolution layers at

the start extract features from the image, followed by fully

connected layers that classify the image. The other networks

were designed with a similar structure but made deeper and

wider with more parameters. For example, MSRA Prelu-net

[13] has 14 more layers than Alexnet [17] and has 330 million

parameters, which is 5.5× higher than Alexnet. On the other

hand, residual nets have forward connections with hops, i.e.,

output of a layer is passed on to not only the next layer but

subsequent layers. Even though the number of parameters in

Resnets [12] are much lower, these networks are much deeper

and have a different dataflow, which changes the buffering

requirements in accelerator pipelines.

B. The Landscape of CNN Accelerators

Digital Accelerators. The DianNao [5] and DaDianNao [7]

accelerators were among the first to target deep convolutional

networks at scale. DianNao designs the digital circuits for a

basic NFU (Neural Functional Unit). DaDianNao is a tiled

architecture where each tile has an NFU and eDRAM banks

that feed synaptic weights to that NFU. DaDianNao uses

many tiles on many chips to parallelize the processing of a

single network layer. Once that layer is processed, all the

tiles then move on to processing the next layer in parallel.

Recent papers, e.g., Cnvlutin [2], have modified DaDianNao

so the NFU does not waste time and energy processing zero-

valued inputs. EIE [27] and Minerva [24] address sparsity in

the weights. Eyeriss [6] and ShiDianNao [9] improve the NFU

dataflow to maximize operand reuse. A number of other digital

designs [16], [20], [10] have also emerged in the past year.

Analog Accelerators. Two CNN accelerators introduced in

the past year, ISAAC [26] and PRIME [8], have leveraged

memristor crossbars to perform dot product operations in the

analog domain. We will focus on ISAAC here because it

out-performs PRIME in terms of throughput, accuracy, and

ability to handle signed values. ISAAC is also able to achieve

nearly 8× and 5× higher throughput than digital accelerators

DaDianNao and Cnvlutin respectively.

C. ISAAC

Pipeline of Memristive Crossbars. In ISAAC, memristive

crossbar arrays are used to perform analog dot-product oper-

ations. Neuron inputs are provided as voltages to wordlines;

neuron weights are represented by pre-programmed cell con-

ductances; neuron outputs are represented by the currents in

each bitline. The neuron outputs are processed by an ADC

and shift-and-add circuits. They are then sent as inputs to the

next layer of neurons. As shown in Figure 1, ISAAC is a

tiled architecture; one or more tiles are dedicated to process

one layer of the neural network. To perform inference for one
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Fig. 1. The ISAAC Architecture.

input image, neuron outputs are propagated from tile to tile

until all network layers have been processed.

Tiles, IMAs, Crossbars. An ISAAC chip consists of many

tiles connected in a mesh topology (Figure 1). Each tile

includes an eDRAM buffer that supplies inputs to In-situ

Multiply Accumulate (IMA) units. The IMA units consist of

memristor crossbars that perform the dot-product computation,

ADCs, and shift-and-add circuits that accumulate the digitized

results. With a design space exploration, the tile is provisioned

with an optimal number of IMAs, crossbars, ADCs, etc. Within

a crossbar, a 16-bit weight is stored 2 bits per cell, across

8 columns. A 16-bit input is supplied as voltages over 16

cycles, 1 bit per cycle, using a trivial DAC array. The partial

outputs are shifted and added across 8 columns, and across

16 cycles to give the output of 16b × 16b MAC operations.

Thus, there are two levels of pipelining in ISAAC: (i) the intra-

tile pipeline, where inputs are read from eDRAM, processed

by crossbars in 16 cycles, and aggregated, (ii) the inter-tile

pipeline, where neuron outputs are transferred from one layer

to the next. The intra-tile pipeline has a cycle time of 100 ns,

matching the latency for a crossbar read. Inputs are sent to a

crossbar in an IMA using an input h-tree network. The input

h-tree has sufficient bandwidth to keep all crossbars active

without bubbles. Each crossbar has a dedicated ADC operating

at 1.28 GSample/s shared across its 128 bitlines to convert

the analog output to digital in 100 ns. An h-tree network is

then used to collect digitized outputs from crossbars.
Crossbar Challenges. As with any new technology, a mem-

ristor crossbar has unique challenges, mainly in two respects.

First, mapping a matrix onto a memristor crossbar array

requires programming (or writing) cells with the highest

precision possible. Second, real circuits deviate from ideal

operation due to parasitics such as wire resistance, device

variation, and write/read noise. All of these factors can cause

the actual output to deviate from its ideal value. Recent

work [14] has captured many of these details to show the

viability of prototypes [1]. The Appendix summarizes some

of these details.



III. PROPOSAL

The design constraints for digital accelerators are very

different from their analog counterparts. In any digital design,

the overhead of communication, arising from the need to

fetch both input feature and weights from memory, is the

major limiting factor. As a result, most optimizations focus

on improving memory bandwidth (e.g., HBM or GDDR),

memory utilization (compression, zero value elimination, etc.)

and scheduling (e.g., batching) to improve communication

efficiency and performance. Techniques that primarily target

improving digital computation should carefully consider their

impact on additional on-chip storage and communication over-

heads, which can negatively affect overall efficiency.

In analog, because we do in-situ computation, only one of

the operands needs to be transferred, and this reduces the

communication overhead by at least 2×. Furthermore, the

transferred value (the input vector in the form of crossbar row

voltage) is streamed across the entire crossbar (matrix values)

guaranteeing high reuse and locality. The compute density of

analog in-situ units is also better than digital accelerators.

