
ExHero: Execution History-aware Error-rate Estimation in Pipelined
Designs

Tsiokanos, I., & Karakonstantis, G. (2020). ExHero: Execution History-aware Error-rate Estimation in Pipelined
Designs. IEEE Micro. Advance online publication. https://doi.org/10.1109/MM.2020.3012045

Published in:
IEEE Micro

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
Copyright 2020 IEEE. This work is made available online in accordance with the publisher’s policies. Please refer to any applicable terms of
use of the publisher.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Open Access
This research has been made openly available by Queen's academics and its Open Research team. We would love to hear how access to
this research benefits you. – Share your feedback with us: http://go.qub.ac.uk/oa-feedback

Download date:25. Apr. 2024

https://doi.org/10.1109/MM.2020.3012045
https://pure.qub.ac.uk/en/publications/14fe6be3-f4c3-4cc5-bb24-2970f6dd0c93

1

ExHero: Execution History-aware Error-rate
Estimation in Pipelined Designs

Ioannis Tsiokanos and Georgios Karakonstantis

Institute of Electronics, Communications and Information Technology, Queen’s University Belfast, UK
Email: {itsiokanos01, g.karakonstantis}@qub.ac.uk

Abstract—The increased variability renders nanometer devices prone to timing errors. Recent works focused on the development of
error prediction models for either evaluating the effects of timing errors on applications or guiding the voltage/frequency settings. Such
models may have considered the data-dependent excitation of paths, but they have neglected the impact of all the concurrently
executed instructions on error occurrence; which may lead to inaccurate error estimation in pipelined designs. To investigate such a
limitation, we develop ExHero, a fully automated framework that performs dynamic timing analysis considering the execution history of
a number of in-flight instructions. Using ExHero, we first demonstrate that the order and type of instructions within sequences that have
length equal to the pipeline depth significantly affect the error-rate. When applied to a pipelined floating-point unit, ExHero reveals that
existing approaches estimate on average 46.5% and 32.1% lower error-rate and absolute error, respectively than the actual ones.

Index Terms—Timing errors, instruction execution history, pipeline, microarchitecture, error resilience, multi-cycle FPU.

F

1 INTRODUCTION

Advanced technology scaling and increased static and dy-
namic variability caused by process, temperature, voltage,
and aging effects make circuits prone to timing errors. Such
errors, the probability of which is further worsening upon
supply voltage scaling and dynamically changing environ-
mental conditions, threaten the system functionality [1].

State-of-the-Art. Such a reality led researchers to model
timing errors [1], [2] and evaluate their effects on appli-
cations [3], [4]. Recently, there is a growing interest in
techniques that improve the accuracy of conventional data-
agnostic error models and frameworks which assume fixed
error probabilities [4]. Existing timing error models tried
to capture the data-dependent dynamic timing behavior of
arithmetic operations [3], [5], [6] by considering microarchi-
tectural (i.e., instruction type) and workload (i.e., operands)
features, under various potential delay variations. Although
such frameworks paved the way for improving the timing
error estimation, they were applied to simple independent
functional units and not in pipelined microarchitectures that
support the concurrent execution of multiple instructions. In
particular, such work considers only the currently executed
instruction and the immediately preceding one, neglect-
ing the influence of all the in-flight instructions. Such a
limitation led them to overlook the impact of instruction
execution history (i.e., the type and order of instructions
within a pipeline at any instance) on timing errors, which
may lead to inaccurate error prediction.

Contributions. In this paper, we present ExHero1, a
microarchitecture-aware framework that takes steps to-
wards analyzing the impact of instruction execution history
on the error-rate of pipelined units, while jointly considering

1. Execution History-aware Error-rate Estimation (ExHero)

all the other critical factors affecting the error occurrence.
The main contributions of our work are the following:

• We develop a framework based on commercial Elec-
tronic Design Automation (EDA) tools that allow us
to capture the effects of instruction execution history
on timing error occurrence. To understand how timing
errors vary across instruction sequences, we conduct a
detailed simulation study using four benchmarks with
different number of instructions within a sequence,
and quantify the relative contribution of instruction
sequences to the overall error-rate.

