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Warp: A Hardware 
Platform for Efficient Multi-
Modal Sensing with 
Adaptive Approximation 

We present Warp, the first open hardware platform 

designed explicitly to support research in approximate 
computing. Warp incorporates 21 sensors, computation, 

and circuit-level facilities designed explicitly to enable 

approximate computing research, in a 3.6 cm×3.3 cm×0.5 

cm area. Warp uses these facilities to support a wide range of precision and accuracy 
versus power and performance tradeoffs.  

Sensor integrated circuits are critical components of many hardware platforms, from augmented 
reality and wearable health monitors, to drones. Sensors convert physical signals such as temper-
ature, vibration, rotation, and so on, into signals which are then digitized and used in computa-
tions. Because sensor circuits are often constrained by the physics of the phenomena they are 
designed to measure, sensors often do not benefit from the scaling of semiconductor technology 
that has enabled dramatic reduction in power dissipation of digital logic. As a result, sensors to-
day constitute an important component of the power dissipation in many energy-constrained 
platforms. Such energy-constrained platforms are a promising next frontier for application of 
techniques from approximate computing15.  

The power dissipated by sensors depends on their electrical configuration (e.g., supply voltage) 
as well as on their software configuration (e.g., number of bits per sample for sensors with digi-
tal interfaces). These configuration parameters also affect the precision and accuracy of samples 
produced by sensors. System designers can capitalize on this observation to trade energy effi-
ciency and performance for precision and accuracy. These tradeoffs have been investigated, pri-
marily for computation as opposed to sensors, by several research efforts in the last decade1, 3, 5, 7, 

8, 9, 10, 12, 16, 17, 18. Despite this interest in efficiency versus precision and accuracy tradeoffs, no 
common open hardware platforms for research evaluation exist today.  
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Figure 1. The Warp hardware platform contains integrated circuits which together provide 21 
sensors across eight sensing modalities (further detailed in Table 1). Warp combines this diversity 
with circuit support to enable approximate computing tradeoffs between precision, accuracy, 
performance, and energy-efficiency.  

This article introduces Warp, an open hardware platform for evaluating hardware and software 
techniques that trade precision, accuracy, and reliability for improved efficiency in energy-con-
strained systems. We have made the hardware design files and our basic firmware available on 
GitHub11. Other researchers can use the hardware designs to easily recreate the Warp hardware 
using the manufacturing instructions we provide. Because we provide the complete hardware and 
firmware design source, researchers can also extend Warp as they see fit. Warp fills an unmet 
need for research evaluation hardware, and the measurements from platforms such as Warp 
could serve as valuable error models for research on algorithmic, programming language, and 
system software techniques for approximate computing. Figure 1 shows the system components 
of Warp. Warp's design provides facilities for trading sensor precision for energy usage, trading 
sensor accuracy for energy usage and performance, and trading sensor access reliability for en-
ergy and performance 

Although Warp contains a photovoltaic subsystem for charging and a supercapacitor array for 
charge storage, Warp is neither targeted at energy-scavenged systems nor at intermittent compu-
ting systems. When fully charged, Warp’s supercapacitors can power the processor for over an 
hour. The hardware facilities for approximation which we implement in Warp are therefore com-
plementary to research on intermittent computing4.  

WARP: AN APPROXIMATE COMPUTING PLATFORM 
We designed Warp to provide a greater range of energy versus correctness tradeoffs than is 
available using commercial off-the-shelf hardware. We named the platform “Warp” because it 
provides flexibility for warping sensor values for the benefit of efficiency. Warp achieves flexi-
bility by integrating sensors that have a broad range of hardware-implemented precisions and 
accuracies. Table 1 lists the sensors, their operating voltage ranges, and their output precision, 
accuracy, and noise characteristics. 
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Table 1.   Operating voltage ranges, precision, accuracy, and noise properties of the sensors in 
Warp.  Many sensor integrated circuits include temperature sensors, hence the abundance. 

