
A Taxonomy of ML for
Systems Problems

Martin Maas
Google Research, Brain Team

Abstract—Machine learning has the potential to significantly improve systems, but only

under certain conditions. We describe a taxonomy to help identify whether or not machine

learning should be applied to particular systems problems, and which approaches are

most promising. We believe that this taxonomy can help practitioners and researchers

decide how tomost effectively usemachine learning in their systems, and provide the

community with a framework and vocabulary to discuss different approaches for applying

machine learning in systems.

& MACHINE LEARNING (ML) has transformed

many research areas, from image recognition to

natural language processing. ML has also had a

significant impact on computer systems and

inspired the development of new systems for

designing and training ML models (e.g., Tensor-

Flow), as well as new hardware (e.g., TPUs).

In contrast to such Systems for ML research,

ML for Systems is only now seeing more attention.

While ML has long been used in areas such as

branch prediction, recent work has shown prom-

ising results in caching, compilers, and cluster

scheduling. These advances indicate that ML

could hold the key to improving many areas in

computer systems. However, these successes

hide the fact that ML does not always lead to the

immediate wins that its popularity promises.

Applying ML to systems does not always outper-

form highly tuned non-ML solutions, and even if

ML improves a particular metric, its resource

cost does not always justify the improvement.

This article makes the case that while ML

has the potential to improve systems, it does so

only in certain cases. Furthermore, different ML

techniques are suitable for different problems.

We therefore categorize systems problems and

develop a taxonomy for identifying whether ML

can be applied, and what strategies might be

suitable. We also provide a bibliography1 that

matches existing work to this taxonomy. We

believe that our approach can help practi-

tioners and researchers decide how to most

effectively use ML in their systems and provide

the research community with a framework to

discuss ML for Systems strategies.

Digital Object Identifier 10.1109/MM.2020.3012883

Date of publication 30 July 2020; date of current version

1 September 2020.

Theme Article: Machine Learning for SystemsTheme Article: Machine Learning for Systems

8 This work is licensed under a Creative Commons
Attribution 4.0 License. For more information, see
https://creativecommons.org/licenses/by/4.0/

Published by the IEEE Computer Society IEEE Micro

BACKGROUND
“Systems” is a broad term. To ground discus-

sion in a common terminology, we therefore focus

on “system policies.” Given a software or hard-

ware component that makes decisions related to

the execution of computer programs, a system

policy describes how these decisions are made.

Compiler passes, branch predictors and memory

allocators are all examples of system policies.

When we talk about ML for Systems, we therefore

mean “using ML in the implementation of a sys-

tem policy.” Specifically, we focus on supervised

and reinforcement learning (RL); other techni-

ques such as learning-to-learn, transfer learning,

or representation learning have applications in

systems as well,2 but are out of scope for this

taxonomy.

System policies typically fall into four cate-

gories that oftentimes correspond to the

degree to which a system has been optimized.

� An ad hoc policy based on assumptions at

the time of development. Consider an inlin-

ing policy in a compiler: An ad-hoc heuris-

tic could inline all functions with less than

10 instructions.

� An empirically tuned policy that has been

optimized for a set of benchmarks. This is

the type of policy often published in research

papers. For example, such a policy could

consider the call graph and apply carefully

crafted inlining rules, chosen to optimize per-

formance across a set of benchmarks (e.g.,

SPEC).

� A data-driven policy that optimizes towards a

specific target. In contrast to an empirically-

tuned policy that uses benchmarks as a proxy

for the real target, this policy is tuned to the

target itself (e.g., feedback-directed inlining).

� An adaptive data-driven policy that does not

make the same decision for the same target

every time, but adapts online in response to

its own decisions. An example is trace-based

JIT compilers that re-evaluate and revise

inlining decisions over time.

ML is often defined as the ability of a program

to learn from experience. By this definition, data-

driven policies are a form of ML, although poten-

tially a rudimentary one. Most data-driven

policies collect databases of examples and learn

from them, either by exploring a search space

(e.g., autotuners) or by building a lookup table

and using it in future executions (e.g., profile-

guided optimization). However, we typically start

explicitly calling this approach ML only when we

use tools from the ML literature, such as support

vector machines, decision trees, or neural

networks.