As analog crossbars store neural network weights, even if

they are not performing computation, they still act as on-chip

storage. Whereas, digital computational units need to have

high utilization to maximize performance, otherwise their area

is better utilized for more on-chip storage. Both these factors

provide more flexibility for analog accelerators to explore

computational optimizations at the expense of either more

communication or crossbar storage.

In a digital design, the datapath size and its overhead are

pre-determined. A 16-bit datapath operated with 12-bit values

will achieve only marginal reduction in overhead as pipeline

buffers and wire repeaters switch every cycle. However, as

analog computation is being performed at bit level (1 or 2

bit computations in each bitline), reducing the operand size,

say, from 16-bits to 12-bits will correspondingly reduce ADC

and DAC usage, leading to better efficiency. Note that even

though an analog architecture consists of both digital and

analog computations, the overhead of analog dominates - 61%

of the total power [26].

We will first take a closer look at a simple dot-product

being performed using crossbars. Consider a 1×128 vector

being multiplied with a 128×128 matrix (all values are 16

bits). Figure 2 shows the energy breakdown of the vector-

matrix multiplication pipeline compared against digital designs

for various architectures. To model the analog overhead, we

consider 2-bit cells, 1-bit DAC, and 16-bit values interleaved

across eight crossbars. In a single iteration, a crossbar column

is performing a dot-product involving 128 rows, 1-bit inputs,

and 2-bit cells; it therefore produces a 9-bit result requiring a

9-bit ADC1.

We must shift and add the results of eight such columns,

yielding a 23-bit result. These results must also be shifted and

added across 16 iterations, finally yielding a 39-bit output.

1 Prior work (ISAAC) has shown that simple data encoding schemes can
reduce the ADC resolution by 1 bit [26].

Fig. 2. Energy Breakdown of Vector-Matrix Multiplication in existing Digital
and Analog pipelines and for the proposed optimizations

Finally, the scaling factor is applied to convert the 39-bit result

to a 16-bit output. As the figure shows, communication and

memory accesses are the major limiting factor for digital archi-

tectures, whereas for analog, computation overhead, primarily

arising from ADC dominates.

Based on these observations, we present optimizations that

exploit high compute density and flexible datapath enabled by

analog to improve computation efficiency. These optimizations

are applicable to any accelerator that uses analog in-situ cross-

bars as the techniques primarily target high ADC overhead.

Once we improve the efficiency of the computation, the next

major overhead comes from communication of values. As

communication (on-chip and off-chip) and storage overheads

(SRAM or eDRAM buffers) depend on the overall accelerator

architecture, we choose the ISAAC architecture as the baseline

when discussing our optimizations.

A. Reducing Computational Overhead

1) Karatsuba’s Divide and Conquer Multiplication Tech-

nique: With ADC being the major contributor to the total

power, we discuss a divide and conquer strategy at the bit level,

that reduces pressure on ADC usage and hence ADC power.

A classic multiplication approach for two n-bit numbers has a

complexity of O(n2) where each bit of a number is multiplied

with n-bits of the other number, and the partial results are

shifted and added to get the final 2n-bit result.

Karatsuba’s divide and conquer algorithm manages to re-

duce the complexity from O(n2) to O(n1.5). As shown in

Figure 3, it divides the numbers into two halves of n/2 bits,

MSB bits and LSB bits, and instead of performing four smaller

n/2-bit multiplications, it calculates the result with two n/2-bit

multiplications and one (n/2 + 1)-bit multiplication.

To illustrate the benefit of this technique, consider the same

example discussed earlier using 128x128 crossbars, 2-bit cells,

and 1-bit DAC. The product of input X and weight W is

performed on 8 crossbars in 16 cycles (since each weight is

spread across 8 cells in 8 different crossbars and the input is

spread across 16 iterations). In the example in Figure 3, W0X0

is performed on four crossbars in 8 iterations (since we are

dealing with fewer bits for weights and inputs). The same is

true for W1X1. A third set of crossbars stores the weights

(W1 +W0) and receives the pre-computed inputs (X1 +X0).
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Fig. 3. Karatsuba’s Divide & Conquer Algorithm.

This computation is spread across 5 crossbars and 9 iterations.

We see that the total amount of work has reduced by 15%.

There are a few drawbacks as well. A computation now

takes 17 iterations instead of 16. The net area increases

because the network must send inputs X0 and X1 in parallel,

an additional crossbar is needed, the output buffer is larger

to store subproducts, and 128 1-bit full adders are required to

compute (X1+X0). Again, given that the ADC is the primary

bottleneck, these other overheads are relatively minor.

2) Strassen’s Algorithm: A divide and conquer approach

can also be applied to matrix-matrix multiplication. By par-

titioning each matrix X and W into 4 sub-matrices, we can

express matrix-matrix multiplication in terms of multiplica-

tions of sub-matrices. A typical algorithm would require 8 sub-

matrix multiplications, followed by an aggregation step. But as

shown in Figure 4, linear algebra manipulations can perform

the same computation with 7 sub-matrix multiplications, with

appropriate pre- and post- processing. Similar to Karatsuba’s

algorithm, this has the advantage of reducing ADC usage and

power.

The above two optimizations reduce the computation en-

ergy by 20.6% while incurring a storage overhead of 4.3%.

