
Toward Postquantum
Security for Embedded
Cores

Rafael Misoczki, Sean Gulley, Vinodh Gopal,

Martin G. Dixon, Hrvoje Vrsalovic, and

Wajdi K. Feghali

Intel Corporation

& THE USE OF firmware agents—including their

use to define the functionality of embedded

cores—has proliferated on computer systems of

all scales, especially servers. The agents are

often not visible to the operating system as they

independently perform configuration, monitor-

ing, and certain control tasks. For example,

the baseboard management controller (BMC)

on server platforms runs a firmware stack

(e.g., OpenBMC (https://github.com/openbmc/

openbmc)), has a network port, some periph-

erals on external buses (e.g., I2 C’s, SPI, etc.),

and storage. The BMC is effectively another

full (but scaled-down) computing system on the

server of which it is a component. While the

BMC can directly affect the operation of a server

(e.g., by controlling its power states), it does not

interact with the OS. Its behavior is defined

completely by its firmware.

Improvements in silicon manufacturing pro-

cesses have reduced the size of these cores to

the point where they can be physically embed-

ded within silicon dies of the system compo-

nents (such as a CPU) on which they operate. In

parallel, the volume and importance of their

responsibilities have increased, beginning with

power management and escalating to security

operations that can affect functional safety.

Given this, it is critical that they run only signed

and authenticated code.

One of today’s best practices to authenticate

the firmware that runs embedded cores is public

key cryptography (digital signatures), which

relies on FIPS-140 digital signature algorithms

such as RSA and EC-DSA. However, quantum

computing will render these algorithms useless

since factorizing integers and solving the dis-

crete logarithm problem (i.e., the underlying

security problems of RSA and EC-DSA) will be

solvable in polynomial time.11 This implies that

increasing RSA/ECC key sizes will be insufficient

to defeat a quantum adversary. Prof. Michele

Digital Object Identifier 10.1109/MM.2019.2920203

Date of current version 23 July 2019.

Expert OpinionExpert Opinion

July/August 2019 Published by the IEEE Computer Society 0272-1732 � 2019 IEEE 17

https://github.com/openbmc/openbmc
https://github.com/openbmc/openbmc

Mosca, from the Institute of Quan-

tum Computing of the University of

Waterloo, predicts that there is a

50% chance that RSA-2048 public

key cryptosystem will be broken

by 2031 by quantum computers. In

response to this threat, the

National Institute of Standards and

Technology (NIST) has started a

competition for standardizing post-

quantum cryptography (PQC).

Additionally, Grover’s algorithm5

challenges AES-128 and symmetric

cryptography algorithms of short

key/digest size, in general.

In response, cryptographers

have proposed algorithms that can

be classified into several families.

Since embedded cores cannot

house large keys and are not typi-

cally high-performance to handle

complex operations, one interesting question to

ask is how suitable these PQC algorithms are for

embedded codes. In this paper, we will discuss

the proliferation of embedded cores, why secu-

rity depends upon the firmware running on

them, provide an overview of the existing

proposals for postquantum digital signatures,

discuss what approaches seem the most reason-

able for embedded cores, and discuss Intel’s cur-

rent direction.

FIRMWARE AGENT PROLIFERATION
In the 1990s, a processor such as the Pentium

Pro Processor from Intel began using a firmware

binary that defined or redefined certain opera-

tions of that CPU, which came to be known as

Intel Microcode (or simply microcode). As the

complexity of CPU and chipset designs grew, Intel

added a separate microcontroller core (Foxton)

to the design of the Core i7 processor code-

named Nehalem. This microcontroller was

taskedwith powermanagement, and it ran in con-

junction with the microcode. At the same time,

the Platform Controller Hub began to add micro-

controllers for audio, power management, and

manageability. SoC’s from the rest of the industry

followed the same paradigm, embedding

microcontrollers in lieu of hard-

wired logic. Today, the same pro-

cessors contain even more

embedded agents.

In a typical new design from

Intel, there are microcontrollers

to handle: USB Type-C port

switching, reconfiguration of ana-

log lanes, the display engine,

graphics memory translations,

temperature compensation for

analog circuits, hardware and

software debugging support,

image processing, asset adminis-

tration and manageability (such

as Intel’s AMT features), security,

packet processing, and more.

