
Submitted draft version

Klessydra-T: Designing Vector

Coprocessors for Multi-Threaded

Edge-Computing Cores

Abdallah Cheikh

Sapienza University of Rome

Stefano Sordillo

Sapienza University of Rome

Antonio Mastrandrea

Sapienza University of Rome

Francesco Menichelli

Sapienza University of Rome

Giuseppe Scotti

Sapienza University of Rome

Mauro Olivieri

Sapienza University of Rome

Abstract — Computation intensive kernels, such as convolutions, matrix multiplication and Fourier

transform, are fundamental to edge-computing AI, signal processing and cryptographic applications.

Interleaved-Multi-Threading (IMT) processor cores are interesting to pursue energy efficiency and low

hardware cost for edge-computing, yet they need hardware acceleration schemes to run heavy

computational workloads. Following a vector approach to accelerate computations, this study explores

possible alternatives to implement vector coprocessing units in RISC-V cores, showing the synergy between

IMT and data-level parallelism in the target workloads.

 Interleaved multithreading (IMT), or barrel-

processing, is a simple and widely known program

execution paradigm that alternates instructions

belonging to different execution threads in the stages of

a single-issue in-order processor pipeline [1,3,4]. In

this scheme, while the throughput is limited to 1

instruction per cycle (IPC), pipeline stalls due to inter-

instruction dependency are avoided without any

hardware overhead for dependency management. As

long as the application workload can be programmed

as multiple threads, the IMT approach can sustain IPC

= 1 with relatively high clock frequency and high

energy efficiency, thanks to the hardware simplicity,

which is a desirable goal in embedded edge-computing

processors.

Nonetheless, to execute computationally heavy

applications on the extreme edge, any processor core

needs hardware acceleration support. Two broad

classes of hardware acceleration exist: hardware units

that autonomously execute entire computation kernels

upon memory-mapped commands from the processor

core, and instruction acceleration units, sometimes

referred to as coprocessors, that take over complex

instructions and thus are directly sequenced by the core

instruction stream. Coprocessors imply less

communication overhead, yet they can be efficiently

exploited only within Instruction Set Architectures

(ISA) that allow extensions dedicated to particular

computation domains, such as RISC-V [2].

Edge computing devices regard energy efficiency as

the prime concern. This work addresses the

introduction of vector coprocessor acceleration in IMT

cores for extreme-edge-computing, showing that an

IMT processor has an architectural design advantage

over other cores with similar IPC, that allows

exploiting hardware acceleration with higher energy

efficiency and speed.

In this context, we specifically address supporting

accelerated vector operations, to execute ubiquitous

computation kernels in edge computing applications:

 2D convolution, covering the broad area of deep

neural network applications [6];

 Fast Fourier Transform (FFT), typical of signal

processing applications, for example in 5G IoT

devices [8];

 Matrix multiplication (MatMul) used in a variety

of fields, predominantly in cryptography.

A typical scenario is to run homogenous workloads on

all the threads applying the same algorithm on different

input data, e.g. convoluting multiple image frames.

Otherwise, one can take advantage of the multiple

contexts provided in an IMT core and run a composite

Department Head

2 Submitted draft version

workload running different algorithms, e.g.

transmitting an encrypted stream of a preprocessed

video/audio, by convoluting an image while analyzing

an audio stream via FFT then encrypting the processed

data using an algorithm that heavily relies on MatMul.

In this study, we designed, implemented and evaluated

a whole taxonomy of coprocessor acceleration schemes

for IMT cores, analyzing them for performance, area,

and energy efficiency on the above application cases.

The contributions of this work are the following:

 We provide designers with a quantitative

comparison between different coprocessing

schemes referring to different computation

kernels;

 Specifically, we identify the optimal balance

between Thread Level Parallelism (TLP) and Data

Level Parallelism (DLP) in the addressed

scenarios;

 We demonstrate the performance and energy

efficiency of the IMT approach in the target

application contexts by comparing it with

processor cores in the same complexity range;

 We show the potentials of an open hardware

design based on the RISCV instruction set along

with its open programming environment;

BACKGROUND
Many previous works reported the design of hardware

accelerated cores in edge-computing applications.