While both divide and conquer algorithms (Karatsuba’s and

Strassen’s algorithms) are highly effective for a crossbar-

based architecture, they have very little impact on other digital

accelerators. For example, these algorithms may impact the

efficiency of the NFUs in DaDianNao, but DaDianNao area is

dominated by eDRAM banks and not NFUs. In fact, Strassen’s

algorithm can lower DaDianNao efficiency because buffering

requirements may increase. On the other hand, analog compu-

tations are dominated by ADCs, so efficient computation does

noticeably impact overall efficiency. Further, some of the pre-

processing for these algorithms is performed when installing

weights on analog crossbars, but has to be performed on-the-

fly for digital accelerators.

3) Adaptive ADCs.: A simple dot-product operation on 16-

bit values performed using crossbars typically result in an

output of more than 16-bits. In the example discussed earlier,

using 2-bit cells in crossbars and 1-bit DACs yielded 39-bit

output. Once the scaling factor is applied, the least significant

10 bits are dropped. The most significant 13 bits represent an

overflow that cannot be captured in the 16-bit result, so they

are effectively used to clamp the result to a maximum value.

What is of note here is that the output from every crossbar

column in every iteration is being resolved with a high-
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Fig. 4. Strassen’s Divide & Conquer Algorithm for Matrix Multiplication.

precision 9-bit ADC, but many of these bits contribute to either

the 10 least significant bits or the 13 most significant bits that

are eventually going to be ignored. This is an opportunity to

lower the ADC precision and ignore some bits, depending on

the column and the iteration being processed. Figure 5 shows

the number of relevant bits emerging from every column in

every iteration. Note that before dropping the highest ignored

least significant bit, we use rounding modes to generate carries,

similar to [11].

Fig. 5. Heterogeneous ADC sampling resolution.

The ADC accounts for a significant fraction of IMA power.

When the ADC is operating at a lower resolution, it has less

work to do. In every 100 ns iteration, we tune the resolution

of a SAR ADC to match the requirement in Figure 5. Thus,

the use of adaptive ADCs helps reduce IMA power while

having no impact on performance. We are also ignoring bits

that do not show up in a 16-bit fixed-point result, so we are

not impacting the functional behavior of the algorithm, thus



having zero impact on algorithm accuracy.

A SAR ADC does a binary search over the input voltage

to find the digital value, starting from the MSB. A bit is set

to 1, and the resulting digital value is converted to analog and

compared with the input voltage. If the input voltage is higher,

the bit is set to one, the next bit is changed, and the process

repeats. If the number of bits to be sampled is reduced, the

circuit can ignore the latter stages. The ADC simply gates off

its circuits until the next sample is provided. It is important

to note that the ADC starts the binary search from the MSB,

thus it is not possible to sample just the lower significant bits

of an output without knowing the MSBs. But in this case, we

have a unique advantage: if any of the MSBs to be truncated

is 1, then the output neuron value is clamped to the highest

value in the fixed point range. Thus, in order to sample a set

of LSBs, the ADC starts the binary search with the LSB+1

bit. If that comparison yields true, it means at least one of the

MSB bits is one. This signal is sent across the inter-crossbar

network (e.g. HTree) and the output is clamped.

In conventional SAR ADCs [29], a third of the power is

dissipated in the capacitive DAC (CDAC), a third in digital

circuits, and a third in other analog circuits. The MSB decision

in general consumes more power because it involves charging

up the CDAC at the end of every sampling iteration. Recent

trends show CDAC power diminishing due to use of tiny

unit capacitances (about 2fF) and innovative reference buffer

designs, leading to ADCs consuming more power in analog

and digital circuits [18], [23]. The Adaptive ADC technique

is able to reduce energy consumption irrespective of the ADC

design since it eliminates both LSB and MSB tests across the

16 iterations.

B. Communication and Storage Optimizations

So far, we have discussed optimization techniques that are

applicable to any analog crossbar architectures. To further

improve analog accelerator efficiency, it is critical to also

reduce communication and storage overhead. As the effective-

ness of optimizing communication varies based on the overall

architecture, we describe our proposals in the context of the

ISAAC architecture. Similar to ISAAC, we employ a tiled

architecture, where every tile is composed of several IMAs.

A set of IMAs along with digital computational units and

eDRAM storage form a tile.

The previous sub-section focused on techniques to improve

an IMA; we now shift our focus to the design of a tile. We first

reduce the size of the buffer in each tile that feeds all its IMAs.

We then create heterogeneous tiles that suit convolutional and

fully-connected layers.

1) Reducing Buffer Sizes.: Because ISAAC did not place

constraints on how layers are mapped to crossbars and tiles, the

eDRAM buffer was sized to 64KB to accommodate the worst-

case requirements of workloads. Here, we design mapping

techniques that reduce storage requirements per tile and move

that requirement closer to the average-case.

To explain the impact of mapping on buffering require-

ments, first consider the convolutional layer shown in Fig-

ure 6a. Once a certain number of inputs are buffered (shown

in green and pink), the layer enters steady state; every new

input pixel allows the convolution to advance by another step.

The buffer size is a constant as the convolution advances (each

new input evicts an old input that is no longer required). In

every step, a subset of the input buffer is fed as input to the

crossbar to produce one pixel in each of many output feature

maps. If the crossbar is large, it is split across 2 tiles, as shown

in Figure 6a. The split is done so that Tile 1 manages the green

buffer and green inputs, and Tile 2 manages the pink buffer

and pink inputs. Such a split means that inputs do not have

to be replicated on both tiles, and buffering requirements are

low.