What sets ML approaches apart from lookup

tables is that they

can potentially gener-

alize to unseen cases.

An early example is

neural branch predic-

tors. Recently, there

has been an explo-

sion of such techni-

ques, ranging from

learning compiler

optimizations3 to

cluster scheduling.4

Note that a compli-

cated ML technique

is not a necessary

requirement to gener-

alize. For example,

work on index struc-

tures has shown that while it is possible to learn

a key distribution using neural networks, a simi-

lar goal can be achieved by fitting splines to its

cumulative distribution function.5

Note that highly tuned and complex heuris-

tics are similar to data-driven policies. For exam-

ple, compilers have cost models to accurately

predict performance and generalize to unseen

programs, but only recently has this problem

been revisited using modern ML techniques

such as neural networks.6 A corollary is that if a

system has been well-tuned, it can be difficult to

improve the baseline with a learned policy. One

interpretation is that engineers have used a

"real-life version of gradient descent" to move

the system to a local optimum, not unlike what

ML would do. This shows that applying ML to

systems does not represent a fundamental

departure from systems research, but only pro-

vides a new set of tools.

This aspect is often obscured in the discus-

sion of ML for Systems, in part due to the

This article makes the

case that while ML has

the potential to improve

systems, it does so

only in certain cases.

Furthermore, different

ML techniques are

suitable for different

problems. We therefore

categorize systems

problems and develop

a taxonomy for

identifying whether ML

can be applied, and

what strategies might

be suitable.

September/October 2020 9

popularity of end-to-end learning. Modern ML

techniques can learn very complex behavior,

and it is therefore possible to train models that

learn complex policies end-to-end. We have seen

this approach in areas ranging from RL for

caches, to end-to-end cluster scheduling, to RL

for compilers. While these approaches often

work, they are not always data efficient, con-

sume large amounts of resources, and some-

times do not conclusively outperform strong

baselines. Many problems have a known struc-

ture that can be captured in a handwritten heu-

ristic. However, end-to-end learning has to learn

this structure from scratch and may re-learn

known facts, at the cost of maximizing perfor-

mance on the otherwise intractable part.

We therefore argue that effectively applying

ML to systems requires identifying which part of a

systems policy requires ML, and developing spe-

cificML techniques for this part. This is supported

by the fact that many recent successes of ML for

Systems have focused on specific subproblems

rather than end-to-end learning (e.g., learning-

based index structures, learned cost models6).

Note that these learning techniques were used in

areas that were already data-driven. As such,

there was already an interface for the learning

technique to fit into the conventional portion of

the system, as well as strong baselines. Mean-

while, when learning replaces an end-to-end heu-

ristic, it can be hard to attribute which gains are

due to shifting to a data-driven approach versus

ML. The resulting tradeoff space can be difficult to

reason about, in part because the vocabulary to

discuss thewayML is used is oftenmissing.

CONSTRAINTS AND TRADEOFFS
When considering whether to apply ML, sev-

eral tradeoffs need to be considered: The prob-

lem needs to be well-suited to ML, the

deployment constraints need to allow for ML,

and suitable data needs to be available. We now

discuss these considerations in turn.

Problem Suitability

� Target: System policies have different optimi-

zation metrics (e.g., resource utilization or

the worst case latency). ML can help for

metrics that are difficult to reason about,

while metrics that can be optimized analyti-

cally might be addressed without ML.

� Data-driven baselines: If the main benefit of

ML is to make a heuristic data-driven, simple

data-driven methods should be tried first. In

some cases, this is ML (e.g., because the

input features are too complex), but in

others, a lookup table might yield most of

the benefits. For example, table-based

branch predictors are competitive with ML

approaches.

� High-dimensional input space: If the number

of possible inputs is small, a lookup table can

be used to memorize all predictions instead

of using ML for generalization.