These microcontrollers exist

physically discrete in the silicon

dies and execute independently

of the execution of the primary

Intel CPU(s) or governance by the operating sys-

tem; their functionality and behavior are con-

trolled by firmware that is usually contained in

flash memory local to the microcontroller core

itself (i.e., embedded in the same silicon die).

The proliferation of microcontrollers as

embedded agents has been enabled by multi-

ple factors: the availability of controllers in a

variety of sizes due to improvements in

manufacturing processes, the desire for flexi-

bility of designs, and demand for in-the-field

updates. Microcontroller cores are available in

sizes ranging from ten thousand gates to hun-

dreds of thousands of gates. For example, an

exemplary microcontroller with 64 KB of SRAM

occupies approximately 0.1 mm2 on a 10-nm

process or around 0.1% of a client processor.

Software tools and runtimes for popular cores

(e.g., ARM-based) allow sophisticated develop-

ment flows similar to regular desktop/server

software; system designers can introduce new

functionality to a computer system through

these controllers using modern, high-level lan-

guages (e.g., Rust). This late-binding flexibility

compensates for the lengthening of hardware

development cycles and fabrication times,

leading to more firmware agents working in

conjunction in these designs. On the other

One of today’s

best practices to

authenticate the firm-

ware that runs embed-

ded cores is public key

cryptography (digital

signatures), which

relies on FIPS-140 digi-

tal signature algorithms

such as RSA and EC-

DSA. However, quan-

tum computing will ren-

der these algorithms

useless since factoriz-

ing integers and solv-

ing the discrete

logarithm problem (i.e.,

the underlying security

problems of RSA and

EC-DSA) will be solv-

able in polynomial time.

Expert Opinion

18 IEEE Micro

hand, such proliferation of the embedding of

microcontrollers, their increased handling of

operation-critical tasks for the overall system,

and the easy access to sophisticated develop-

ment tools have made microcontroller cores’

firmware an attractive target for malfeasance.

For product assurance, the firmware needs

to be authenticated and protected against

tampering.

FIRMWARE SIGNATURES
To assert that the code running on a given

microcontroller originated from the expected

source (the vendor) and has not been tampered

since it was deployed, the firmware image needs

to have ways by which it can be signed and

attested; there must exist the ability to assure

that the firmware originated from a specific ven-

dor (e.g., Intel) and that the bits that comprise

the firmware binary have not been altered by a

3rd party from the time it was installed to the

time it is being loaded. This is commonly done

with digital signature verification. A simplified

example of performing this verification is to sign

a message digest (or hash) of the firmware

binary with a vendor private key and append it

to the firmware. A system that has access to the

firmware vendor’s public key can then correctly

verify the authenticity of this hash value. Any

signature verification failure signals a modified

firmware or the use of a foreign private key (i.e.,

the signature did not originate from the vendor).

Thus, this mechanism prevents attackers from

generating valid signatures of modified firmware.

In practice, firmware signature verification is

complicated by the constraints on the environ-

ment in which the verification is to take place;

since it usually occurs (at least once) very early

in the system boot process, limited memory,

and/or computational resources are available.

To provide a tangible, real-world example of

firmware signatures, we discuss Intel’s micro-

code patch.

Intel Microcode Signing

The constraints on microcode are signifi-

cant. Microcode may be loaded multiple times

from the power-on of a processor, and since it

must be verified each time, the duration to

decrypt and verify is critical to system respon-

siveness. Additionally, since main memory is

not available in the earliest stages of initializa-

tion, microcode verification is done within the

processor’s cache so it must fit into a rela-

tively small footprint (e.g., 16 to 64 KB). Micro-

code as a firmware mainly differs from a

traditional microcontroller firmware image by

its target processor core: The Core and Atom

processors are multiple orders of magnitude

higher performance than a typically embedded

microcontroller core. While microcode, having

the benefit of a much faster execution via the

main CPU, could potentially adopt much more

cryptographically stronger (but more computa-

tion-resource demanding) algorithms, those

same algorithms may be unsuitable for the

more constrained embedded cores.

