
1

Analog Neural Networks with Deep-submicron
Nonlinear Synapses

Ahmet Caner Yüzügüler, Member, IEEE, Firat Celik, Member, IEEE, Mario Drumond, Member, IEEE,
Babak Falsafi, Fellow, IEEE Pascal Frossard, Fellow, IEEE,

Abstract—Deep neural network (DNN) inference tasks are computationally expensive. Digital DNN accelerators offer better density
and energy efficiency than general-purpose processors but still not sufficient to be deployable on resource-constrained settings.
Analog computing is a promising alternative, but previously proposed circuits greatly suffer from fabrication variations. We observe that
relaxing the requirement of having linear synapses enables circuits with higher density and more resilience to transistor mismatch. We
also note that the training process offers an opportunity to address the non-ideality and non-reliability of analog circuits. In this work,
we introduce a novel synapse circuit design that is dense and insensitive to transistor mismatch, and a novel training algorithm that
helps train neural networks with non-ideal and non-reliable analog circuits. Compared to state-of-the-art digital and analog
accelerators, our circuit achieves 29x and 582x better computational density, respectively.

Index Terms—artificial neural networks, DNN accelerators, analog synapse, training

F

1 INTRODUCTION

D EEP neural networks (DNN) have gained tremendous
popularity thanks to their outstanding accuracy on

difficult tasks in computer science such as image classifi-
cation, speech recognition and natural language process-
ing. Because of the required high computational density,
DNNs, however, have limited applicability in resource-
constrained environments. As a consequence, many DNN
inference applications such as personal digital assistants
(e.g., with speech recognition and natural-language under-
standing) are offloaded to the cloud which not only requires
resource provisioning for communication but also incurs
high latency. The latter precludes deployment in systems
with hard real-time constraints, or in which dependence on
connectivity is a major concern such as self-driving cars or
biomedical robotics.

Modern DNN accelerators are primarily based on a
linear synapse model and rely on multipliers and adders
to calculate the sum of weighted inputs. As such, DNN
accelerators’ density is fundamentally limited by that of the
multiply-and-add units. There are a myriad of techniques
to improve DNN accelerator density in the literature such
as reduced precision, zero-skipping and data reuse [3],
[6]. Unfortunately, with silicon density scaling coming to
a halt, these techniques fallen short of dramatic reductions
in circuit size.

In contrast, analog neural nets offer a promising ap-
proach to increasing computational density by mapping
the network directly to circuits. State-of-the-art designs,
however, target mimicking the linear synapse characteristics
of their digital counterparts and require either bulky mul-
tipliers [12] or circuits that are inherently susceptible to the
fabrication variations such as current-mirrors [2] or differen-
tial amplifiers [7]. Other research advocates embedding the
network in memory [10], [11]. While memristor crossbars
provide dense computation and minimize weight traffic,
they still require activations to be converted from analog
to digital (and back) among the network layers, incurring

prohibitive overhead. Additionally, memristors suffer from
reliability issues, requiring error correction [4].

In this paper, we make the observation that the training
stage of a DNN application offers a great opportunity to
compensate for both a synapse’s non-linearity and deep-
submicron transistor variability in analog circuits. Adopting
a non-linear synapse relaxes the requirement to include
analog multipliers or current-mirrors, and enables synapse
circuits that are smaller, faster and lower in power consump-
tion. Based on these insights, we introduce a novel analog
synapse circuit. Rather than relying on closed-form models,
we propose a black-box training model that interpolates data
from circuit simulation to calculate gradients. Moreover,
because we simulate all deviation due to the fabrication pro-
cess, our training scheme mitigates the negative impact of
transistor variability. Our novel synapse design reinforced
by the proposed black-box training scheme offers 29x more
computational density and 12x better energy efficiency than
state-of-the-art digital accelerators.

2 A NOVEL ANALOG DNN CIRCUIT

Artificial neural networks are organized in layers. Each layer
consists of a number of neurons, each of which is connected
to the previous layers through synapses. A neuron correlates
its inputs with its weights to produce an output that is
then fed to the next layer through a non-linear activation
function. Our proposed circuit, shown in Figure 1a, works
similarly. The weight generator circuit produces an analog
voltage value, the synapse circuit correlates the output value
of the previous layer with the analog weight value, and
the soma circuits aggregate the currents from each synapse,
process them through its non-linear transfer function, and
produces voltage values for the next layer.