 
The sensors in Warp cover eight sensing modalities: (1) temperature, (2) acceleration in three 
axes, (3) angular velocity in three axes, (4) magnetic flux density in three axes (often used as a 
digital compass), (5) humidity, (6) pressure (for measuring, e.g., atmospheric pressure or eleva-
tion), (7) infrared radiation, and (8) color (a red-green-blue-clear sensor with filters for 615 nm, 
525 nm, and 465 nm light). For each of the first six modalities, Warp contains at least two differ-
ent state-of-the-art sensor integrated circuits (ICs) from different manufacturers, each of which 
represents a different point in the tradeoff space between precision, accuracy, power dissipation, 
and performance. For example, for atmospheric pressure, Warp contains an LPS25H IC which 
can provide up to 24 bits precision per sample, and a BMP180 IC which is limited to 19 bits pre-
cision per sample. These two ICs also have differing power dissipation and noise properties, 
providing software with a tradeoff between power dissipation, accuracy, and precision. 

Warp uses this diversity of sensors to allow approximate computing researchers to explore preci-
sion and accuracy versus energy efficiency tradeoffs. Warp complements this inter-sensor flexi-
bility with new hardware facilities for sensor accuracy and sensor communication reliability 
versus energy efficiency tradeoffs. Figure 2 shows a simplified schematic of the system, high-
lighting hardware support for flexible sensor precision, flexible sensor accuracy, and flexible sen-
sor reliability, all designed to support research in approximate computing.  

 
Figure 2.   The processor controls the sensor operation voltage using one dynamically-
programmable voltage regulator paired with a second design-time-configurable voltage regulator to 
trade sensor accuracy for power dissipation; sensor precision is controlled completely in software 
by configuration commands for each sensor as well as by choosing between sensors for a given 
physical signal. The processor controls I/O reliability versus power dissipation tradeoff using the 
programmable I/O pull-up switch. 

Sensor Supply Voltage Range Accuracy Range Interface Precision Range

(V) (Noise Measure) (bits/sample)
MMA8451Q accelerometer 1.95 – 3.6 99 – 126µg/

p
Hz 8 or 14

BMX055 accelerometer 2.4 – 3.6 150µg/
p
Hz 8 or 12

ADXL362 accelerometer 1.6 – 3.5 175 – 550µg/
p
Hz 4, 8, or 12

L3GD20H gyroscope 2.2 – 3.6 0.011 °/s/
p
Hz 8 or 16

BMX055 gyroscope 2.4 – 3.6 0.014 °/s/
p
Hz 8 or 16

MAG3110 magnetometer 1.95 – 3.6 0.25 – 0.4µT 8 or 16
BMX055 magnetometer 2.4 – 3.6 0.3 – 1.4µT 8 or 13 (x-, y-), 15 (z-)
SI7021 hygrometer 1.9 – 3.6 ±2% accuracy 8, 10, 11, or 12

±0.025–0.2% precision
HDC1000 hygrometer 3.0 – 5.0 ±4% accuracy 14

±0.1% precision
LPS25H barometer 1.7 – 3.6 0.01 – 0.03 hPa 8, 16, or 24
BMP180 barometer 1.6 – 3.6 0.03 – 0.06 hPa 8, 16, or 19
HDC1000 thermometer 3.0 – 5.0 ±0.2°C 14
SI7021 thermometer 1.9 – 3.6 ±0.3°C 11, 12, 13, or 14
ADXL362 thermometer 1.6 – 3.5 ±0.5°C 4 or 12
TMP006B thermometer 2.2 ±1°C 8 or 14
BMP180 thermometer 1.6 – 3.6 ±1°C 8 or 16
MAG3110 thermometer 1.95 – 3.6 � ±1° 8
L3GD20H thermometer 2.2 – 3.6 � ±1° 8
LPS25H thermometer 1.7 – 3.6 ±2°C 8 or 16
BMX055 thermometer 2.4 – 3.6 ±2°C 8
TCS3772 photometer 2.7 – 3.3 14%–35% Irradiance Responsivity 8 or 16 per R/G/B/clear
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Comparing Warp to related platforms from the domains of 
sensor networks and intermittent computing 
Today, despite a growing body of research on techniques to trade errors for efficiency (approxi-
mate computing), there is no hardware platform that allows researchers to explore the many tech-
niques proposed to trade errors for correctness. Warp is the first hardware platform we know of 
explicitly designed to support approximate computing research. Warp however exists in the con-
text of existing research on low-power hardware platforms, including prior work such as 
Sunflower14, Flicker6, WISP13, and contemporary work such as Capybara4. These prior and con-
temporary platforms largely address the needs of researchers in wireless sensor networks, energy 
scavenging, and intermittent computing. Warp addresses the needs of researchers in approximate 
computing. Warp might nevertheless be a useful platform in these related research areas: With 
21 integrated sensors in its 3.6 cm×3.3 cm area, Warp is a third the area of Capybara while con-
taining more than twice the number of sensors. Warp is smaller than all the aforementioned plat-
forms except Sunflower (but Sunflower contains only four sensors). By making our complete 
design files and firmware publicly available11, our intention for Warp is to provide a foundation 
on which researchers in approximate computing can build more sophisticated systems. 