• We analyze the impact of instruction execution history
within a pipelined, out-of-order, multi-cycle, IEEE-754
compliant [7] floating-point unit (FPU). Our analysis
presents conclusive evidence that deep instruction exe-
cution history impacts timing error-rates, thus comple-
menting and advancing prior studies [3], [5], [8].

• We estimate the error-rate (ER) under sequences con-
sisting of different number of instructions. Based on
ER, we also evaluate the error-induced output quality
loss quantified in terms of the absolute error.

The rest of the paper is organized as follows: Section 2
provides the background and motivation of our work, while
Section 3 discusses the ExHero implementation. In Section 4,
we present the experimental results. Section 5 describes our
work with relation to other research; and conclusions are
drawn in Section 6.

2 BACKGROUND AND MOTIVATION

Any pipelined core with K stages consists of a set of N
combinatorial paths P = {p1, p2..pN}, which are charac-
terized by their delays D(pi) for i = 1, 2..N . In such a core,
each of these paths can be found within exactly one pipeline
stage k = 1, 2..K and only few of them will be excited at

2

every instance depending on the executed instruction [6].
Typically, an instruction is composed of an operation code
(OP) which denotes the type of the instruction, a destination
(ORd) and two input operands (ORa and ORb) represented
as binary vector. Note that each pipeline stage processes
a specific part of one instruction at a time, allowing the
parallel execution of multiple instructions. By the terms
parallel or concurrent execution of instructions, we mean that
up-to K instructions share the same hardware circuitry (i.e.,
pipeline) in a time-sharing fashion.

In any synchronous pipeline design, a setup timing error
occurs if at any clock cycle the executed instruction activates
a path Pi that has a delay (i.e. D(pi)) more than the set clock
period. In fact, the possibility of a path to fail under any
delay variation depends on many parameters [2], [3], [8]:
(1) the type of the in-flight instruction, (2) the input
operands of the executed instruction, as well as (3) the
instruction execution history of the pipeline. We elaborate
with more details in the following paragraphs.

2.1 Background: Type of Instruction and Operands

The number and distribution of faults in a design strongly
depend on the type of the executed instruction. Instructions
which activate long critical paths tend to fail more fre-
quently [5], [8]. For example, one of the previous studies [3]
shows that the slow floating-point addition instructions can
fail more often than their integer counterparts, which excite
less timing critical paths. Furthermore, depending on input
operands, the same instruction may activate different paths
of different latency requirements leading to different error-
rates [2], [3].

2.2 Motivation: Instruction History in Pipelines

Apart from the input operands and instruction type, parallel
execution of instructions may also affect the possibility
of timing errors. This is because concurrently executing
instructions share control signals and execution stages, af-
fecting the state of the forwarding logic, and thereby place
great demand on circuit timing deadlines. In fact, the delay
of each sensitized path depends on the state of its nodes
(input/output ports and gate pins), which is set by the
previously executed inputs. Notably, in a pipelined mi-
croarchitecture where different instructions may be sharing
common circuitry within each stage, the node state of each
path at each stage depends also on the previously executed
instructions. That is, the joint effects of the in-flight in-
struction and a number of previously executed instructions
determine the delay of the excited path in every pipeline
stage and thus the error-rate. This has been observed in
a previous study [8], where authors show that instruction
sequences have a significant impact on timing error-rates.
This work showcased the spatial timing error locality where
static instructions exhibit consistent error behavior over a
period of program execution. However, this study is ag-
nostic of the underlying microarchitecture and thus it does
not reveal how many instructions within a sequence affect
the dynamic timing behavior nor suggests any method to
identify the location (i.e., bit) of a potential timing error. To
provide accurate, instruction-aware, bit-level error models,

A: OP(FP mul) ORa(0x41d2309ce5400000) ORb(0x3e80000000000000)
B: OP(FP mul) ORa(0x42aecf56fd821a00) ORb(0x3e80500020a0c000)
C: OP(FP mul) ORa(0x47509ce540000000) ORb(0x41becf5600000000)
D: OP(FP sub) ORa(0x3e80000040000000) ORb(0x41401ac000000000)
E: OP(FP add) ORa(0x41509ce540000000) ORb(0x3e80000040000000)
F: OP(FP mul) ORa(0x41509ce541021578) ORb(0x7acbd5780001a987)