Now, consider an early convolutional layer. Early convolu-

tional layers have more work to do than later layers since they

deal with larger feature maps. In ISAAC, to make the pipeline

balanced, early convolutional layers are replicated so their

throughput matches those of later layers. Figure 6b replicates

the crossbar; one is responsible for every odd pixel in the

output feature maps, while the other is responsible for every

even pixel. In any step, both crossbars receive very similar

inputs. So the same input buffer can feed both crossbars.

If a replicated layer is large enough that it must be spread

across (say) 4 tiles, we have two options. Figure 6 c and

d show these two options. If the odd computation is spread

across two tiles (1 and 2) and the even computation is spread

across two different tiles (3 and 4), the same green inputs

have to be sent to Tile 1 and Tile 3, i.e., the input buffers are

replicated. Instead, as shown in Figure 6d, if we co-locate the

top quadrant of the odd computation and the top quadrant of

the even computation in Tile 1, the green inputs are consumed

entirely within Tile 1 and do not have to be replicated. This

partitioning leads to the minimum buffer requirement.

The bottomline from this mapping is that when a layer is

replicated, the buffering requirements per neuron and per tile

are reduced. This is because multiple neurons that receive

similar inputs can reuse the contents of the input buffer.

Therefore, heavily replicated (early) layers have lower buffer

requirements per tile than lightly replicated (later) layers. If we

mapped these layers to tiles as shown in Figure 7a, the worst-

case buffering requirement goes up (64 KB for the last layer),

and early layers end up under-utilizing their 64 KB buffer. To

reduce the worst-case requirement and the under-utilization,

we instead map layers to tiles as shown in Figure 7b. Every

layer is finely partitioned and spread across 10 tiles, and every

tile maps part of a layer. By spreading each layer across many

tiles, every tile can enjoy the buffering efficiency of early

layers. By moving every tile’s buffer requirement closer to

the average-case (21 KB in this example), we can design a

tile with a smaller eDRAM buffer (21 KB instead of 64 KB)

that achieves higher overall computational efficiency. This has

minimal impact on inter-tile neuron communication because

adjacent layers are mapped to the same tile and hence, even

though a single layer is distributed across multiple tiles, the

neurons being communicated across layers have to typically

travel short distances.



(a) CONVOLUTION LAYER.

GREEN AND PINK INPUTS HAVE BEEN BUFFERED.   A 

CUBE OF INPUTS IS FED TO THE CROSSBAR TO PRODUCE 

SEVERAL OUTPUT FEATURE MAPS. THE WORK AND

INPUTS ARE PARTITIONED ACROSS TWO TILES.

O. FTR MAP 1
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(b) REPLICATED LAYER.

SAME INPUTS ARE FED

TO TWO CROSSBARS TO

DOUBLE THRUPUT.
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(c) PARTITIONING THE WORK 

ACROSS 4 TILES. INPUTS 

HAVE TO BE REPLICATED.

TILE 1
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(d) BETTER PARTITIONING 

ACROSS 4 TILES. INPUTS 

NEED NOT BE REPLICATED.

TILE 1

TILE 2

Fig. 6. Mapping of convolutional layers to tiles.

LAYER 1 ON TILES 1-4

8X REPLICATION

BUFFER / TILE: 8KB

LAYER 2 ON TILES 5-7

4X REPLICATION

BUFFER / TILE: 16KB

LAYER 3 ON TILES 8-9

2X REPLICATION

BUFFER / TILE: 32KB

LAYER 4 ON TILE 10

1X REPLICATION

BUFFER / TILE: 64KB

(a) ASSIGN TILES TO LAYERS

LAYER 1 ON TILES 1-10

8X REPLICATION

LAYER 2 ON TILES 1-10

4X REPLICATION

LAYER 3 ON TILES 1-10

2X REPLICATION

LAYER 4 ON TILES 1-10

1X REPLICATION

(b) SPREAD A LAYER ACROSS ALL TILES.  BUFFER / TILE : 21KB.

Fig. 7. Mapping layers to tiles for small buffer sizes.

2) Different Tiles for Convolutions and Classifiers.: While

ISAAC uses the same homogeneous tile for the entire chip, we

observe that convolutional layers have very different resource

demands than fully-connected classifier layers. The classifier

(or FC) layer has to aggregate a set of inputs required by a

set of crossbars; the crossbars then perform their computation;

the inputs are discarded and a new set of inputs is aggregated.

This results in the following properties for the classifier layer:

1) The classifier layer has a high communication-to-compute

ratio, so the router bandwidth puts a limit on how often

the crossbars can be busy.

2) The classifier also has the highest synaptic weight re-

quirement because every neuron has private weights.

3) The classifier has low buffering requirements – an input

is seen by several neurons in parallel, and the input can

be discarded right after.

We therefore design special tiles customized for classifier

layers that:

1) have a higher crossbar-to-ADC ratio (4:1 instead of 1:1),

2) operate the ADC at a lower rate (10 Msamples/sec instead

of 1.2 Gsamples/sec),

3) have a smaller eDRAM buffer size (4 KB instead of

16 KB).

For small-scale workloads that are trying to fit on a single

chip, we would design a chip where many of the tiles are conv-

tiles and some are classifier-tiles (a ratio of 1:1 is a good fit

for most of our workloads). For large-scale workloads that

use multiple chips, each chip can be homogeneous; we use

roughly an equal number of conv-chips and classifier-chips.

The results consider both cases.