 

Sensor precision tradeoff facilities in Warp 
By including multiple hardware implementations of sensors for the same sensing modality, each 
of which achieves a different energy efficiency versus precision and accuracy tradeoff (Table 1), 
Warp allows its users to evaluate techniques that trade precision and accuracy for efficiency. For 
example, for acceleration, Warp provides hardware support for sampling at 4, 8, 12, or 14 bits 
precision, and to do so with a range of measurement noise, by selecting amongst three different 
accelerometer implementations which have different energy efficiencies. 

 

Sensor accuracy tradeoff facilities in Warp 
In addition to the achieving accuracy versus energy efficiency tradeoffs by allowing software to 
choose between sensors (Table 1, third column), Warp implements the Lax16 sensor hardware 
approximation technique using two miniature voltage regulators, each occupying less than 7 
mm2 in circuit board area.  

One of the two voltage regulators is software-controllable to set the supply voltage of the sys-
tem’s sensors to one of eight voltage levels: either 1.8 V to 2.5 V, or 2.6 V to 3.3 V, in steps of 
0.1 V. The choice between these two voltage ranges, which are implemented by two different 
regulators with identical printed circuit board footprint, is fixed at the point at which the board is 
assembled. The second voltage regulator, which is also fixed at design time, can have an output 
voltage of one of 1.05 V, 1.1 V, 1.2 V, 1.225 V, 1.26 V, 1.5 V, 1.6 V, 1.8 V, 1.86 V, 1.95 V, or 
2.1 V. The outputs of these two regulators are fed into a software-controlled analog switch, al-
lowing  software to dynamically select between the two voltage regulators (programmable output 
and fixed output) at runtime. Figure 2 shows a simplified schematic of the software-controlled 
sensor power supply which is part of Warp’s hardware support for approximate computing. 

Warp’s sensor supply voltage changes have a typical hardware latency of 315 µs due to the out-
put voltage switching latency of the voltage regulators and the switching time of the analog 
switch. This low latency makes it feasible to implement sensor energy efficiency versus accuracy 
by voltage control at fine temporal granularities. 
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Sensor I/O reliability tradeoff facilities in Warp  
Warp implements a hardware facility to allow software control of the pull-up resistors which are 
mandatory for the I2C serial communication standard used by most sensor integrated circuits. 
Disabling board-level I/O pull-ups leaves the I2C signals with only the microcontroller’s on-chip 
pull-ups. This removes the main source of power dissipation for open-drain interfaces such as 
I2C, but reduces the reliability of communication. For example, for an I2C interface operating at 
an I/O supply voltage of 2.5V, the average power dissipated in the typical 4.7 kΩ pull-up resistor 
is 1.3 mW, more than the power dissipation of most sensors in Warp.  