The weight generator circuit is a digital-to-analog con-
verter, which takes a digital weight value, calculated dur-
ing offline training, as an input. Its diagram is shown in

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/MM.2019.2931182

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

2

Figure 1b. The dimensions of each transistor in WGEN are
adjusted to generate predefined analog values at the output
for every digital input combination. This circuit generates
2n−1 + 1 analog values between 0 (when W0 is 0) and
Vcc (when W1-W3 are 0) from an n-bit wide digital input.
Because the output of this circuit is connected to the gate of
a MOSFET in the synapses, it does not need to supply any
current, which simplifies its requirements. We choose this
circuit solely due to its simplicity, but it can be replaced with
any digital-to-analog converter circuit with the required
speed and precision.

The synapse circuit takes a voltage value from the pre-
vious layer as input, processes it with the analog weight
voltage value, and produces a current value as output. The
input activation value is a complementary pair because the
synapse circuit has symmetrical complementary nmos and
pmos parts. These parts are exclusively activated by the
digital input bit s, which represents the sign of the weight.
When the pmos (nmos) part is activated, the synapse circuit
sources (sinks) current into (from) the output node z, which
corresponds to a positive (negative) weight in a neural
network. The transistor P1 (N1) typically operates in the
linear mode, and acts as a voltage-controlled resistor, which
divides the voltage Vcc − Ap (An) based on the voltage
value WA. The transistor P3 (N3) typically operates in the
saturation mode and acts as a voltage-controlled current
source. As a consequence, the output current of a synapse is
independent of other synapses connected to the same node
– except the channel length modulation effect – as long as
the synapse remains in the saturation mode. As shown in
Figure 1a, the output pins z of each synapse in a column are
connected. We call this node the the aggregating node, because
it adds up the output current of all synapses.Figure 2 shows
the output current of a synapse with respect to the aggre-
gated current of the neuron in the previous layer. Unlike
prior work [2], [7], our synapse circuit design is neither
a current-mirror nor a differential circuit, which are more
sensitive to the fabrication variations.

The soma circuit takes the aggregated current from the
synapses and converts it to a pair of complementary voltage
values for the next layer. We use a current mirror as our
soma circuit to decouple the synapses from the consecutive
layers. Current mirrors are sensitive to fabrication variation;
however, we reduce the effect of fabrication variation by
aggressively increasing the soma circuit’s dimensions. The
silicon area and energy impact of the large soma circuits is
small because the number of soma circuits in a typical neural
network is much smaller than the number of synapses.
The soma circuit also implements a non-linear activation
function because the transistor N3 cannot source current to
z, leading to a rectifying effect that is similar to ReLU.

The layout of our circuit is drawn in Cadence Virtuoso
using the TSMC 65nm technology. We measured that the
design of the synapse, weight generator, and soma circuits
occupy an area of 23.1µm2, 22.4µm2 and 76.4µm2, respec-
tively. To train neural networks to be deployed on it, we
developed the black-box training method, an offline training
method for the non-linear analog synapse models designed
in deep-submicron technologies.

(a) Connections for a 3x3 layer. Each column forms an
artificial neuron. Inputs on the left side are the voltage

values generated in the previous layer. The output of the
soma blocks are propagated to the next layer.

(b) Top left: Weight generator, Bottom left: Soma, Right:
Synapse

Fig. 1: Proposed analog DNN

3 BLACK-BOX TRAINING

Since our synapse model is different from the conven-
tional linear models, our circuit cannot run neural networks
trained with standard backpropagation equations. Also, be-
cause we target 65nm technology, the ideal MOSFET models
are no longer accurate, and therefore, cannot be used to
model our circuit. As a result, it is not possible to find an
accurate closed-form mathematical model of our synapse
circuit. However, manufacturers and research groups such
as [1] provide complex but accurate SPICE MOSFET models.
Therefore, we developed a novel training method, in which
we consider our synapse circuit as a black box. We build
a single synapse circuit in a SPICE simulation tool and
simulate its DC response. We store the simulated response of
the synapse and soma circuits (denoted as F andH) in look-
up tables and numerically calculate their derivatives. Then,
we interpolate this data during training to approximate the
outcome of the forward propagation and to calculate the
gradients.