STATE OF ART ON POSTQUANTUM
DIGITAL SIGNATURES

There has been a recent surge in activity in

the field of PQC, with several new schemes

proposed every year and a rapidly growing

community of researchers that scrutinize the

robustness, performance and ease of use of

new and well-established postquantum crypto-

systems. This increased interest may be

related to the recently established standardiza-

tion processes on PQC. The National Institute

of Standardization and Technology started a

project to analyze possible PQC candidates for

standardization. The Internet Engineering Task

Force (IETF) has recently published Request

for Comments (RFC’s) informational docu-

ments that specify stateful postquantum digital

signatures such as the XMSS scheme.1 Experts

from the International Standards Organization

have also been working on a standing docu-

ment on PQC and, more recently, on a study-

period on stateful hash-based signatures. In

this section, we provide a brief analysis of the

maturity, robustness, and performance of the

signature schemes considered in the aforemen-

tioned PQC standardization processes.

Since most of the schemes discussed in this

section have been submitted to the NIST PQC

project, we will give some additional context

about this process. In November 2017, NIST

July/August 2019 19

received 19 submissions on postquantum state-

less digital signatures for the 1st round of their

PQC standardization competition. Among those,

five were lattice-based, two code-based, seven

multivariate-quadratic based, three symmetric-

crypto-based schemes, and two others that

could not be classified in any of the previous cat-

egories. In January 2019, NIST selected only nine

submissions to pass on to the second round of

their competition. Among those, three are lat-

tice-based, four are multivariate-quadratic

based, and two are symmetric-crypto-based

schemes. According to NIST, the evaluation cri-

teria used to select the second round candidates

was security (formal security proof and resis-

tance to side-channel attacks), cost and perfor-

mance (size of public key and signature,

computational efficiency, and probability of fail-

ures), and algorithm and implementation charac-

teristics (parameters flexibility, parallelism

amenability, and simplicity). NIST defined a few

security levels for their competition. Level 1

should match the postquantum security of

AES128, level 3 should match the postquantum

security of AES192, and level 5 should match

the postquantum security of AES256. Our perfor-

mance analysis focuses on parameter sets that

achieve security levels 1 and 5 (whenever possi-

ble), and the reference implementations written

by the scheme designers.

Symmetric-Crypto-Based Schemes

From a security perspective, these are the

most conservative schemes since their secu-

rity relies uniquely on the security of hash or

block ciphers, thus they do not introduce any

additional security assumptions. This category

splits into two subcategories: stateful and

stateless schemes. Stateful signature schemes

require the secure storage of some state

(data) in between signatures generation. State-

less signature schemes do not have this addi-

tional requirement. For example, RSA and EC-

DSA are stateless schemes.

In case state management is a doable task,

i.e., maintaining a piece of data securely in

between signature generation, the stateful

schemes should be considered. We remark that

code signing applications (such as firmware

authentication) seem to be among the most

suitable applications for stateful schemes since

the manufacturer can carefully implement state

management.

The XMSS Scheme1 is a stateful hash-based

signature that has been recently published as

an informational RFC by the IETF. It can be

regarded as an evolved version of the classical

Merkle scheme. From a security perspective,

XMSS enjoys a security proof in the standard

model based on mild security assumptions

from the hash function (e.g., pre-image and tar-

get collision resistance). From a performance

perspective, since full collision resistance is

not needed, XMSS can operate with smaller

hash digests than the Merkle scheme. This

leads to shorter signatures and faster process-

ing. For 128 bits of quantum security, XMSS

requires 64 bytes of a public key and 2.44 KB

for the signature, and verification takes about

760,000 cycles in a modern processor. For 64

bits of quantum security, XMSS requires 32

bytes of the public key and 740 bytes of signa-

tures, and verification takes about 390,000

cycles in the same machine.

In the stateless subcategory, we consider

SPHINCSþ and PICNIC. SPHINCSþ12 is a state-

less hash-based signature scheme that uses

huge Merkle trees (e.g., height of 60). It is

stateless because it selects the Merkle leaf

nodes at random, and the chance of acciden-

tally reusing the same leaf node twice (which

would void its security guarantees) is negligi-

ble given the huge number of leaf nodes (e.g.,

260). SPHINCSþ offers two sets of parameters

per security level (thus six in total), one set

optimized for speed and another optimized for

small signatures. We focus our analysis on the

speed optimized parameters using SHA-256.