 

Implementation miniaturization  
We optimized the implementation of Warp for size, to achieve a form factor of 3.6 cm×3.3 
cm×0.5 cm that is small enough for use in user studies (e.g., as a wearable platform). To achieve 
this level of integration, we implemented Warp using a 10-layer printed circuit board process 
with a board thickness of 62 mils (1.6 mm). Fully populated with components, the Warp proto-
type is only ~5 mm thin. Researchers using our open hardware design as a starting point can 
populate the system with a subset of the sensor ICs listed in Table 1 and with a choice of differ-
ent voltage regulators (both fixed and software-controlled).  

 

EVALUATION  
We highlight Warp’s facilities to trade sensor access speed for average power dissipation for 
seven of the sensors in Warp below. Such tradeoffs are valuable for systems that are power-lim-
ited: Because energy stores such as coin cell batteries as well as supercapacitors have non-negli-
gible internal resistance, lower power dissipation can reduce supply voltage droop. As a result, 
being able to trade performance for power can make the difference between a system that works 
and one which does not, even when it leads to larger overall energy usage. We then demonstrate 
the tradeoffs between power dissipation and sensor accuracy that Warp’s programmable sensor 
supply voltage enables.  

Performance versus power tradeoff results  
We use a Keysight B2962A source-measure unit (SMU) for power measurements. The B2962A 
provides current sourcing precision of 10 fA, voltage sourcing precision of 100 nV, current 
measurement precision of 10 nA, and voltage measurement precision of 200 mV. These current 
and voltage measurement specifications enable us to measure power dissipation to a resolution of 
better than 1 µW.  

Figure 3(a) shows a representative example of how the power dissipation for accessing a sensor 
(the BMX055 gyroscope) varies with I/O speed. For the BMX055 gyroscope, power dissipation 
increases by over 0.2 mW as the speed at which the sensor is accessed is increased from 1 kb/s to 
64 kb/s. Even though power dissipation increases with I/O speed, Figure 3(b) shows that the en-
ergy per bit for I/O decreases with I/O speed.  

Figure 3(c) and Figure 3(d) show similar trends in I/O power and energy per bit for seven of 
Warp’s sensors and shows how power dissipation varies by 0.2 mW – 0.3 mW as a function of 
I/O speed. The magnitude of this change in I/O power dissipation is greater than the power dissi-
pation of many of the sensors in the platform, motivating the need for precise and approximate 
techniques for improving I/O power efficiency. 
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Figure 3.  Warp enables tradeoffs between I/O power dissipation, energy per bit, and I/O data 
transfer speeds. 

                         

 

 

                              
 

Figure 4. Distributions of sensor readings differ across sensor modalities and across integrated 
circuit implementations and vary with supply voltage.  
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(a) Distributions of z-axis magnetic flux for BMX055 
operating at supply voltages from 1.8V to 2.5V. 

 

(b) 100 measurements of z-axis magnetic flux for BMX055 at 
2.2V. Passes normality test (Gaussian overlaid). 

 

(c) Distributions of y-axis acceleration for ADXL362 
operating at supply voltages from 1.8V to 2.5V. 

 

(d) 100 measurements of y-axis acceleration for ADXL362 at 
2.2V. Fails normality test (Gaussian overlaid). 
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Figure 5.   Acceleration inaccuracy (difference in value versus value when supply voltage is at the 
nominal 2.5 V). The nine data series in the plots are acceleration readings across three axes (x, y, 
and z) of the three accelerometers in Warp.  

 
Figure 6.   Magnetic flux inaccuracy (difference in value versus value when supply voltage is at the 
nominal 2.5 V). The six data series in the plots are angular rate readings across three axes (x, y, 
and z) of the two magnetometers in Warp.  

 
Figure 7.   Angular rotation rate inaccuracy (difference in value versus value when supply voltage is 
at the nominal 2.5 V). The six data series in the plots are angular rate readings across three axes 
(x, y, and z) of the two gyroscopes in Warp.  

Sensor accuracy versus voltage tradeoff results  
We evaluate the tradeoff between accuracy of sensor data and supply voltage by operating the 
three different accelerometers and the two different gyroscopes in Warp over a range of supply 
voltages.  For each of the three axes of these five sensors (15 signal dimensions in total), we op-
erate the sensors at one of eight supply voltages uniformly spaced between 1.8V and 2.5V, a to-
tal of 120 measurement configurations. We use the Warp platform's on-board programmable 
voltage regulator subsystem to control these sensor supply voltages. 