A: 4062309CE5400000
B: 413ECF56FF6F0F70
C: 4917FD74F93C3800
D: 429FFE93049DAC00
E: 4158AA4540000000
F: 7C2CE668225E115C

F: OP(FP mul) ORa(0x47509ce540000000) ORb(0x41becf5600000000)

A: 4062309CE5400000
B: 429FFE93049DAC00
C: 4158AA4540000000
D: 7C2CE668225E115C
E: 413ECF56FF6F0F70

FFD74F93C3800

O
ut

pu
t

O
ut

pu
t

REORDER

F
A

IL
U

R
E

C
O

R
R

E
C

TA: OP(FP mul) ORa(0x41d2309ce5400000) ORb(0x3e80000000000000)
B: OP(FP sub) ORa(0x3e80000040000000) ORb(0x41401ac000000000)
C: OP(FP add) ORa(0x41509ce540000000) ORb(0x3e80000040000000)
D: OP(FP mul) ORa(0x41509ce541021578) ORb(0x7acbd5780001a987)
E: OP(FP mul) ORa(0x42aecf56fd821a00) ORb(0x3e80500020a0c000)

F: 491

Fig. 1: Impact of instruction order on timing errors.

subsequent works [3], [5] studied the correlation between in-
struction history and errors, and indicated that timing errors
in the currently executed instruction can be triggered either
explicitly by this instruction (and its operands) or implicitly
by the previous instruction. Therefore, they point out that
a window of two instructions (i.e., the current instruction
and the previous one) is necessary and sufficient to obtain
fully accurate error-rate estimation. However, such an ob-
servation holds only in the case of simple, non-pipelined,
functional units. Intuitively, a window of more than two
instructions may have an effect on the timing error behavior
of pipelined units where multiple instructions are executed
(are in-flight) in the pipeline. To verify our hypothesis,
we illustrate on Figure 1 an example that we encountered
during our experiments. The top instruction sequence has
exactly the same instruction opcodes and input operands to
the bottom instruction sequence. When we run post-layout
gate-level simulation (see Section 3.2) of a pipelined FPU the
details of which will be discussed later, instruction C has a
timing error that corrupts its output (highlighted in red).
Such an error occurs when the target FPU is subjected to a
15% delay increase representing possible variations induced
by various sources [1] (see Section 4) through simulation.
Based on prior works [3], [5], if we fix both the faulty
instruction C and the immediately preceding instruction
B, while changing the order of the other instructions in
the sequence, we expect exactly the same timing behavior
of instruction C. Nonetheless, if we change the order of
instructions without violating execution dependencies, as
shown in the bottom instruction sequence, the timing error
does not occur. Such a finding indicates that a window
consisting of more than two instructions affects the timing
error probability in pipelined units. For instance, in the top
instruction sequence depicted in Figure 1, the timing error
in instruction C is determined by the joint effects of an
execution history window of three instructions: the previous
two instructions (i.e., instructions A and B) and current
instruction (i.e., instruction C). This is attributed to the fact
that these instructions excite paths in shared circuits in some
of the stages, as we explained above.

3 DESIGN AND IMPLEMENTATION OF EXHERO

To investigate how many instructions that precede an in-
struction in the pipeline play a role in the timing error
behavior of this instruction, we propose ExHero. The overall
ExHero workflow, as shown in in Figure 2, consists of the
design phase and analysis phase. The design phase is executed
only once, while the analysis phase runs for each application.

3

Synthesis

RTL
Description

Place & Route

App
Binary

Profiling

Instruction
Windowing

Design
Phase

Analysis
 Phase

DTA

Netlist,
sdf

Instructions
Sequences

Osim == Ofull No

Done

Yes

Standard Cell Library

.db

.lib, .lef

Library.v

Increase
Window Size

Fig. 2: Overall workflow of ExHero.

3.1 Design Phase

The first step of this phase is the Synthesis which is followed
by the Place and Route steps. Note that these steps are per-
formed utilizing optimization steps which aim at achieving
maximum performance. Design phase outputs the following
files:
i) A library verilog file which specifies the logic and the rise
and fall times of the standard cells.
ii) A gate-level netlist which is stored in a verilog format
(.v). This file consists of a list of the electronic components
in the circuit and a list of the nodes they are connected to.
iii) A standard delay format (SDF) file which describes the
cell and interconnect delay.