For level 1, SPHINCSþ offers signatures of

16.57 KB, public keys of 32 bytes; signing takes

340 million cycles, and verification takes

14.98 million cycles (“SPHINCSþ-SHA-256-128f-

robust” parameter set). For level 5, these num-

bers grow to 48.06 KB, 64 bytes; 1,491.94 mil-

lion and 37.59 million cycles (“SPHINCSþ-SHA-

256-256f-robust” parameter set), respectively.

PICNIC8 is a signature algorithm based on a

block cipher (LowMC) and a noninteractive

Expert Opinion

20 IEEE Micro

proof of knowledge. LowMC has been chosen

as the underlying block cipher since it gives

smaller signature sizes. Still, the signature for

level 1 is 33.23 KB and the public key size is 32

bytes (“picnic-L1-FS” parameter set). For level

5, signature size is 129.74 KB and the public

key size is 64 bytes (“picnic-L5-FS” parameter

set). For level 1, signing takes 137.91 million

cycles and verification takes 90.63 million

cycles, while for level 5 it takes 1,112.23 million

and 736.31 million cycles, respectively.

The symmetric-crypto-based candidates

have very strong security guarantees. In case

state management is possible, stateful HBS

schemes may be the most promising approach

since they are interesting from both security and

performance perspectives. It is worth mention-

ing that digital signatures applied to verify firm-

ware authenticity of embedded cores seem one

application where state management seems pos-

sible. The fact that the signatures are generated

by manufacturers (and not end users) that can

afford a robust signing facility with state man-

agement capabilities seems to facilitate the

adoption of stateful HBS schemes in this sce-

nario. Also, the other limitation of certain state-

ful HBS schemes that can issue a limited number

of signatures does not seem a problem since

manufacturers can, most of the times, predict

howmany firmware updates a device will receive

during its lifetime. On the other hand, in case

state management is not possible, stateless

schemes may be advisable; however, they are

less attractive from a performance perspective

from both size and speed metrics.

Lattice-Based Schemes

In this category, we have Falcon,3 CRYSTALS-

DILITHIUM,2 and qTesla.9 From the PQC families

that introduce additional security assumptions,

lattices are one of the most popular approaches.

From a side-channel perspective, the Gaussian

sampling process seems to offer some challenges

to be implemented in a side-channel resilient way.

Falcon is based on the Short Integer Solu-

tion problem, known in the crypto community

for some time, but it is applied to (structured)

NTRU lattices. For level 1, Falcon signatures

have 617 bytes and the public key has 897

bytes, signing takes 542,000 cycles and verifi-

cation takes 88,000 cycles. For level 5, these

numbers change to 1.20 KB, 1.75 KB, 1.07 mil-

lion cycles, and 186,000 cycles, respectively.

CRYSTALS-DILITHIUM uses module lattices

problems, which can be viewed in between the

ones used in Learning-With-Errors (LWE) and

Ring-LWE problems. In other words, according

to the authors, they are just as efficient as Ring-

LWE schemes but closer to the (stronger, more

conservative) LWE underlying security problem.

For levels 1 and 3, CRYSTALS-DILITHIUM offers

signatures of size 1.99 and 3.28 KB, and public

keys of size 1.15 and 1.71 KB, respectively. The

authors did not provide parameters for level 5.

In terms of speed, for level 1, it takes 1.3 million

cycles to sign and 272,000 cycles to verify. For

level 3, it takes 1.82 million and 510,000 cycles,

respectively.

qTesla is based on the well-known Ring-LWE

problem, and it offers good performance. On

April 14, 2019, researchers presented a potential

attack against qTesla that may affect some of

their parameter sets (qTesla’s authors have yet

to respond). From a performance perspective,

for level 1, qTesla offers signatures of size 1.3 KB

and public keys of size 1.5 KB, and for level 5 sig-

natures of size 5.9 KB and public keys of size 6.4

KB. Regarding speed, for level 1, signature gener-

ation takes 492,000 cycles and verification takes

82,000 cycles, while for level 5, signature genera-

tion takes 2.1 million cycles and verification

takes 394,000 cycles.

The lattice-based cryptography field is a pop-

ular PQC approach. One point of attention is the

secure selection of parameters that still seems

to be challenging depending on the underlying

security problem. From a performance perspec-

tive, all three lattice candidates offer reasonable

performance and should be considered promis-

ing candidates.