Deployment Constraints

� Latency: ML for Systems differs from areas

such as NLP in its ultralow latency require-

ments. OSs and runtimes often need to make

decisions in micro/nanoseconds, branch pre-

dictors in cycles. In contrast, even small neu-

ral networks often take hundreds of

microseconds and GBRTs take tens of micro-

seconds. More complex models can take tens

of milliseconds. Before applying ML, it is

therefore necessary to identify the latency

requirements—offline policies (e.g., in com-

pilers) are often more latency-tolerant than

online policies (e.g., in schedulers).

� Space/time overheads: Even if prediction

latency is low, models that run often can con-

sume significant resources (CPU/DRAM). In

our case study, we use a model for memory

allocation, with 250 000 allocations/second.

The model takes >100 ms; running it at every

allocation is thus infeasible. To use ML in

such a setting, formulating the problem so

that prediction results can be cached is

crucial.

� Custom hardware: Scenarios where latencies

are large (e.g., compilers) can use GPUs/

TPUs, and hardware policies (e.g., branch

predictors, prefetchers) can have custom

implementations. Other models typically run

on the CPU, which can be inefficient for neu-

ral networks. Compiling and inlining the

model directly into the code can help.

Machine Learning for Systems

10 IEEE Micro

� Risk/robustness/interpretability: Models

sometimes mispredict and systems need to

adapt. The specific use case dictates the

robustness requirements and risk, and many

non-ML systems policies are not 100% robust

themselves. However, many ML models are

opaque, which makes problems more difficult

to track down when they occur. In high-risk

scenarios, it can therefore be required to rely

on interpretable approaches, even if they

yield lower accuracy (e.g., decision trees).

Data Availability

� Privacy/Security: It needs to be ensured that

the data used for learning does not expose

sensitive data (e.g., encryption keys).

� Offline Versus Online Learning: Some policies

learn online (e.g., branch predictors) while

others train offline. For the latter, ML needs

to be integrated into the development and

QA cycle (e.g., is the model deployed with a

new binary or updated dynamically?). Mean-

while, online training can be challenging for

expensive models that require accelerators

to train.

� Distribution Shifts: Models take time to train

and require quality control. ML therefore

introduces challenges in cases where the

output distribution of the policy shifts

quickly. Such cases may require an online

approach.

Applying ML requires trading off these priori-

ties. For example, it is sometimes more impor-

tant to be robust than achieve perfect accuracy.

Even if ML achieves better accuracy on a given

task, it may therefore not be suitable.

TAXONOMY OF ML FOR SYSTEMS
To give researchers and practitioners a

framework to reason about ML for Systems, we

divide ML for Systems problems into five catego-

ries that we believe capture most problems

(they can overlap). We start by classifying exist-

ing work.

� Anomaly detection: Detect when a system

does not behave as expected (e.g., system

failures, security incidents, interference, per-

formance regressions7).

� Forecasting: Predict future behavior of a sys-

tem. This includes program speculation (e.g.,

prefetching and branch prediction), object

lifetime prediction,8 cardinality estimation in

databases, and system or network resource

demand forecasting.

� Extrapolation: Given a policy for a known sub-

set of inputs, extend it to unseen inputs. This

can include classification tasks in schedulers

(e.g., whether a program is scale-up or scale-

out4), cost models in compilers, or selecting

configuration parameters.

� Discovery: Generate a new/better policy.

This includes policies that could not be

handwritten, either because the rules are

too counterintuitive for a human to come

up with (e.g., caching policies identified

through learning) or because they are based

on a large amount of data. Examples include

custom inlining heuristics based on perfor-

mance profiles or data-specific index struc-

tures for databases.

� Optimization: Exploring a potentially large

space to find a good or optimum solution

(e.g., ML for hardware design, autotuners).

The full bibliography is available online.1

Note that all of these use cases can and are

being solved without ML. We argue that this

list represents a hierarchy of how hard it is to

achieve improvements with ML, from easiest

to hardest.

Anomaly Detection

Detecting faults in mechanical and control

systems is one of the traditional uses of AI.