3.2 Analysis Phase

At this phase, we first extended a sampling-based profil-
ing tool to extract program traces running different ap-
plications on a real hardware. In particular, we extract
one million instruction sequences from each of the consid-
ered applications. Then, we split the extracted instructions
into small subsets of instruction sequences by applying
instruction windowing. The number of the instructions
within a sequence depends on the window size (WS):
WS = 1, 2, ..,K , where K denotes the maximum pipeline
depth. Each WS ties the circuit’s behavior on the current
instruction to the history of all the preceding instructions
in the pipeline. Note that the window size indicates the
number of the instructions that are executed concurrently.
For example, a window size equal to two (we refer to this
as WS = 2) shows that two instructions are in-flight in the
pipeline.

Dynamic Timing Analysis (DTA). Then, using the ex-
tracted traces and the outputs of the design phase, we per-
form DTA to estimate the manifestation of dynamic timing
errors under any potential delay increase. DTA identifies
the actual timing margins of the target design at runtime

by including path activation information (instruction type,
operand values, pipeline sequence) that are unavailable
during static timing analysis [2]. To achieve this, we use
detailed post-layout gate-level simulation in windows of
increasing numbers of concurrently executing instructions,
while assuming a potential variation-induced delay increase
(see Section 4). We refer to the magnitude of this delay
increase as ∆T . We start the simulation with a window
size of one instruction (i.e., one instruction each time in
the pipeline). If the simulation output is not identical with
the output when simulating the full trace (full history), we
increase the window size. We refer to the simulation output
of the full trace as Ofull. We repeat this step until the
simulation output (Osim) matches Ofull and thus the actual
timing behavior.

4 EVALUATION RESULTS

In this section, we first present our experimental setup.
Then, we evaluate ExHero, assuming a ∆T = 15% worst-
case delay increase. This delay increase is consistent with
the levels of variation-induced delay increase that have been
reported in literature [1], [2]. To represent potential degrees
of worst-case delay increase, we reduce the clock period
accordingly. For example, 15% worst-case delay increase is
represented by reducing the clock period by 15%. Finally,
we quantify the inaccuracy involved in existing execution
history-aware error prediction frameworks.

4.1 Experimental Setup and Application Profiling
For the case study of using ExHero, we focus on arithmetic,
floating-point operations since those are more prone to
timing errors, as also reported by existing studies [2], [3], [5].
Moreover, FPUs typically determine the clock frequency and
are excellent representatives of complex pipelined designs.
Nonetheless, ExHero can be applied to any other design
since the Exhero workflow (see Figure 2) is implemented in
a fully automated way. As a result, this automated proce-
dure increases the generality of our framework since it only
requires the register-transfer level (RTL) description of the
target core.

We apply our evaluation framework to a pipelined, out-
of-order, multi-cycle, IEEE-754 compatible FPU that sup-
ports both single and double precision operations. This unit
is a part of the mor1kx MAROCCHINO pipeline, which is
a processor implementing the OpenRISC 1000 instruction
set architecture (ISA) [9]. The FPU supports the follow-
ing floating-point instructions: multiplication, addition and
subtraction, integer to floating-point and floating-point to
integer conversions. Figure 3 illustrates the pipeline of the
targeted FPU. As a multi cycle unit, this FPU provides
different pipelined depths, and thus different latency, across
the considered operations. In particular, the first one (i.e.,
OCB) and the last two pipeline stages (i.e, R1, R2) of Figure 3
are common across all the floating-operations, while the
pipeline depth of each operation can be observed in Table 1.
Figure 4 highlights the micro-architecture of the floating-
point addition/subtraction operations. At Stage 1, an Order
Control Buffer (OCB) and a Pre-Normalize block are imple-
mented, which permits data dependencies detection and ad-
justment of the exponent and mantissa, respectively. Stage 2

4

FP Multiplication

FP Addition/FP Subtraction

Integer to Floating & Floating to Integer Conversions

Order
Control
Buffer

Rounding

OCB R1 R2

M1 M2 M3 M4 M5 M6

A1 A2 A3

I1

OCB connected to
multiple pipelines

R1 receives data from
multiple stages

Fig. 3: Pipeline of the target FPU. This pipeline supports
multiple outstanding floating-point (FP) operations. OCB,
R1 and R2 stages are common for every operation.