Multivariate Quadratic (MQ)-Based Schemes

In this category, we have GeMSS,4 Rainbow,10

LUOV,6 and MQDSS.7 Several MQ schemes have

been proposed in the past and subsequently

broken. Security has become more stable in

recent years, however MQ remains the PQC fam-

ily of digital signatures whose security is the

July/August 2019 21

least understood. The main benefit of MQ sch-

emes is the compact signature sizes.

GeMSS is a scheme based on the hidden

field equations underlying problem and can be

seen as a variant of Quartz, a scheme proposed

in 2001, which remains one of the fewest

unbroken MQ schemes. GeMSS signatures are

very compact: only 258 bits for level 1, and 588

bits for level 5. Public key sizes are 417 KB and

3,046.84 KB, respectively. However, GeMSS is

not speed efficient: for level 1, signing takes

6,690 million cycles and verification takes 29

million cycles, while for level 5, signing takes

25,300 million cycles and verification takes 172

million cycles.

Rainbow is a signature scheme based on the

well-known Unbalanced-Oil-and-Vinegar (UOV)

signature scheme (which itself is based on the

Oil-and-Vinegar scheme). From a practical per-

spective, for level 1, the signature is 512 bits

long and the public key is 149.00 KB long, while

signing takes 402,000 cycles and verification

takes 155,000 cycles. For level 5, the signature is

159 KB and the public key is 1,227.10 KB long,

while signing takes 3.6 million cycles and verifi-

cation takes 2.3 million cycles.

Lifted-UOV (LUOV) is a scheme also based

on the UOV scheme. The main difference from

UOV consists of some optimizations to reduce

the public key size (e.g., lifting the UOV public

key to an extension field). For level 2, signature

and public key sizes are 311 bytes and 12.1 KB,

respectively. Signing takes 5.4 million cycles

and verification takes 4.3 million cycles. For

level 5, signature and public keys are 494 bytes

and 75.5 KB, respectively, while signing takes

24 million cycles and verification takes 18 mil-

lion cycles.

MQDSS is a scheme based on the combina-

tion of the Sakumoto–Shirai–Hiwatari (SSH) iden-

tification scheme with the Fiat-Shamir transform.

This is a very innovative proposal. For level 1,

its signature and public key sizes are 20 KB and

46 bytes long, respectively, while signing takes

26 million cycles and verification takes 19 million

cycles. For level 3, its signature and public key

sizes are 42 KB and 64 bytes long, respectively,

while signing takes 85 million cycles and verifica-

tion takes 62 million cycles.

MQ-based schemes offer interesting perfor-

mance benefits, such as tiny signatures from

GeMSS or tiny public keys from MQDSS. How-

ever, the field of multivariate-quadratic schemes

would still benefit from a more comprehensive

security analysis. The PQC standardization pro-

cess may help in this process by promoting

these schemes and thus attracting an increasing

number of researchers to expand the knowledge

in this field and increase the confidence of poten-

tial users.

Tables 1 and 2 show the performance of the

second round candidates of the NIST PQC com-

petition plus the XMSS scheme published in IETF

RFC8391. We acknowledge that these numbers

(most of them obtained from the submission

packages) were collected in different platforms,

and therefore the speed numbers should be

taken as a rough approximation of the actual

performance, useful when considered from the

orders-of-magnitude perspective.

Table 1. Comparison for security level 1 or the closest. Sizes in KB, speed in millions of cycles.

Symmetric Crypto Lattices Multivariate Quadratic

XMSS SPHINCSþ PICNIC Falcon
CRYSTALS-

DILITHIUM
qTesla GeMSS Rainbow LUOV MQDSS

Signature

size
0.72 16.57 33.23 0.60 1.99 1.37 0.03 0.06 0.30 20.36

Public

key size
0.03 0.03 0.03 0.87 1.15 1.50 417.40 149.00 12.10 0.04

Signing

speed
– 340.00 137.91 0.54 1.37 0.49 690.00 0.40 5.40 26.63

Verification

speed
0.39 14.98 90.63 0.08 0.27 0.08 29.10 0.15 4.30 19.84

Expert Opinion

22 IEEE Micro

Analysis of Available PQC Solutions

The most important criterion for the selec-

tion of PQC schemes should be security. The

PQC transition offers considerably greater chal-

lenges than previous (symmetric) cryptographic

transitions (for example, from 3DES to AES, or

SHA-1 to SHA-2). Public key cryptosystems are

considerably more complex than symmetric

ones, and we still do not fully understand the

capabilities of a typical, future quantum adver-

sary. In this context, conservativeness seems to

be the most reasonable stance.