C. Putting the Pieces Together

We use ISAAC as the baseline architecture and evaluate

the proposed optimizations by enhancing it. We already pre-

sented a general overview of ISAAC in section 1. We make

two key enhancements to ISAAC to improve both area and

compute efficiencies. Note that these two optimizations are

specific to ISAAC architecture, and following this, we present

implementation details of numerical algorithms discussed in

previous sub-sections.

First, ISAAC did not place any constraints on how a neural

network can be mapped to its many tiles and IMAs. As a

result, its resources, notably the HTree and buffers within an

IMA, are provisioned to handle the worst case. This has a

negative impact on power and area efficiency. Instead, we

place constraints on how the workload is mapped to IMAs.

While this inflexibility can waste a few resources, we observe

that it also significantly reduces the HTree size and hence

area per IMA. The architecture is still general-purpose, i.e.,

arbitrary CNNs can be mapped to it.

Second, within an IMA, we co-locate an ADC with each

crossbar. The digitized outputs are then sent to the IMA’s

output register via an HTree network. While ISAAC was

agnostic to how a single synaptic weight was scattered across

multiple bitlines, we adopt the following approach to boost

efficiency. A 16-bit weight is scattered across 8 2-bit cells;

each cell is placed in a different crossbar. Therefore, crossbars

0 and 8 are responsible for the least significant bits of every

weight, and crossbars 7 and 15 are responsible for the most

significant bits of every weight. We also embed the shift-and-

add units in the HTree. So the shift-and-add unit at the leaf of

the HTree adds the digitized 9-bit dot-product results emerging

from two neighboring crossbars. Because the operation is a



shift-and-add, it produces a 11-bit result. The next shift-and-

add unit takes 2 11-bit inputs to produce a 13-bit input, and

so on. We further modify mapping by placing the constraint

that an IMA cannot be shared by multiple network layers.

To implement Karatsuba’s algorithm, we modify the In-situ

Multiply Accumulate units (IMA) as shown in Figure 9. The

changes are localized to a single mat. Each mat now has two

crossbars that share the DAC and ADC. Given the size of the

ADC, the extra crossbar per mat has a minimal impact on area.

The left crossbars in four of the mats now store W0 (Figure 3);

the left crossbars in the other four mats store W1; the right

crossbars in five of the mats store W0+W1; the right crossbars

in three of the mats are unused. In the first 8 iterations, the 8

ADCs are used by the left crossbars. In the next 9 iterations, 5

ADCs are used by the right crossbars. As discussed earlier, the

main objective here is to lower power by reducing use of the

ADC. Divide & Conquer can be recursively applied further.

When applied again, the computation keeps 8 ADCs busy in

the first 4 iterations, and 6 ADCs in the next 10 iterations.

This is a 28% reduction in ADC use, and a 13% reduction

in execution time. But, we pay an area penalty because 20

crossbars are needed per IMA. Figure 8 shows the mapping of

computations within IMA to implement Strassen’s algorithm.

The computations (P0−P6) in Strassen’s algorithm (Figure 4)

are mapped to 7 IMAs in the tile. The 8th IMA can be

allocated to another layer’s computation.

With all these changes targeting high compute efficiency

and low communication and storage overhead, we refer to the

updated analog design as the Newton architecture.
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Fig. 8. Mapping Strassen’s algorithm to a tile.

IV. METHODOLOGY

Modeling Area and Energy

For modeling the energy and area of the eDRAM buffers

and on-chip interconnect like the HTree and tile bus, we use

CACTI 6.5 [22] at 32 nm. The area and energy model of a

memristor crossbar is based on [14]. We adapt the area and en-

ergy of shift-and-add circuits, max/average pooling block and

sigmoid operation similar to the analysis in DaDianNao [7]

and ISAAC [26]. We avail the same HyperTransport serial link

model for off-chip interconnects as used by DaDianNao [7]

and ISAAC [7]. The router area and energy is modeled using

Orion 2.0 [15]. While our buffers can also be implemented
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Fig. 9. IMA supporting Karatsuba’s Algorithm.

with SRAM, we use eDRAM to make an apples-to-apples

comparison with the ISAAC baseline. Newton is only used

for inference, with a delay of 16.4 ms to pre-load weights in

a chip.

In order to model the ADC energy and area, we use a

recent survey [23] of ADC circuits published in different

circuit conferences. The Newton architecture uses the same

8-bit ADC [18] at 32 nm as used in ISAAC, partly because it

yields the best configuration in terms of area/power and meets

the sampling frequency requirement, and partly because it can

be reconfigured for different resolutions. This is at the cost

of minimal increase in area of the ADC. We scale the ADC

power with respect to different sampling frequency according

to another work by Kull et al. [18]. The SAR ADC has

six different components: comparators, asynchronous clock

logic, sampling clock logic, data memory and state logic,

reference buffer, and capacitive DAC. The ADC power for

different sampling resolution is modeled by gating off the other

components except the sampling clock.

We consider a 1-bit DAC as used in ISAAC because it is

relatively small and has high SNR value. Since DAC is used

in every row of the crossbar, a 1-bit DAC improves the area

efficiency.

The key parameters in the architecture that largely con-

tribute to our analysis are reported in Table I.