TABLE 1: Pipeline depth across the considered floating-
point operations. Both single and double precision opera-
tions of the same instruction type have the same pipeline
depth.

Operation (single and double precision) Pipeline depth

Integer to floating-point conversion 4
Floating-point to integer conversion 4

Floating-point addition 6
Floating-point subtraction 6

Floating-point multiplication 9

is responsible for the pre-addition/subtraction alignment,
while Stage 3 performs the necessary multiplexing and
shifting of the operands. Mantissa addition and exponent
update are performed at Stage 4; post-normalization and
rounding occur in the last two stages. We refer to the last
two rounding stages as R1 and R2, respectively.

This FPU design is implemented by applying the design
phase depicted in Figure 2 on the CCS NanGate 45 nm
standard cell library (@1.1V). In this phase, the Synthesis
and Place and Route steps are conducted using Synopsys
Design Compiler and Cadence Innovus, respectively. The
maximum clock frequency achieved is 480MHz. As for the
post-layout gate-level simulation, we use ModelSim from
Mentor Graphics.

We collect floating-point instruction traces by instru-
menting various programs from the NAS [10] benchmark
suite. Specifically, those programs are is, mg, ft and ep with S
input sizes. For collecting floating point traces from real size
inputs in reasonable time (from 13 to 120 secs), we extend
an open-source profiling tool [11] to instrument program
binaries executing sequentially on a single thread of an
ARM A7 board clocked at 2.1 GHz. The ARM FPU has an 1-
to-1 correspondence of instructions to the target OpenRISC
FPU.

4.2 Impact of Instruction Execution History on Timing
Error-rate

To quantify the impact of instruction execution history on
error manifestation, we perform DTA using different win-
dow sizes. We start with WS = 1 and increase it until the
simulation output matches the simulation output of the full

Order Control
Buffer & Pre-

Normalize

Pre-
addition/

subtraction
align

Mantissa
 Add &
Update

exponent

 Post-
Normalize

&
Common

align

 Rounding

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6
Pipeline
Control
Signals

FPU
Operation

Configuration
Signals

Pipeline
Control
Outputs

Multiplex

&
Shift

Arithmetic
Outputs

Exceptions

Operands

Fig. 4: Microarchitecture of the floating-point addition/sub-
traction operations.

history. Note that the full history simulation corresponds to
the actual dynamic timing behavior of the design under test.
Each step records the timing error-rate (ER) defined as:

ER =
Faulty Instruction Sequences

Total Instruction Sequences
(1)

and the average absolute error (avgAE), defined as:

avgAE =

∑I
i=1 |Ogold(i)−Osim(i)|

I
(2)

where Ogold(i) and Osim(i) denote the error-free output
and simulated output, respectively, obtained by simulating a
specific instruction sequence (i). For this experiment, i varies
from 1 to I = 1 M (number of extracted instruction sequences
for each program).

Figure 5 shows the ER and avgAE of each bench-
mark under 15% delay increase. We observe that different
benchmarks incur different ER and avgAE. This happens
because different input instructions activate different paths
contributing to the calculation of different output bits. We
also observe that the number of the previously executed
instructions that affects the error-rate of the instruction exe-
cuted in the current cycle varies significantly across the con-
sidered benchmarks. In the case of the is program, sequences
consisting of 6 instructions (i.e., WS = 6) have exactly the
same ER and avgAE when running the full trace (i.e., full
history) through simulation. By contrast, WS = 1 leads to
51.1% smaller ER and 26.4% lower avgAE when compared
to WS = 6. Similar results are reported in the case of the ft
program where WS = 6 results in the same behavior with
the full history simulation (i.e., the actual manifested errors).
When compared to the full history, WS = 1 occurs 85.7%
smaller ER and 46.2% less avgAE. In the case of the mg
program, only the currently executing instruction and the
preceding one (i.e., WS = 2) affect the ER and the avgAE.
In the case of the ep program, when we take into account
windows of 1 and 2 instructions, no timing errors are
manifested and thus there is no quality loss (avgAE = 0).
Conversely, WS = 9, which is equivalent to the full history
for this program, results in 32 faulty instruction sequences
with ER and avgAE equal to 3.2 × 10−5 and 1.3 × 107,
respectively.