Schemes based on symmetric crypto building

blocks (e.g., hash or block ciphers) seem to be

an extremely promising approach, as they do

not introduce any additional security assump-

tions. In cases where state management is possi-

ble, XMSS is a strong candidate as it offers

interesting performance and security proof in

the standard model. In case state management is

not possible, SPHINCSþ may be preferable since

it does not even need zero-knowledge proofs as

seen in PICNIC. Where state management is not

possible and the performance offered by state-

less symmetric-crypto-based algorithms is not

acceptable, the competing candidates from

other PQC families should be considered. In this

case, lattice-based algorithms seem to offer an

interesting balance between security and perfor-

mance. Some of the lattice-based underlying

problems have gone through intense academic

scrutiny for several years (in some cases, deca-

des). One remark, however, is that the commu-

nity may still benefit from a better understanding

on how to choose secure parameters. From a

performance perspective, lattice-based algo-

rithms offer decent performance. For example,

CRYSTALS-DILITHIUM has both signature and

public key size in the low single-digit kilobytes,

and speed in the low single digit millions of cycles.

Finally, multivariate-quadratic algorithms may

have interesting performance advantages, such as

the tiny signatures of 258 bits offered by GeMSS,

but they are the candidates that would benefit the

most from additional security assessments, given

the recurrent attacks against MQ digital signature

schemes throughout the history.

In summary, if state management is possible,

IETF schemes (e.g., XMSS) seem to be a very

promising approach. If state management is

not possible, the candidates of the second round

of the NIST competition (following the prioritiz-

ation described above: 1—stateless symmetric-

crypto-based, 2—lattice-based, 3—MQ) seem to

be a promising approach.

COST OF CRYPTOGRAPHY VS.
ADOPTION

Generally, technology adoption increases as

performance increases and cost decreases. We

expect postquantum cryptography to follow

suit. NIST recently published “The Economic

Impacts of the Advanced Encryption Standard,

1996-2017” which estimated a $250 billion

impact. A key factor in the success of AES has

been the phenomenal performance achieved in

modern microprocessors. Galois Counter Mode

(GCM) is a popular AES mode of operation used

in the networking space that secures the major-

ity of internet traffic. Consider the historic cost

Table 2. Comparison for security level 5 or the closest. Sizes in KB, speed in millions of cycles.

Symmetric Crypto Lattices Multivariate Quadratic

XMSS SPHINCSþ PICNIC Falcon
CRYSTALS-

DILITHIUM
qTesla GeMSS Rainbow LUOV MQDSS

Signature

size
2.44 48.06 129.74 1.20 3.28 5.92 0.07 1.59 0.5 42.70

Public

key size
0.06 0.06 0.06 1.75 1.71 6.43 3,046.84 1,227.10 75.50 0.06

Signing

speed
– 1,491.94 1,112.23, 1.07 1.82 2.15 25,300 3.64 24.00 85.26

Verification

speed
0.74 37.59 736.31 0.18 0.51 0.39 172.00 2.39 18.00 62.30

July/August 2019 23

of the computation of GCM, and the adoption

rate in the figure below, gathered from the ICSI

Notary (https://notary.icsi.berkeley.edu/).

In the figure above, the “performance” of run-

ning the GCM algorithm—presented as “cost in

cycles per byte” where lower cost-per-byte

indicates higher performance—corresponds to

various Intel processors that launched on

those dates, with a trend of continuously improv-

ing GCM performance. Notably, in 2013 there was

a dramatic increase in GCM performance (indi-

cated by a significant drop in the cost of cycles/

byte), which we believe contributed to a steep

rise of GCM adoption across the industry.

INTEL’S DIRECTION ON PQC AND
FIRMWARE

Intel’s strategy is to continue securing

platforms using cryptographically strong digital

signature standards that execute efficiently.