This work considers recent workloads with state-of-the-

art accuracy in image classification tasks (summarized in

Table II). We create an analytic model for a Newton pipeline

within an IMA and within a tile and map the suite of bench-

marks, making sure that there are no structural hazards in any

of these pipelines. We consider network bandwidth limitations

in our simulation model to estimate throughput. Since ISAAC

is a throughput architecture, we do an iso-throughput compar-

ison of the Newton architecture with ISAAC for the different

intra-IMA or intra-tile optimizations. Since the dataflow in

the architecture is bounded by the router bandwidth, in each

case, we allocate enough resources till the network saturates to

create our baseline model. For subsequent optimizations, we

retain the same throughput. Similar to ISAAC, data transfers

between tiles on-chip, and on the HT link across chips have

been statically routed to make it conflict free. Like ISAAC, the

latency and throughput of Newton for the given benchmarks



can be calculated analytically using a deterministic execution

model. Since there aren’t any run-time dependencies on the

control flow or data flow of the deep networks, analytical

estimates are enough to capture the behavior of cycle-accurate

simulations.

We create a similar model for ISAAC, taking into consid-

erations all the parameters mentioned in their paper.

Design Points

The Newton architecture can be designed by optimizing one

of the following two metrics:

1) CE: Computational Efficiency which is the number of

fixed point operations performed per second per unit area,

GOPS/(s×mm2).
2) PE: Power Efficiency which is the number of fixed

point operations performed per second per unit power,

GOPS/(s×W ).

For every considered innovation, we model Newton for

a variety of design points that vary crossbar size, number

of crossbars per IMA, and number of IMAs per tile. In

most cases, the same configurations emerged as the best.

We therefore focus most of our analysis on this optimal

configuration that has 16 IMAs per tile, where each IMA

uses 16 crossbars to process 128 inputs for 256 neurons. We

report the area, power, and energy improvement for all the

deep neural networks in our benchmark suite.

Component Spec Power Area (mm2)

Router 32 flits, 8 ports 168 mW 0.604

ADC 8-bit resolution 3.1 mW 0.0015
1.2 GSps frequency

Hyper Tr 4 links @ 1.6GHz 10.4 W 22.88
6.4 GB/s link bw

DAC array 128 1-bit resolution 0.5 mW 0.00002
number 8× 128

Memristor crossbar 128× 128 0.3 mW 0.0001

TABLE I
KEY CONTRIBUTING ELEMENTS IN NEWTON.

V. RESULTS

The Newton architecture takes the baseline analog acceler-

ator ISAAC and incrementally applies innovations discussed

earlier. We begin by describing results for optimizations tar-

geting global components such as h-tree followed by tile and

IMA level techniques. As mentioned earlier, while we build on

ISAAC and use it for evaluation, the proposed enhancements

to crossbar are applicable to any analog architecture.

Constrained Mapping for Compact HTree

We first observe that the ISAAC IMA is designed with an

over-provisioned HTree that can handle a worst-case mapping

of the workload. We imposed the constraint that an IMA can

only handle a single layer, and a maximum of 128 inputs.

This restricts the width of the HTree, promotes input sharing,

and enables reduction of partial neuron values at the junctions

of the HTree. While this helps shrink the size of an IMA,

it suffers from crossbar under-utilization within an IMA. We

consider different IMA sizes, ranging from 128 × 64 which

supplies the same 128 neurons to 4 crossbars to get 64

output neurons, to 8192 × 1024. Figure 10 plots the average

under-utilization of crossbars across the different workloads

in the benchmark suite. For larger IMA sizes, the under-

utilization is quite significant. Larger IMA sizes also result

in complex HTrees. Therefore, a moderately sized IMA that

processes 128 inputs for 256 neurons has high computational

efficiency and low crossbar under-utilization. For this design,

the under-utilization is only 9%. Figure 11 quantifies how

our constrained mapping and compact HTree improve area,

power, and energy per workload. In short, our constraints have

improved area efficiency by 37% and power/energy efficiency

by 18%, while leaving only 9% of crossbars under-utilized.

Fig. 10. Xbar under-utilization with constrained mapping.

Fig. 11. Impact of constrained mapping and compact HTree.

Heterogeneous ADC Sampling

The heteregenous sampling of outputs using adaptive ADCs

has a big impact on reducing the power profile of the analog

accelerator. In one iteration of 100 ns, at max 4 ADCs work

at the max resolution of 8-bits. Power supply to the rest of

the ADCs can be reduced. We measure the reduction of area,

power, and energy with respect to the new IMA design with

the compact HTree. Since ADC contributed to 49% of the chip

power in ISAAC, reducing the oversampling of ADC reduces

power requirement by 15% on average. The area efficiency

improves as well since the output-HTree now carries 16-bits

instead of unnecessarily carrying 39-bits of final output. The

improvements are shown in Figure 12.

Karatsuba’s Algorithm

We further try to reduce the power profile with divide-

and-conquer within an IMA. Figure 13 shows the impact of

recursively applying the divide-and-conquer technique mul-

tiple times. Applying it once is nearly as good as applying

it twice, and much less complex. Therefore, we focus on a



input Alexnet VGG-A VGG-B VGG-C VGG-D MSRA-A MSRA-B MSRA-C Resnet-34

size [17] [28] [28] [28] [28] [13] [13] [13] [12]

224 11x11, 96 (4) 3x3,64 (1) 3x3,64 (2) 3x3,64 (2) 3x3,64 (2) 7x7,96/2(1) 7x7,96/2(1) 7x7,96/2(1) 7x7,64/2

3x3 pool/2 2x2 pool/2 3x3 pool/2

112 3x3,128 (1) 3x3,128 (2) 3x3,128 (2) 3x3,128 (2)

2x2 pool/2

56 3x3,256 (2) 3x3,256 (2) 3x3,256 (3) 3x3,256 (4) 3x3,256 (5) 3x3,256 (6) 3x3,384 (6) 3x3,64 (6)
1x1, 256(1)