Because sensor accuracy typically increases with increasing supply voltage, we use this highest 
voltage as our reference for correctness. In each of the 120 measurement configurations, we 
compare the average of 100 sensor signal measurements at each of the eight supply voltage set-
tings to an average of 100 sensor measurements when the sensor is operating under identical 
conditions but at a nominal supply voltage of 2.5V.  
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Figure 4 shows examples of the distributions of values from two of the 15 signal dimensions we 
studied. Figure 4(a) shows the distributions of z-axis magnetic flux values returned by the 
BMX055 magnetometer, in a fixed orientation, as we change the supply voltage of the sensor 
from 1.8 V to 2.5 V. Figure 4(b) shows the distribution of one of these eight distributions (sensor 
values measured at 2.5 V). We overlay a histogram of random variates drawn from a Gaussian 
distribution with the same mean and variance to provide a visual indicator of the distance of the 
measured variation from a Gaussian distribution.  We also test for normality numerically: The 
null hypothesis that the data is distributed according to the Gaussian with the same mean and 
variance as the sample is not rejected at the 5% level based on the Cramer-von Mises test. 

Noise distributions and error models often play a role in techniques for approximate computing. 
In the absence of quantitative measurements such as those in Figure 4(b), researchers today have 
no choice but to make assumptions about noise distributions. Typical assumptions include uni-
form distributions in space and normal (Gaussian distributions) over repeated measurements. As 
we show below, such assumptions may be invalid. 

Figure 4(c) shows the distributions of y-axis acceleration sensor values obtained from the 
ADXL362 accelerometer in a fixed orientation, as a function of sensor supply voltage. The dis-
tributions in Figure 4(c) show significantly greater separation than those in Figure 4(a) and are 
distinctly non-Gaussian, as the overlay of the Gaussian with the same mean and variance in Fig-
ure 4(d) shows. The null hypothesis that the data is Gaussian with the same mean and variance as 
the sample is rejected at the 5% level based on the Cramer-von Mises test. 

Figure 5, Figure 6, and Figure 7 show that the accelerometers and magnetometers in Warp pro-
vide a useable tradeoff between supply voltage (and hence power dissipation) and accuracy with 
respect to the output at a reference operating voltage (2.5 V in our measurements). The benefit 
from going from 2.5 V supply down to 1.8 V supply is an 11.8% reduction in dynamic power 
dissipation  

The gyroscopes provide less distinct trend in improving accuracy from higher supply voltage op-
eration. We attribute this observation to the higher variance in the output of the gyros. In our 
measurements, both the BMX055 and the L3GD20H gyroscopes have high coefficients of varia-
tion of over 115%, indicating that the value of the standard deviation across the 100 samples in 
each measurement set was even larger than the value of the mean.  

CONCLUSIONS  
Data from embedded sensing systems form the foundation for applications ranging from weara-
ble health monitors to infrastructure monitoring and augmented reality. In many of these sensor-
driven systems, energy is severely constrained and techniques to improve energy efficiency or to 
trade energy efficiency for some other system metric are valuable. Platforms such as Warp pro-
vide a foundation for research into employing techniques from approximate computing in low-
power embedded systems, and complements existing research platforms targeted at precise exe-
cution on RF- scavenged energy2 or intermittent computing4.  

Warp enables approximate computing research by integrating 21 sensors that reside in a large 
range of precision, accuracy, and power dissipation tradeoff points, and Warp augments this with 
custom hardware in the form of programmable I/O pullups and dynamically reconfigurable sen-
sor supply voltages to enable additional efficiency versus accuracy tradeoffs.  

By making the design and firmware for Warp publicly available, we hope to foster new experi-
mentation in approximate computing research, and to provide new possibilities for calibrating 
techniques developed across the system stack, with measurements from real hardware systems. 
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