Intel will continue to be aligned with standardiza-

tion organizations and will evaluate algorithms

based on security assurance, hardware cost,

and performance—including that in embedded

cores. Until full PQC transition has completed, a

hybrid solution where two or more algorithms are

executed in parallel—in order to remove depen-

dence on a single algorithm or class of algorithms,

seems an interesting approach. This should allow

for more flexibility and minimize redesign time of

embedded microcontroller systems should a sin-

gle (class of) algorithms become infeasible to

deploy for their firmware authentication.

CONCLUSION
Firmware authenticity is a key factor in the

proper function and security assurance of a plat-

form built with embedded microcontroller

cores. With the need for PQC-secure crypto-

graphic algorithms to continue to assure this

authenticity, Intel is investigating possibilities

currently under consideration in various stan-

dardization processes. Our priority in this selec-

tion is and will always be security. Regarding

performance, we are specifically focusing on the

capabilities of platforms’ embedded cores to

execute PQC algorithms and looking for algo-

rithms that have parameters allowing flexibility

in fitting their execution to the capabilities of

both current and planned embedded cores.

& REFERENCES

1. A. Huelsing, D. Butin, S. Gazdag, J. Rijneveld, and

A. Mohaisen, (2018). XMSS: eXtended Merkle Signature

Scheme - Request For Comment 8391 (RFC 8391).

Internet Engineering Task Force (IETF), Retrieved: 24

June, 2019, https://tools.ietf.org/html/rfc8391

Expert Opinion

24 IEEE Micro

https://notary.icsi.berkeley.edu/
https://tools.ietf.org/html/rfc8391

2. V. Lyubashevsky, L. Ducas, E. Kiltz, T. Lepoint,

P. Schwabe, G. Seiler, and D. Stehle, (2017).

CRYSTALS-DILITHIUM - A Submission to the NIST

Post-Quantum Cryptography Standardization Project.

National Institute of Standards and Technology (NIST).

Retrieved: 24 June, 2019, https://pq-crystals.org/

3. T. Prest, P.-A. Fouque, J. Hoffstein, P. Kirchner,

V. Lyubashevsky, T. Pornin, and Z. Zhang, (2017).

Falcon - A Submission to the NIST Post-Quantum

Cryptography Standardization Project. National

Institute of Standards and Technology (NIST).

Retrieved: 24 June, 2019, https://falcon-sign.info/

4. A. Casanova, J.-C. Faugere, G. Macario-Rat,

J. Patarin, L. Perret, and J. Ryckeghem, (2017).

GeMSS - A Submission to the NIST Post-Quantum

Cryptography Standardization Project. National

Institute of Standards and Technology (NIST).

Retrieved: 24 June, 2019, https://www-polsys.lip6.fr/

Links/NIST/GeMSS.html

5. L. K. Grover, “A fast quantum mechanical algorithm for

database search,” in Proc. 28th Annu. ACM Symp.

Theory Comput., 1996, pp. 212–219.

6. W. Beullens, B. Preneel, A. Szepieniec, and

F. Vercauteren, (2017). LUOV - A Submission to the

NIST Post-Quantum Cryptography Standardization

Project. National Institute of Standards and

Technology (NIST). Retrieved: 24 June, 2019, https://

www.esat.kuleuven.be/cosic/pqcrypto/luov/

7. S. Samardjiska, M-S. Chen, A. Hulsing, J. Rijneveld,

and P. Schwabe, (2017). MQDSS - A Submission to

the NIST Post-Quantum Cryptography Standardization

Project. National Institute of Standards and

Technology (NIST). Retrieved: 24 June, 2019, http://

mqdss.org/

8. G. Zaverucha, M. Chase, D. Derler, S. Goldfeder,

C. Orlandi, S. Ramacher, andV. Kolesnikov, (2017).

Picnic - A Submission to the NIST Post-Quantum

Cryptography Standardization Project. National Institute

of Standards and Technology (NIST). Retrieved: 24

June, 2019, https://microsoft.github.io/Picnic/

9. N. Bindel, S. Akleylek, E. Alkim, P. S. Barreto,

J. Buchmann, E. Eaton, andG. Zanon, (2017). qTesla -

A Submission to the NIST Post-QuantumCryptography

Standardization Project. National Institute of Standards

and Technology (NIST). Retrieved: 24 June, 2019,

https://qtesla.org/

10. J. Ding, M-S. Chen, A. Petzoldt, D. Schmidt, and B-Y.

Yang, (2017). Rainbow - A Submission to the NIST

Post-Quantum Cryptography Standardization Proje\ct.