4.2.1 Comparison with Prior History-aware Frameworks
As explained in Section 2.1, existing work [3], [5] showcased
the need to incorporate instruction execution history for
accurate error prediction. Specifically, this work indicates
that both current and previous instruction (i.e., WS=2)
determine the delay of the excited path and thus the error
manifestation. However, WS = 2 leads to on average 46.5%
and 32.1% lower error-rate and absolute error, respectively

5

2

2.5

3

av
gA

E

10 6

WS = 1
WS =2

WS = 3
WS = 4

WS = 5
WS = 6

Full h
istory

0

0.5

1

1.5

ER

10 -5

ER
avgAE

(a) is

0.6

0.8

1

1.2

1.4

av
gA

E

10 7

0

0.5

1

1.5

ER

10 -5

ER
avgAE

WS = 1
WS =2

WS = 3
WS = 4

WS = 5
WS = 6

Full h
istory

(b) ft

0

5

10

15

av
gA

E

10 6

0

2

4

ER

10 -6

ER
avgAE

WS = 1
WS =2

Full h
istory

(c) mg

0

5

10

15

av
gA

E

10 6

0

2

4

ER

10 -5

N
o

fa
ilu

re
s

ER
avgAE

N
o

fa
ilu

re
s

WS = 1
WS = 2

WS = 3
WS = 4

WS = 5
WS = 6

WS = 7
WS = 8

WS = 9

Full H
istory

(d) ep

Fig. 5: Error-rate (ER) and average absolute error (avgAE) under 15% delay increase and various levels of window size
(WS) across all benchmarks.

when compared with the actual ones estimated by taking
into account an extended number of executed instructions
in the pipeline.

Overall, these results imply that the order and type of
instructions that have been executed in the previous cycles
have a significant impact on the error-rate of the currently
executed instruction. The number of the instructions within
sequences that affects this dynamic timing behavior may
vary depending on the input trace and pipeline depth. In
our experiments where the maximum pipeline depth is
9 (see Table 1), a window of 9 instructions (8 preceding
instructions and the current one) is necessary and sufficient
to determine the error-rate behavior of the FPU under test.

5 RELATED WORK

The raising importance of timing errors led researchers to
the development of error detection and correction tech-
niques [12]. Such design-centric techniques integrate ad-
ditional circuitry (e.g., tunable replica circuit, special flip-
flops) to monitor the timing critical paths and adopt recov-
ery mechanisms in case of detected errors. However, such
schemes may lead to large recovery overheads, especially if
the activation probability of the error-prone paths is high.
To overcome this, energy efficient frameworks have been
proposed that are guided by accurate high-level timing
models for predicting timing errors [3] and evaluating their
effects on applications [4]. In this section, we review the
state-of-the-art in error modeling and evaluation.

5.1 Data-agnostic Error Models

Several error evaluation frameworks are based on timing
error models with fixed error probability under a given
voltage/frequency setting [4]. Such models assume the same
bit error probability across every instruction irrespective

of the executed data. Nonetheless, such straightforward
approaches are highly inaccurate since they overlook the
dependence of errors on the input workload [3], [6].

5.2 Instruction-aware Error Models
To improve the accuracy of data-agnostic models, statis-
tical instruction-aware models have been developed [6].
These models employ detailed DTA to extract instruction
aware statistics considering the instruction type and data-
dependent path activation. The extracted dynamic statistics
are then used to determine the probabilities of an instruction
to face a timing error at a specific bit location. Despite its
statistical model, instruction-ware models also suffer from
inaccuracies, though in a lesser degree than data-agnostic
models, because error estimation relies on an aggregate
error rate rather than the exact manifestation of an error.
Further, they ignore the impact of previously executed in-
structions on error occurrence.

5.3 History-aware Error Models
To accurately predict bit-level timing errors, recent studies
incorporate instruction execution history into their error
models [3], [5]. These studies indicate that besides the in-
flight instruction, the previous instruction affects the man-
ifestation of timing errors. Although effective and more
accurate than previous models, such models may also lead
to misinterpretation of error behavior since they overlook
an important timing property in pipelined designs. In fact,
prior history-aware models neglect the influence of all the
concurrently executed instructions that are in-flight in the
pipeline and their role in error manifestation.