Anomaly detection is an attractive target for ML

because it is often data-driven already: Many

anomaly detectors start from a set of examples

and cluster them to detect outliers. Modern ML

adds new tools, such as autoencoders, where

the reconstruction error measures anomaly.7

Baselines: Simple data-driven baselines

should be tried first (e.g., clustering). If a base-

line is used that is not data-driven, the main lift

from ML might be the result of switching from a

heuristic to a data-driven approach.

September/October 2020 11

Strategies: The first step is to select input fea-

tures and model their statistical properties.

Before using complex techniques, it is worth try-

ing clustering approaches that show a difference

between normal and anomalous examples. Com-

plex techniques can be appropriate when the

features cannot be readily encoded for cluster-

ing (e.g., if they represent graphs), or if it is

unknown which of a large set of features to use.

In such cases, complex neural networks such as

graph neural networks or recurrent neural net-

works can be appropriate, either used as an

embedding, or in an autoencoder setting.

Forecasting

Most computer systems use some form of

forecasting, either implicitly or explicitly. Any

form of hardware speculation relies on forecast-

ing (e.g., prefetching), and schedulers adjust

resources based on predicting future resource

usage from current/past usage.

Baselines: Because most systems use fore-

casting, it is important to determine whether

these baselines are data-driven or heuristic-

based. If they are not data-driven, prior to creat-

ing a complex ML-based approach, a simpler

data-driven baseline should be tried. In many

cases, the simplest baseline is a lookup table

that maps input features to predictions (e.g.,

branch predictors or inline caches).

Strategies: ML models can provide benefits

over table-based forecasting when generaliza-

tion is required. For example, recent work2 that

learned from application-level features in stor-

age shows that a lookup table approach

degrades over time as previously unseen fea-

tures appear. In such cases, different models can

be applied, from decision trees to neural

networks.

Extrapolation

Most extrapolation in systems is heuristic-

driven and often performs classification. For

example, a scheduler might compare counters

against hard-coded thresholds.

Baselines: Extrapolation should start from a

data-driven baseline. However, as previously

observed, highly tuned heuristics are similar to

data-driven policies and may therefore be appro-

priate baselines as well.

Strategies: Extrapolation strategies are often

problem-specific. Collaborative filtering4 has

been used (e.g., for workload classification), but

supervised learning also works for many areas,

such as predictions based on stack traces8 or

learning memory access patterns.9

Discovery

Discovery is about designing previously

unknown policies, such as new caching strate-

gies.10 There are two variants: Discovering a

new general policy that is intended to be uni-

versally used, and learning a specialized pol-

icy for a particular set of workloads (i.e., data-

driven).

Baselines: Since the goal of discovery is to

find a new algorithm, it should be evaluated in

the same way as existing approaches of the

same (data or nondata-driven) type.

Strategies: A common strategy is RL, where a

policy is learned by exploring different deci-

sions in a simulator or real environment and

updating the policy based on a reward. While

most problems can be framed as RL, it is in

practice harder to train a model using it. Sim-

pler approaches are available: One approach is

to use an expensive method to solve instances

of the problem offline (e.g., SAT/ILP solvers)

and use them as training inputs for imitation

learning.3 Another alternative is to design sev-

eral parameterized subpolicies and learn a pol-

icy that picks the best one (i.e., a bandit-based

approach).

Optimization

In some cases, ML can be used to solve a

static optimization problem (e.g., a complex

scheduling problem). In contrast to discovery,

this approach is not learning a general policy

to solve new problem instances, but is using

ML to explore the search space of a specific

instance.

Baselines: There are many well-known optimi-

zation techniques, including genetic algorithms

and simulated annealing, some of which have

been shown to work in the same areas as ML

(e.g., playing video games11). While ML techni-

ques can be used for optimization (e.g., gradient

descent is a form of optimization), this alone

Machine Learning for Systems

12 IEEE Micro

does not constitute learning and is not necessar-

ily better than alternatives.