The response of our synapse circuit depends on the ana-
log voltage weight value, WA, the complementary pair of
voltage activation values,AP andAN , and the voltage value

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/MM.2019.2931182

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

3

−25 0 25 50 75 100
Input current (µA)

−10

0

10

20

O
u

tp
u

t
cu

rr
en

t
(µ

A
)

Fig. 2: Synapse characteristics of the proposed circuit. Each
line corresponds to a different discrete weight value. Faded
colors show the deviation of the synapse response due to

the device mismatch, and solid lines show the average
response.

at the aggregating node, Vz . For simplicity, we consider the
aggregated current of the neuron from the previous layer,
zl−1, as the input of our synapse function. Equation 1 shows
the formulation of our synapse function, F , where wl

ij is the
weight value of the synapse between the ith and jth neurons
of the layers l − 1 and l, and vlj is the voltage value at the
aggregating node. At this stage, we ignore the fabrication
mismatch and consider all synapse responses identical.

slij = F (zl−1
i , wl

ij , v
l
j) (1)

The output currents of all synapses in a neuron are
simply aggregated according to Kirchhoff’s Current Law at
the aggregating node:

zlj =
∑
i

slij (2)

The voltage value at the aggregating node, vlj is deter-
mined by the soma circuit (denoted as H) with respect to
the aggregated output current, zlj :

vlj = H(zlj) (3)

We decompose our full-network circuit into synapse and
soma sub-circuits to approximate its DC operation point
without simulating the entire circuit in SPICE. Figure 3
shows the circuit decomposition of a neuron and the circular
dependency between its synapse and soma sub-circuits.
Once we simulate a single synapse and a single soma
circuits in SPICE, we use an iterative method, namely New-
ton’s method, to find all required voltage and current values
during a training iteration. In this method, we first initialize
vlj to an arbitrary value (we take Vcc/2), and then iterate it
with the update rule given in Equation (4) until the solution
converges. See Appendix A for the derivation. Solving this
system of equations in the forward pass produces the DC
operation point values required by the backpropagation as
well.

vlj ←− vlj −
vlj −H(

∑
i F (z

l−1
i , wl

ij , v
l
j))

1− ∂H(zl
j)

∂zl
j

∑
i

∂F (zl−1
i ,wl

ij ,v
l
j)

∂vl
j

(4)

Fig. 3: Circuit decomposition of a neuron. Green and red
blocks represent synapse and soma sub-circuits,

respectively. The functions F and H are obtained with
SPICE simulations. The diagram shows the circular

dependency between the synapse and soma models due to
the variables vlj and slij . The layer index l is dropped in the

figure for simplicity.

We modified the backpropagation algorithms by taking
the recursion of those two functions into account. Our
modified equations result in the following formula to back-
propagate the error term. See Appendix B for the derivation.

δlj =
∑
k

δl+1
k

∂F (zl
j ,w

l+1
jk ,vl+1

k)

∂zl
j

1− ∂H(zl+1
k)

∂zl+1
k

∑
i
∂F (zl

i,w
l+1
ik ,vl+1

k)

∂vl+1
k

(5)

Once the error terms for every neuron is calculated with
Equation (5), we calculate the gradients as follows:

∂C

∂wl
ij

= δlj
∂F (zl−1

i , wl
ij , v

l
j)

∂wl
ij

(6)

Interpolating the simulation data is more costly than
performing the multiplications in a conventional training.
The synapse function F is evaluated by a trilinear inter-
polation, which requires 11 memory reads, 10 multiplica-
tion/division, and 20 addition/subtraction operations. The
soma function H is evaluated by a linear interpolation,
which requires 3 memory reads, 2 multiplication/division,
and 4 addition/subtraction operations. In a conventional
training, such operations can be achieved with only 2 mem-
ory reads and 1 multiplication. Moreover, solving the loop
in Figure 3 iteratively with Newton’s method increases the
training cost. To prevent this, we set a maximum number of
iterations for Newton’s method. We find that five iterations
are usually sufficient to obtain an accurate approximation.
Nevertheless, decomposing the circuit and using Newton’s
method to solve it frees us from single-threaded SPICE sim-
ulations, and allows parallelization at the level of neurons
and batches.