This work enhances the state-of-the-art by jointly con-
sidering the type and input operands of the executed in-
struction as well as the type and input operands of all the
preceding instructions that are in-flight in the pipeline.

6

6 CONCLUSIONS

In this paper, we presented ExHero, a fully automated
framework demonstrating that sequences within instruc-
tions up-to maximum pipeline depth significantly af-
fect the error-rate of pipelined designs. By developing
a microarchitecture-aware framework that considers both
data dependencies and execution history of different depths,
we simulate several traces extracted by various benchmarks.
Our results indicate that existing work underestimates the
occurrence of a timing error in pipelined units. This may
lead to incorrect evaluation of errors on applications and
inaccurate reliability assessments, guiding non-optimal de-
sign decisions. Even though we demonstrated the ExHero
efficacy by applying it to a multi-cycle, pipelined FPU, the
presented steps can be applied to any other pipelined unit.

ACKNOWLEDGMENTS

This work is partially supported by the European Com-
munity Horizon 2020 programme under grant no. 688540
(UniServer) and grant no. 732631 (OPRECOMP).

REFERENCES

[1] P. Gupta et al, “Underdesigned and opportunistic computing in
presence of hardware variability,” TCAD, 2013.

[2] I. Tsiokanos et al., “Significance-driven data truncation for prevent-
ing timing failures,” IEEE TDMR, vol. 19, no. 1, pp. 25–36, March
2019.

[3] X. Jiao et al., “Clim: A cross-level workload-aware timing error
prediction model for functional units,” Trans. on Comp., pp. 771–
783, 2018.

[4] K. Parasyris et al., “Gemfi: A fault injection tool for studying the
behavior of applications on unreliable substrates,” in 44th Annual
IEEE/IFIP DSN, 2014, pp. 622–629.

[5] G. Tziantzioulis et al., “b-hive: A bit-level history-based error
model with value correlation for voltage-scaled integer and float-
ing point units,” in DAC, June 2015, pp. 1–6.

[6] J. Constantin et al., “Statistical fault injection for impact-evaluation
of timing errors on application performance,” in DAC, 2016.

[7] IEEE 754-2008 Standard for Floating-Point Arithmetic.
[8] G. Hoang et al., “Exploring circuit timing-aware language and

compilation,” in ASPLOS. ACM, 2011, pp. 345–356.
[9] OpenRISC, “OpenRISC 1000 architecture manual”.
[10] D. H. Bailey et al., “The nas parallel benchmarks—summary

and preliminary results,” in Supercomputing, NY, USA, 1991, pp.
158–165.

[11] L. Mukhanov et al., “Alea: Fine-grain energy profiling with basic
block sampling,” in PACT, 2015.

[12] K. Bowman et al., “Circuit techniques for dynamic variation toler-
ance,” in DAC, 2009, p. 4–7.

Ioannis Tsiokanos currently pursues his Ph.D. on design of energy ef-
ficient and variation tolerant pipelined micro-architectures at the School
of Electronics, Electrical Engineering and Computer Science, Queen's
University Belfast, UK. He received the B.Sc. and M.Sc. degree from
the Department of Electrical and Computer Engineering of University of
Thessaly, Greece, in 2016. He is the recipient of the prestigious DATE
Best Paper Award. His current research interests include low-power
designs, fault tolerance circuits and hardware/software co-design with
an emphasis on robustness.

Georgios Karakonstantis is an Associate Professor at the School of
Electronics, Electrical Engineering and Computer Science of Queen's
University Belfast, United Kingdom and senior member of the IEEE.
He has published more than 85 papers in peer reviewed journals and
conferences, and he is inventor of a US patent and author of two book
chapters. He is the recipient of two HiPEAC paper awards, two best
paper awards at DATE and of a prize at the Altera Innovate Design Con-
test. He received the MSc and Ph.D. degree in Electrical and Computer
Engineering from Purdue University, West-Lafayette, USA. His research
focuses on energy-efficient and error-resilient computing and storage
architectures for embedded and high-performance applications.