When applying ML to an optimization prob-

lem, it is important to identify whether the goal

is to learn a policy that transfers to new problem

instances (i.e., discovery) or whether it is to

solve a standalone instance. While discovery

problems need to be evaluated based on their

zero-shot performance for a previously unseen

example, optimization problems need to be eval-

uated against other optimization techniques,

such as genetic algorithms. Both baseline and

ML approach need to be evaluated with the

same amount of resources.

Strategies: RL has been successfully used in

optimization problems, by learning a policy that

selects the next design decision, combined with

a value function that estimates the quality of a

particular choice. The policy function and value

function can potentially be reused when solving

a new optimization problem, leading to transfer-

ability. It is, however, possible that these func-

tions overfit to a particular optimization

example, so transferability cannot be taken for

granted.

For design spaces that are low-dimensional,

Bayesian optimization frameworks can work

well. It is also important to not dismiss alterna-

tive optimization strategies in favor of ML, par-

ticularly if transferability is not required.

CHOOSING AN ML STRATEGY
We now discuss how to determine whether a

problem is suitable for ML. While major

improvements from ML have been shown in all

five areas, the further we go from “anomaly

detection” to “optimization,” the more a model

has to learn about how the system works, and

the more data/examples are required.

The first step is to check whether the input

features are predictive of the output. For low-

dimensional prediction problems, this can be

done with a lookup table baseline that stores a

prediction for every possible input. For higher

dimensional problems, replaying a run with an

oracle (e.g., in a simulator) is an alternative. This

indicates the headroom.

The next decision is the scope of the learned

system policy. Almost every system could be

framed as an end-to-end RL problem. However,

such a model needs to not only learn the statisti-

cal properties of the data but also everything

about its environment. It can therefore be advan-

tageous to separate the prediction problem from

the rest of the system, to limit the complexity of

the function that needs to be learned. As shown in

the next section, it is sometimes possible to

decompose an end-to-end problem into a super-

vised learning portion and a (traditional) algorith-

mic portion that consumes these predictions.

Alternatively, the latter (reduced) problem may

be solvedwithML itself (e.g., RL).

Once the learning problem has been defined,

an ML technique needs to be chosen. We frame

our recommendations as a decision diagram

(see Figure 1). For each presented ML type, dif-

ferent learning strategies are available. For

example, supervised learning could use neural

networks or decision trees. One important factor

Figure 1. How to decide which ML approach to use.

September/October 2020 13

is how to deploy a model within a system, based

on resource constraints. Deployment ranges

from compiling a model directly into code to

running the model offline (e.g., at compile time).

The uniqueness of systems problems and their

constraints may necessitate new ML techniques.

CASE STUDY
We demonstrate how the previous insights

apply to recent work on ML for memory allo-

cation.8 The goal of this work was to reduce

fragmentation in Cþþ workloads with huge

(2 MiB) pages and varying memory footprints.

Since Cþþ cannot move objects, long-lived

objects can prevent entire pages from being

released to the OS [see Figure 2(a)], causing

fragmentation. To solve this problem, a mem-

ory allocator needs to reason about object

lifetimes and group objects with similar life-

times together.

This requires the memory allocator to pre-

dict future behavior of the application, which

suggests that this could be a target for ML. The

Figure 2.ML for memory allocation.8 (a) Visualizing memory fragmentation. (b) Reinforcement learning

approach. (c) Imitation learning approach. (d) Decomposed approach using supervised learning and a new

type of memory allocator. (e) Cþþ server workload memory reduction (running against synthetic requests).8

(f) Synthetic memory trace. (g) Final steady-state fragmentation. (h) Allocation/inference latency. (i) ILP solver

scalability.

Machine Learning for Systems

14 IEEE Micro

allocator represents the following system policy:

Given a sequence of allocation requests (each

with a size and an unknown lifetime), the alloca-

tor needs to place objects in virtual address

space such that the number of live 2 MiB pages

(i.e., pages containing at least one object) is min-

imized. At the time of allocation, we know the

current stack trace and the size of the allocation.

As such, we need to solve a forecasting problem.