Due to variations in the manufacturing process, each
transistor exhibits slightly different characteristics, a phe-
nomenon called device mismatch. This mismatch causes a
variation in the classification accuracy for each fabricated
chip. The authors of [2] propose to measure the response
of each neuron on a fabricated chip and train the neural
network according to the measured responses. However,
retraining neural networks for each fabricated chip would
be costly. Therefore, we aim to achieve a fabrication-agnostic

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/MM.2019.2931182

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

4

training method in this work. One of the factors to enable
this in our work is that our synapse circuit is more resilient
to the fabrication mismatch compared to the prior work. To
further reduce the deviation in the classification accuracy,
we also address this issue in our training algorithm.

The process variation is modeled as Gaussian noise
added to the threshold voltage of each transistor [9]; with
the standard deviation given in Equation (7). We run Monte
Carlo simulations in SPICE to calculate the deviation in
synapse response caused by the device mismatch. Then, we
add this measured Gaussian error to the synapse output
currents during the forward pass of the training, as shown
in Equation (8). This serves two purposes. First, the trained
neural network learns to classify the samples correctly with
a noisy synapse response. Second, the added noise acts as a
regularizer during training. We ignore the process variation
while calculating the derivatives in the backward pass, as a
small error does not change the slope of synapse response
significantly, and it only affects the training time in a minor
way.

σ∆V T =
AV T√
WL

(7)

s̃lij = F (zl−1
i , wl

ij , v
l
j) +N (0, σ2

∆V T) (8)

4 EVALUATION

4.1 Experimental Settings

We trained a neural network with the IRIS dataset [5] using
black-box training. The IRIS dataset has four features and
three classes with 150 samples in total. Our trained network
has two hidden layers, each of which has ten neurons.
We had to keep our neural network small due to long
simulation times. We divided all the current values by a
factor of 50 × 10−6 to prevent the numerical errors during
the training, and we trained our network for 1000 iterations
with a batch size of 20 and a learning rate of 5.0. We
used the 65nm MOSFET models from [1] in our SPICE
simulations and run our netlists with LTSpice with options
gmin = 1e − 10 and abstol = 1e − 10. We take the device
mismatch constant AV T as 3mV µm for 65nm process in all
our training and testing.

We use the softmax cross-entropy as the cost function as it
is the most commonly used cost function for classification
tasks. We take the aggregated output currents in the last
layer as logits. For the weight update, we use Momentum
optimizer with its default settings. Since our weights are
discrete, we update the weights with stochastic rounding,
which is given in Equation (9).

M l
ij ←− λM l

ij + γ
∂C

∂wl
ij

f lij ←− wl
ij −M l

ij

wl
ij ←−

{⌊
f lij
⌋
, with probability 1− (f lij −

⌊
f lij
⌋
)⌊

f lij
⌋
+ 1, with probability f lij −

⌊
f lij
⌋

(9)

4.2 Baselines
Efficient Inference Engine (EIE) [6] is a digital hardware ac-
celerator to process the inference of fully-connected layers.
In their implementation they use 4-bit weights and 16-bit
activations. This is similar to our case, as the weights in
our circuit are also 4-bit, whereas the activation values are
analog signals. A large portion of the silicon area and power
consumption in EIE is memory and sparsity decoders. Thus,
we only consider its arithmetic and the activation units,
which constitute only 3.58% of its overall area, and 26.16%
of its overall power consumption.

Low-Power Analog Hardware (LPAH) proposed in [2] is
a current-mirror based analog circuit for neural networks.
They evaluate their results with two test cases with an
average input current of the synapses of 15nA and 45nA. We
compare our results with the latter because it has the same
energy/op, yet it is faster. The paper does not report the
silicon area, but it gives the dimensions of their transistors.
Thus, we estimate their silicon area by scaling them with our
dimensions and our layout design area in the 65nm process.