2x2 pool/2 3x3,128/2(1)

28 5x5,256 (1) 3x3,512 (2) 3x3,512 (2) 3x3,512 (3) 3x3,512 (4) 3x3,512 (5) 3x3,512 (6) 3x3,768 (6) 3x3,128 (7)
1x1,256 (1)

3x3 pool/2 2x2 pool/2 3x3,256/2 (1)

14 3x3,384 (2) 3x3,512 (2) 3x3,512 (2) 3x3,512 (3) 3x3,512 (4) 3x3,512 (5) 3x3,512 (6) 3x3,896 (6) 3x3,256 (11)
3x3,256 (1) 1x1,512 (1)

3x3 pool/2 2x2 pool/2 spp,7,3,2,1 3x3,512/2 (1)

7 FC-4096(2) 3x3,512 (5)

FC-1000(1)

TABLE II
BENCHMARK NAMES ARE IN BOLD. LAYERS ARE FORMATTED AS Kx ×Ky, No /STRIDE (T), WHERE T IS THE NUMBER OF SUCH LAYERS. STRIDE IS 1

UNLESS EXPLICITLY MENTIONED. LAYER* DENOTES CONVOLUTION LAYER WITH PRIVATE KERNELS.

Fig. 12. Improvement due to the adaptive ADC scheme.

single divide-and-conquer step. Improvements are reported in

Figure 14. Energy efficiency improves by almost 25% over the

previous design point, because ADCs end up being used 75%

of the times in the 1700 ns window. However, this comes at a

cost of 6.4% reduction in area efficiency because of the need

for more crossbars and increase in HTree bandwidth to send

the sum of inputs.

Fig. 13. Comparison of CE and PE for Divide and Conquer done recursively.

eDRAM Buffer Requirements

In Figure 15, we report the buffer requirement per tile when

the layers are spread across many tiles. We consider this for

a variety of tile/IMA configurations. Image size has a linear

impact on the buffering requirement. For 256×256 images,

the buffer reduction technique leads to the choice of a 16 KB

Fig. 14. Improvement with Karatsuba’s Algorithm.

buffer instead of the 64 KB used in ISAAC, a 75% reduction.

Figure 16 shows 6.5% average improvement in area efficiency

because of this technique.

Fig. 15. Buffer requirements for different tiles, changing the type of IMA
and the number of IMAs.

Conv-Tiles and Classifier-Tiles

Figure 17 plots the decrease in power requirement when FC

tiles are operated at 8×, 32× and 128× slower than the conv

tiles. None of these configurations lower the throughput as the

FC layer is not on the critical path. Since ADC power scales

linearly with sampling resolution, the power profile is lowest



when the ADCs work 128× slower. This leads to 50% lower

peak power on average. In Figure 18, we plot the increase in

area efficiency when multiple crossbars share the same ADC

in FC tiles. The underutilization of FC tiles provides room

for making them storage efficient, saving on average 38%

of chip area. We do not increase the ratio beyond 4 because

the multiplexer connecting the crossbars to the ADC becomes

complex. Resnet does not gain much from the heterogeneous

tiles because it needs relatively fewer FC tiles.

Fig. 16. Improvement in area efficiency with decreased eDRAM buffer sizes.

Fig. 17. Decrease in power requirement when frequency of FC tiles is altered.

Fig. 18. Improvement in area efficiency when sharing multiple crossbars per
ADC in FC tiles.

Strassen’s Algorithm

Strassen’s optimization is especially useful when large

matrix multiplication can be performed in the conv layers

without much wastage of crossbars. This provides room for

decomposition of these large matrices, which is the key part

of Strassen’s technique. We note that Resnet has high wastage

when using larger IMAs, and thus does not benefit at all

from this technique. Overall, Strassen’s algorithm increases

the energy efficiency by 4.5% as seen in Figure 19.

Fig. 19. Improvement due to the Strassen technique.

Putting it all together.

Figure 20 plots the incremental effect of each of our

techniques on peak computational and power efficiency of

DaDianNao, ISAAC, and Newton. We do not include the

heterogeneous FC tile in this plot because it is forcibly

operated slowly because it is non-critical; as a result, it’s peak

throughput is lower by definition. We see that both adaptive

ADC and divide & conquer play a significant role in increasing

the PE. While the impact of Strassen’s technique is not visible

in this graph, it manages to free up resources (1 every 8 IMA)

in a tile, thus providing room for more compact mapping of

networks, and reducing ADC utilization.

Fig. 20. Peak CE and PE metrics of different schemes along with baseline
digital and analog accelerator.

Figure 21 shows a per-benchmark improvement in area

efficiency and the contribution of each of our techniques. The

compact HTree and the FC tiles are the biggest contributors.

Figure 22 similarly shows a breakdown for decrease in power

envelope, and Figure 23 does the same of improvement in

energy efficiency. Multiple innovations (HTree, adaptive ADC,

Karatsuba, FC tiles) contribute equally to the improvements.

We also observed that the Adaptive ADC technique’s im-

provement is not very sensitive to the ADC design. We

evaluated ADCs where the CDAC power dissipates 10% and



27% of ADC power; the corresponding improvements with

the Adaptive ADC were 13% and 12% respectively.

Fig. 21. Breakdown of area efficiency.

Fig. 22. Breakdown of decrease in power envelope.

Fig. 23. Breakdown of energy efficiency.