National Institute of Standards and Technology (NIST).

11. P. Shor, “Algorithms for quantum computation:

Discrete logarithms and factoring,” in Proc. 35th Annu.

Symp. Foundations Comput. Sci., 1994, pp. 124–134,

Santa Fe: IEEE Comput. Soc. Press.

12. D. Bernstein, C. Dobraunig, M. Eichlseder, S. Fluhrer,

S. Gazdag, A. H€ulsing, and F. Mendel, (2017).

SPHINCSþ - A Submission to NIST Post-Quantum

Cryptography Standardization Project. National

Institute of Standards and Technology (NIST).

Retrieved: 24 June, 2019, https://sphincs.org/

Rafael Misoczki is a cryptographer/research

scientist at Intel Labs. His work is focused on

post-quantum cryptography and its application to

secure update, root of trust, remote attestation,

and other security flows. He has a PhD from the

University of Paris (Pierre et Marie Curie), with a

thesis on efficient constructions for post-quantum

cryptography. He also holds an MSc in electrical

engineering and a BSc in computer science from

the University of Sao Paulo. Contact him at rafael.

misoczki@intel.com.

Sean Gulley is a principal engineer at Intel’s Data

Center Group responsible for anticipating and

accelerating new algorithmic intensive workloads.

Since joining Intel in 2001, he has focused primarily on

cryptography and compression HW and SW solutions

for client and data center. He has a BS in computer

engineering from Tufts University and an MS in electri-

cal engineering from Stanford University. He has over

30 U.S. patents. Contact him at sean.gulley@intel.com.

VinodhGopal is as senior principal engineer at Intel,

working in the Data Center Group. His work includes

accelerators, instruction-set extensions for x86 and

architectural enhancements to processors, in applica-

tions such as cryptography, integrity, compression,

and analytics over a range of products. In 2019, he

won the Intel Inventor of the Year Award. Contact him

at vinodh.gopal@intel.com.

Martin G. Dixon is an Intel Fellow in the Intel Prod-

uct Assurance and Security (IPAS) group and direc-

tor of architecture at Intel Corporation. He is

responsible for guiding future research and architec-

ture decisions to secure Intel’s platforms. He has

published a dozen academic papers in the field of

computer architecture and holds 50 patents in the

field of computer architecture and cryptography.

He has a bachelor’s degree in electrical and

July/August 2019 25

https://pq-crystals.org/
https://falcon-sign.info/
https://www-polsys.lip6.fr/Links/NIST/GeMSS.html
https://www-polsys.lip6.fr/Links/NIST/GeMSS.html
https://www.esat.kuleuven.be/cosic/pqcrypto/luov/
https://www.esat.kuleuven.be/cosic/pqcrypto/luov/
http://mqdss.org/
http://mqdss.org/
https://microsoft.github.io/Picnic/
https://qtesla.org/
https://sphincs.org/

computer engineering from Carnegie Mellon Univer-

sity. Contact him at martin.dixon@intel.com.

HrvojeVrsalovic has been involved in firmware and

app-to-device interface software development in one

form or another ever since being part of the original

team that created Palm’s WebOS in 2008. Since then,

he has worked on software—and sometimes hard-

ware—of many “smart” consumer products, particu-

larly wearables. He recently joined Intel’s IPAS group

as a security architect. He has a BSc in computer sci-

ence from UCSB and an MSc in electrical and com-

puter engineering from Carnegie Mellon University.

Contact him at harvey.vrsalovic@intel.com.

Wajdi K. Feghali is an Intel Fellow and the director

of the Security and Algorithms Center of Innovation

in the Data Center Group at Intel Corporation. He

leads the development of cryptography, compr-

ession, data integrity and data de-duplication hard-

ware and software solutions with a focus on efficient

performance across Intel products. He has been

granted more than 50 U.S. patents, with numerous

other patents pending, and is the author of several

published technical papers. He has a bachelor’s

degree in mathematics with a minor in computer sci-

ence from the University of Ottawa. Contact him at

wajdi.feghali@intel.com.

Expert Opinion

26 IEEE Micro

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