Our baseline is TCMalloc, which organizes

objects by size but ignores lifetime. Figure 2(e)

shows used memory and actual memory foot-

print for running a server workload against syn-

thetic inputs. The baseline incurred over 2�
fragmentation (footprint/used) on average, over

4� at low memory usage. Our goal was to reduce

this fragmentation. Since the trace is large (110M

allocations), we also generated a synthetic

driver and baseline that replicates similar behav-

ior with 5000 allocations [see Figure 2(f)].

Reinforcement Learning

This looks like a perfect setup for RL, with a

sequence of decisions (where to place each

object) and a reward function (memory fragmen-

tation). We therefore started collecting traces

and built a simulator to replay these traces,

which would allow an RL policy to learn a good

allocation strategy. However, several constraints

make RL challenging for this scenario. First, the

state space is large and complex, as there are 264

addresses. Furthermore, the number of alloca-

tions is large (millions/min), and rewards are

sparse, creating credit assignment challenges.

We implemented a naive DQN model that

observes the state of all hugepages and picks an

allocation target for our synthetic trace. This

simple model outperformed the baseline, but

needs to run every allocation and takes 2 ms

(TCMalloc’s fast path takes 8.3 ns). Even if opti-

mizations improved this latency by 1000�, this

approach would thus be impractical.

Imitation Learning

Given full allocation traces of a program, the

problem can be solved offline. It reduces to a

two-dimensional packing problem, which can

be solved retroactively using an ILP solver.

Given such a solution, we could train a policy

against it. This yields low fragmentation [see

Figure 2(g)], but the ILP approach does not

scale [see Figure 2(i)], as applications have

>10M allocations/minute (the solver did not

even solve the full synthetic trace). Further-

more, just like with RL, we would need a DQN

that learns from these solutions, and running

such a model every allocation is impractical.

Decomposed Supervised Learning

We tackle these challenges by breaking up

the prediction problem. Instead of learning

object placement end-to-end, we decomposed it

into a supervised learning portion that predicts

(potentially incorrectly) the lifetime of an object

based on its stack trace. We built a new mem-

ory allocation algorithm (LLAMA) that relies on

these predictions and can detect when past pre-

dictions were incorrect. Using this approach,

we can avoid running the model at every alloca-

tion, because results can be cached (we use a

hash table and identify stack traces based on a

cheap fingerprinting mechanism).

Following the rules laid out in this article, we

validated our approach by using it with a lifetime

oracle in the simulator. We then replaced the

oracle with a lookup table, but found that this

table did not generalize across different versions

of an application. We then decided to use an

LSTM neural network that we compiled directly

into the CPU code to maximize performance (a

similar approach could be used for a DQN).

This model is easier to train than RL, because

training is supervised. This also means that train-

ing does not require full traces from entire runs

(like RL or imitation learning). We can instead

sample individual allocations. Even so, running

the LSTM every allocation takes 144 ms and is

therefore impractical [see Figure 2(h)]. However,

since predictions nowdepend only on the current

stack trace and no state, we can cache predic-

tions, bringing the predictions down to �20 ns.

LLAMA reduces steady-state fragmentation by 43%

in Figure 2(e) (up to 78% for other workloads8).

Lessons Learned

This approach shows that while it is often pos-

sible to apply end-to-end learning to anML for Sys-

tems problem, it is not always the best approach.

The successful solution required us to apply the

rules laid out in this article: We moved from an

September/October 2020 15

empirically-tuned policy (i.e., past memory alloca-

tors) to a data-driven policy. Since a lookup table

alone was not sufficient, we appliedML to learn an

embedding of stack traces, using supervised learn-

ing. The other parts of the problem (selecting how

to allocatememory based on the prediction) were

solved with conventional heuristics that tolerate

mispredictions.

CONCLUSION
ML for Systems is an emerging area. To

maximize its potential, ML needs to be used

in the most effective way and evaluated against

suitable baselines. Meanwhile, systems-specific

requirements such as low latency and large

input/output spaces necessitate systems-

specific innovation

on the ML side. Our

goal is to establish

a framework and

vocabulary to dis-

cuss these alterna-

tives and tradeoffs.