We choose two metrics for comparison: The energy per
multiply-and-accumulate operation (MAC) and the compu-
tational density. Although our analog circuit does not do
any multiply-and-accumulate (MAC) operations, we still
report our findings in terms of MACs. Each MAC operation
mentioned in our results corresponds to a synapse opera-
tion.

4.3 Results
We split the IRIS dataset into 90/30/30 samples for training,
validation and testing and our trained neural network has
a validation accuracy of 30/30, and test accuracy of 27/30.
We choose this dataset because the previous work LPAH
[2] also used the same dataset to evaluate their fabricated
chip. In their experiments, they split the dataset into 120/30
samples for training and testing without validation, and
achieve 30/30 on their tests.

In order to show the effect of fabrication variation on
the classification accuracy, we scaled the synapse and soma
circuit dimensions by a scaling factor and measured the
classification accuracy 200 times in the presence of device
mismatch noise. Figure 4 shows the test accuracy with the
fabrication noise. As we increase the circuit dimensions,
expectedly, the device mismatch decreases, leading to less
circuit response variance and results in less variance in
the classification accuracy. In other words, increasing the
circuit dimensions enables achieving the same classification
accuracy with less variance across fabricated chips. On the
other hand, smaller circuits benefit from more computa-
tional density and better energy efficiency. Therefore, there
is a trade-off in our analog circuit between the computa-
tional density/energy efficiency and the variation in the
classification accuracy across the fabricated chips. All of our
results in this section are based on simulations.

Since the results in LPAH are reported for a neural
network with 25.1k synapses and 160 somas, we also pro-
jected our results accordingly and showed them in Table
1. The comparison of the energy/MAC metric shows that
the analog circuits are significantly more energy efficient
than the digital accelerator. The reason for this large gap

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/MM.2019.2931182

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

5

0 1 2

Computational density (MegaMACs/s/µm2)

0

5

10

15

20

24
26
28
30

C
or

re
ct

ly
cl

as
si

fi
ed

sa
m

p
le

s

0 1 2
Energy/MAC (pJ)

Fig. 4: Number of test samples classified correctly out of 30
samples versus the computational density (left) and energy
per MAC operation (right). Each design point represents a

circuit, whose area is scaled by 0.8, 0.9, 1.0, 1.2, and 1.5.
Dots show the mean, and the bars show 2 times the

standard deviation of 200 test runs, which corresponds to
the 95% of the distribution.

is the three orders of magnitude higher transistor count in
digital multipliers. The energy efficiency of LPAH is slightly
better than ours. This is because we intentionally keep the
synapse dimensions large to reduce the device mismatch
effect, which enables fabrication-agnostic training. In terms
of computational density, our proposed circuit is 29x better
than EIE, and 582x better than LPAH. One of the reasons
why our circuit is much denser than EIE is again the much
lower transistor count compared to digital multipliers. An-
other reason is the absence of an activation unit; as our
synapse and soma circuits obviate the need for an extra
activation unit. The significant difference in computational
density between our work and LPAH is due to its 500x
slower response time.

LPAH EIE This work
Delay (ns) 10400 1.25 21
Energy/MAC (pJ) 0.12 3.0 0.26
Computational Den-
sity (MACs/s/µm2)

1.75× 103 3.5× 104 1.02× 106

TABLE 1: Comparison with baseline accelerators. Delay
values for LPAH and this work correspond to the

input-to-output time, whereas the delay for EIE is one clock
cycle.

5 FUTURE WORK AND DISCUSSION

One of the distinguishing features of our circuit is that
the weight generation and the synapse are decoupled, so
the speed and area of the synapse circuit are independent
of weight bit-width. In prior work [2], in contrast, each
additional weight bit requires an additional current-mirror,
which quadratically increases the area and power cost.
Therefore, our proposed circuit can scale much better with
increasing weight precision. To that end, we are planning
to extend the precision of our weight generator circuit to
support DNN applications that require weight precision
higher than 4 bits. In the meantime, we are also planning to
explore different types of digital-to-analog converter types

for our weight generator circuit, such as capacitor-based
solutions as in [8].