Figure 24 compares the 8-bit version of Newtonwith

Google’s TPU architecture. Note that while Google has already

announced second generation TPU with 16-bit support, its

architectural details are not public yet. Hence, we limit our

analysis to TPU-1. Also, we scale the area such that the

die area is same for both the architectures, i.e. an iso-area

comparison. For TPU, we perform batch processing enough

to not exceed the latency target of 7ms as demanded by most

application developers. Since Newtonpipeline is deterministic

and as its crossbars are statically mapped to different layers,

the latency of images is always the same irrespective of batch

size, which is comfortably less than 7ms for all the evaluated

benchmarks. We also model TPU-1 with GDDR5 memory to

allocate sufficient bandwidth.

Figure 24 shows throughput and energy improvement of

Newtonover TPU for various benchmarks. Newtonhas an

average improvement of 10.3× in throughput and 3.4× in

energy over TPU. In terms of computational efficiency (CE)

calculated using peak throughput, Newtonis 12.3× better than

TPU. However, when operating on FC layer, due to idle

crossbars in Newton, this advantage reduces to 10.3× for

actual workloads.

When considering power efficiency (PE) calculated using

peak throughput and area, although Newtonis only 1.6× better

than TPU, the actual benefit goes up for real workloads,

increasing it to 3.4×. This is because of TPU’s low mem-

ory bandwidth coupled with reduced batch size for some

workloads. As we discussed earlier, the batch size in TPU

is adjusted to meet the latency target. Since large batch size

alleviates memory bandwidth problem, reducing it to meet

latency target directly impacts power efficiency due to more

GDDR fetches and idle processing units.

From the figure, it can also be noted that the throughput

improvement of Alexnet and Resnet aren’t as high as the other

benchmarks because of their relatively small networks. This

increases the batch size, improving the data locality for FC

layer weights. On the other hand, the MSRA3 benchmark has

higher energy consumption than other workloads because for

MSRA3, TPU can process only one image per batch. This

dramatically increases TPU’s idle time while fetching a large

number of weights for the FC layers. In short, Newton’s in-situ

computation achieves superior energy and performance values

over TPU as the proposed design limits data movement while

reducing analog computation overhead.

Fig. 24. Comparison with TPU

VI. CONCLUSIONS

In this work, we target resource provisioning and efficiency

in a crossbar-based deep network accelerator. Starting with

the ISAAC architecture, we show that three approaches –

heterogeneity, mapping constraints, and divide & conquer –

can be applied within a tile and within an IMA. This results

in smaller eDRAM buffers, smaller HTree, energy-efficient

ADCs with varying resolution, energy- and area-efficiency in

classifier layers, and fewer computations. Many of these ideas

would also apply to a general accelerator for matrix-matrix

multiplication, as well as to other neural networks such as

RNN, LSTM, etc. The Newton architecture cuts the current

gap between ISAAC and an ideal neuron in half.



Appendix: Crossbar Implementations
This appendix discusses how crossbars can be designed to

withstand noise effects in analog circuits.

Process Variation and Noise: Since an analog crossbar uses

actual conductance of individual cells to perform computation,

it is critical to do writes at maximum precision. We make

two design choices to improve write precision. First, we equip

each cell with an access transistor (1T1R cell) to precisely

control the amount of write current going through it. While

this increases area overhead, it eliminates sneak currents and

their negative impact on write voltage variation [31]. Second,

we use a closed loop write circuit with current compliance

that does many iterations of program-and-verify operations.

Prior work has shown that such an approach can provide more

precise states at the cost of increased write time even with high

process variation in cells [3].

In spite of a robust write process, a cell’s resistance will

still deviate from its normal value within a tolerable range.

This range will ultimately limit either the number of levels

in a cell or the number of simultaneously active rows in a

crossbar. For example, if a cell write can achieve a resistance

within ∆r (∆r is a function of noise and parasitic), if l is the

number of levels in a cell, and rrange is the max range of

resistance of a cell, then we set the number of active rows

to rrange/(l.∆r) to ensure there are no corrupted bits at the

ADC.

Crossbar Parasitic: While a sophisticated write circuit coupled

with limited array size can help alleviate process variation

and noise, IR drop along rows and columns can also reduce

crossbar accuracy. When a crossbar is being written during

initialization, the access transistors in unselected cells shut

off the sneak current path, limiting the current flow to just

the selected cells. However, when a crossbar operates in

compute mode in which multiple rows are active, the net

current in the crossbar increases, and the current path becomes

more complicated. With access transistors in every cell in the

selected rows in ON state, a network of resistors is formed with

every cell conducting varying current based on its resistance.

As wire links connecting these cells have non-zero resistance,

the voltage drop along rows and columns will impact the

computation accuracy. Thus, a cell at the far end of the driver

will see relatively lower read voltage compared to a cell closer

to the driver. This change in voltage is a function of both

wire resistance and the current flowing through wordlines and

bitlines, which in turn is a function of the data pattern in the

array. This problem can be addressed by limiting the DAC

voltage range and doing data encoding to compensate for

the IR drop [14]. Since the matrix being programmed into a

crossbar is known beforehand, during the initialization phase

of a crossbar, it is possible to account for voltage drops and

adjust the cell resistance appropriately. Hu et al. [14] have

demonstrated successful operation of a 256×256 crossbar with

5-bit cells even in the presense of thermal noise in memristor,

short noise in circuits, and random telegraphic noise in the

crossbar. For this work, a conservative model with a 128×128

crossbar with 2-bit cells and 1-bit DAC emerges as an ideal

design point in most experiments.
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