We see this article

and the accompa-

nying bibliography1 as a contribution toward

this discussion and believe that these points are

going to be increasingly important as we are see-

ing more ML for Systems work.

ACKNOWLEDGMENTS
The author would like to thank A. Klimovic, A.

Goldie, A. Mirhoseini, C. Raffel, H. Lim, J. Laudon,

M. Phothilimthana, M. Abadi, R. Singh, R. Frostig,

and S. Roy for their feedback.

& REFERENCES

1. Supplementary material/bibliography, 2020. [Online].

Available: https://github.com/google-research/ml-for-

systems-taxonomy

2. G. Zhou and M. Maas, “Multi-task learning for storage

systems,” in Proc. ML Syst. Workshop, 2019. [Online].

Available: http://mlforsystems.org/assets/papers/

neurips2019/multi_task_zhou_2019.pdf

3. C. Mendis, C. Yang, Y. Pu, S. Amarasinghe, and

M. Carbi, “Compiler auto-vectorization with imitation

learning,” in Proc. Adv. Neural Inf. Process. Syst.,

2019, pp. 14625–14635.

4. C. Delimitrou and C. Kozyrakis, “Quasar: Resource-

efficient and QoS-aware cluster management,” in

Proc. 19th Int. Conf. Archit. Support Program. Lang.

Oper. Syst., 2014, pp. 127–144.

5. T. Neumann, “The case for B-tree index structures,”

2017. [Online]. Available: http://databasearchitects.

blogspot.com/2017/12/the-case-for-b-tree-index-

structures.html

6. C. Mendis, A. Renda, S. Amarasinghe, and

M. Carbin. “Ithemal: Accurate, portable and fast basic

block throughput estimation using deep neural

networks,” in Proc. Int. Conf. Mach. Learn., 2019,

pp. 4505–4515.

7. M. Alam, J. Gottschlich, N. Tatbul, J. S. Turek,

T. Mattson, and A. Muzahid, “A zero-positive learning

approach for diagnosing software performance

regressions,” in Proc. Adv. Neural Inf. Process. Syst.,

2019, pp. 11627–11639.

8. M. Maas, D. G. Andersen, M. Isard, M. M. Javanmard,

K. S. McKinley, and C. Raffel, “Learning-based

memory allocation for Cþþ server workloads,” in Proc.

25th Int. Conf. Archit. Support Program. Lang. Oper.

Syst., 2020, pp. 541–556.

9. M. Hashemi et al., “Learning memory access

patterns,” in Proc. Int. Conf. Mach. Learn., 2018,

pp. 1919–1928.

10. D. S. Berger, “Towards lightweight and robust

machine learning for CDN caching,” in Proc.

17th ACM Workshop Hot Topics Netw., 2018,

pp. 134–140.

11. F. P. Such, V. Madhavan, E. Conti, J. Lehman, K. O.

Stanley, and J. Clune, “Deep neuroevolution: Genetic

algorithms are a competitive alternative for training

deep neural networks for reinforcement learning,”

2017, arXiv:1712.06567.

Martin Maas is a Research Scientist at Google. His

research interests span language runtimes, computer

architecture, systems, and machine learning. Maas

received the Ph.D. degree in computer science from

UCBerkeley. Contact him at mmaas@google.com.

ML for Systems is an

emerging area. To

maximize its potential,

ML needs to be used in

the most effective way

and evaluated against

suitable baselines.

Machine Learning for Systems

16 IEEE Micro

https://github.com/google-research/ml-for-systems-taxonomy
https://github.com/google-research/ml-for-systems-taxonomy
http://mlforsystems.org/assets/papers/neurips2019/multi_task_zhou_2019.pdf
http://mlforsystems.org/assets/papers/neurips2019/multi_task_zhou_2019.pdf
http://databasearchitects.blogspot.com/2017/12/the-case-for-b-tree-index-structures.html
http://databasearchitects.blogspot.com/2017/12/the-case-for-b-tree-index-structures.html
http://databasearchitects.blogspot.com/2017/12/the-case-for-b-tree-index-structures.html
mailto:mmaas@google.com

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