Our circuit is applicable to any type of neural network,
yet we believe that the ideal type would be recurrent neural
networks (RNN). In a typical RNN, the vast majority of
the output nodes are hidden states, which are fed back to
the input. This structure enables us to keep most of the
input/output signals in the analog domain and avoid the
overhead caused by the data converters. Also, many of the
DNN workloads on mobile devices are tasks like speech
recognition and NLU, and they utilize variants of RNNs.
Therefore, we aim to benchmark our design with an RNN
workload next, and we expect to show a remarkable im-
provement in performance and energy-efficiency. Although
we showed that our circuit and training algorithm give
accurate classification results in the IRIS dataset, we aim to
show its scalability in more challenging datasets with larger
networks. To do so, we need an efficient parallel implemen-
tation of our training method. Approximating the overall
circuit with Newton’s method allows us to parallelize the
training in the level of neurons and batches. However, we
still need a low-level optimization to compensate for the
extra cost of the interpolation and the iterative process.

6 CONCLUSION

In this work, we introduced a novel analog synapse circuit
and a black-box training methodology. Our synapse circuit
is more resilient to fabrication error than the prior work,
and it is simple enough to have a low hardware footprint.
Since the response of our synapse circuit is non-linear, it
requires an unconventional training method. Thus, we in-
troduce the black-box training method, which can calculate
gradients even when the closed-form mathematical model
of the synapse is not known. Our simulation results show
that the our circuit combined with the black-box training
can achieve a classification accuracy with minimal deviation
across fabricated chips, without any need for calibration or
re-training. Compared to the baseline analog neural net-
work, our circuit achieves 582x better computational density
while having a comparable energy efficiency. Compared to
the baseline digital accelerator, our circuit offers 12x better
energy efficiency and 29x better computational density.

APPENDIX A
DERIVATION OF THE UPDATE RULE WITH NEWTON’S
METHOD

Substituting Equation (1) and (2) into (3):

vlj = H(zlj) = H(
∑
i

slij) = H(
∑
i

F (zl−1
i , wl

ij , v
l
j)) (10)

0 = vlj −H(
∑
i

F (zl−1
i , wl

ij , v
l
j)) = N(vlj) (11)

We want to find the root of N(vlj). Newton’s method
suggests that vlj should be updated iteratively with the
following update rule:

vlj ←− vlj −
N(vlj)

N ′(vlj)
(12)

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/MM.2019.2931182

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

6

Derivative of N(vlj) with respect to vlj can be obtained
by applying the chain rule:

∂N(vlj)

∂vlj
= 1−

∂H(zlj)

∂zlj

∂zlj
∂vlj

= 1−
∂H(zlj)

∂zlj

∂

∂vlj

∑
i

slij

= 1−
∂H(zlj)

∂zlj

∑
i

∂slij
∂vlj

= 1−
∂H(zlj)

∂zlj

∑
i

∂F (zl−1
i , wl

ij , v
l
j)

∂vlj
(13)

Substituting Equation (1) and (13) into (12):

vlj ←− vlj −
vlj −H(

∑
i F (z

l−1
i , wl

ij , v
l
j))

1− ∂H(zl
j)

∂zl
j

∑
i

∂F (zl−1
i ,wl

ij ,v
l
j)

∂vl
j

(14)

APPENDIX B
DERIVATION OF BACKPROPAGATION EQUATIONS

Defining the error term of the jth neuron of lth layer as
usual:

δlj =
∂C

∂zlj
(15)

To propagate the error into the previous layers, we
modify Equation (15) as:

δlj =
∑
k

∂C

∂zl+1
k

∂zl+1
k

∂zlj
=
∑
k

δl+1
k

∂zl+1
k

∂zlj
(16)

Taking the partial derivative of Equation (2) and apply-
ing the chain rule:

∂zl+1
k

∂zlj
=

∂

∂zlj

∑
i

sl+1
ik =

∑
i

∂sl+1
ik

∂zlj

=
∑
i

∂F (zli, w
l+1
ik , vl+1

k)

∂zlj
+
∑
i

∂F (zli, w
l+1
ik , vl+1

k)

∂vl+1
k

∂vl+1
k

∂zlj
(17)

The first summation term in Equation (17) results in a
non-zero value only when i = j. Substitute 3 into the second
summation term and apply the chain rule:

∂zl+1
k

∂zlj
=
∂F (zlj , w

l+1
jk , vl+1

k)

∂zlj

+
∑
i

∂F (zli, w
l+1
ik , vl+1

k)

∂vl+1
k

∂H(zl+1
k)

∂zl+1
k

∂zl+1
k

∂zlj

(18)

The terms ∂H(zl+1
k)

∂zl+1
k

and ∂zl+1
k

∂zl
j

do not depend on i, so
they can be taken out of the summation:

∂zl+1
k

∂zlj
=
∂F (zlj , w

l+1
jk , vl+1

k)

∂zlj

+
∂zl+1

k

∂zlj

∂H(zl+1
k)

∂zl+1
k

∑
i

∂F (zli, w
l+1
ik , vl+1

k)

∂vl+1
k

(19)

Rewriting the Equation (19) gives us ∂zl+1
k

∂zl
j

:

∂zl+1
k

∂zlj
=

∂F (zl
j ,w

l+1
jk ,vl+1

k)

∂zl
j

1− ∂H(zl+1
k)

∂zl+1
k

∑
i
∂F (zl

i,w
l+1
ik ,vl+1

k)

∂vl+1
k

(20)

Substituting Equation (20) into (16) gives the error back-
propagation formula:

δlj =
∑
k

∂C

∂zl+1
k

∂zl+1
k

∂zlj

=
∑
k

δl+1
k

∂F (zl
j ,w

l+1
jk ,vl+1

k)

∂zl
j

1− ∂H(zl+1
k)

∂zl+1
k

∑
i
∂F (zl

i,w
l+1
ik ,vl+1

k)

∂vl+1
k

(21)

The gradient with respect to each weight can be calcu-
lated as:

∂C

∂wl
ij

=
∂C

∂zlj

∂zlj
∂wl

ij

= δlj
∂F (zl−1

i , wl
ij , v

l
j)

∂wl
ij

(22)

Note that the gradient for the bias terms is simply
considered as a special case in which the input current zl−1

i

is a constant value.

REFERENCES

[1] Predictive technology group. http://ptm.asu.edu/modelcard/
2006/65nm bulk.pm. Accessed: 2019-04-09.

[2] J. Binas, D. Neil, G. Indiveri, S.C. Liu, and M. Pfeiffer. Precise
deep neural network computation on imprecise low-power analog
hardware. CoRR, 2016.

[3] Y. Chen, T. Krishna, J. S. Emer, and V. Sze. Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural
networks. IEEE Journal of Solid-State Circuits, 2017.

[4] B. Feinberg, S. Wang, and E. Ipek. Making memristive neural
network accelerators reliable. In IEEE International Symposium on
High Performance Computer Architecture, HPCA, 2018.

[5] R. A. Fisher. The use of multiple measurements in taxonomic
problems. Annals of Eugenics, 1936.

[6] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and
W. J. Dally. Eie: Efficient inference engine on compressed deep
neural network. SIGARCH Comput. Archit. News, 2016.

[7] J. B. Lont and W. Guggenbühl. Analog CMOS implementation of a
multilayer perceptron with nonlinear synapses. IEEE Trans. Neural
Networks, 1992.

[8] M. Milev and M. Hristov. Analog implementation of ANN with
inherent quadratic nonlinearity of the synapses. IEEE Transactions
on Neural Networks, 2003.

[9] M. J. M. Pelgrom, H. P. Tuinhout, and M. Vertregt. Transistor
matching in analog CMOS applications. In International Electron
Devices Meeting 1998. Technical Digest, 1998.

[10] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P.
Strachan, M. Hu, R. S. Williams, and V. Srikumar. ISAAC: A convo-
lutional neural network accelerator with in-situ analog arithmetic
in crossbars. In 43rd ACM/IEEE Annual International Symposium on
Computer Architecture, ISCA, 2016.

[11] L. Song, X. Qian, H. Li, and Y. Chen. Pipelayer: A pipelined
reram-based accelerator for deep learning. In IEEE International
Symposium on High Performance Computer Architecture, HPCA, 2017.

[12] J. M. Zurada. Analog implementation of neural networks. IEEE
Circuits and Devices Magazine, 1992.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/MM.2019.2931182

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