In [14], the authors report the design details of a low-

voltage microcontroller with subword-SIMD support.

Our study is more general in investigating various

SISD-SIMD-MIMD combinations in coprocessor

design. The work in [13] is similar and investigates ad-

hoc ISA encoding and pipeline stage balancing for

power efficiency and introduces a dedicated

coprocessor interface. Yet, the authors do not elaborate

on coprocessor architectures and performance. Our

work further differs from [13,14] in targeting RISC-V

compliance.

In [7], the authors describe a RISC-V processor with

DSP hardware support, targeting near-threshold

voltage operation, and in the Diet-SODA design [9] a

SIMD-oriented DSP accelerator also runs in near-

threshold regime. Our study is agnostic about supply or

bias voltage tuning, purely addressing DLP and TLP

balancing for energy efficiency in any physical

implementation, including soft-cores on FPGA, as

shown in our results.

A hardware convolution engine for image processing is

presented in [12], focusing on the optimal buffer design

to store selected portions of the input image. The works

in [10, 11] also present convolution accelerators, based

on parallel hardware units and local data reuse. Our

study adopts a different approach, based on multi-

purpose vector coprocessors equipped with scratchpad

memories, coupled with an IMT processor, to hide

memory latency.

This work builds on the activity reported in [5], that

was an initial effort into designing a mathematical

accelerator for a RISC-V core, and in [4], that

Figure 1 Klessydra T13 block organization

Input Mapping

Add
Sub

Shft Mul Accum Relu

MFU

Bank Intrlv

Bank1Bank0 BankN

SPMI

Data reorder

Output Mapping

MAU_busyMAU_req

EXEC

Regfile
Decode

Fetch
PC

PC

CSR

Data Mem

WB

Debug

Prg Mem

Updater
harc

Updater

DSP Initialization

Control / Mapping

Add
Sub

Shft Mul Accum Relu

Accl Exec

MFUAccl Init

hart a

hart a,

b, or c

hart c SPMI

B0 B1 B2

LSU

x F

x D

SP
M

SP
M

SP
M

x D

b
an

k
b

an
k

b
an

k

…
x N

b
an

k
b

an
k

b
an

k

b
an

k
b

an
k

b
an

k

SPM0 SPM1
SPMN-1

Regfile
Decode

PC
PC

CSR

Data Mem

WB

Debug
Updater

harc
Updater

hart a

hart b

hart c

Fetch

Prg Mem

Execute

Program memory

Data memory

Execute MFU

SPMI

LSU

Submitted draft version 3

addressed the best performing pipeline organization for

an IMT RISC-V core.

THE KLESSYDRA-T IMT ARCHITECTURE

The processing core discussed in this article, named

Klessydra-T13, is a parametric design implementing an

IMT four-stage-pipeline RISC-V processor. It supports

the RV32IMA instruction set [2], augmented by a

custom extension composed of a small subset of

mathematical vector instructions. The Klessydra-T13

core (Figure 1) realizes a pure IMT paradigm as defined

by the following points:

 Thread context switch at each clock cycle

 in-order, single issue instruction execution

 feed-forward pipeline (no hardware support for

branching-hazard and data-hazard handling)

 bare metal execution (RISCV M mode)

The core interleaves three hardware threads (harts [2])

in the instruction pipeline. The register file, program

counter, and CSR unit are replicated per hart. A

hardware context counter (harc) switches between the

hart program counters on a rotation basis to fetch

instructions from the program memory. The three harts

in the four pipeline stages provide a register file access

fence, so that it never possible for any two instructions

to manifest a dependency hazard in the pipeline.

The T13 core includes multiple units in the execution

stage, namely a Load/Store unit (LSU), a scalar

execution unit (EXEC) and a vector-oriented multi-

purpose functional unit (MFU), which implements the

coprocessing features. The LSU works in parallel with

other units when executing store instructions, that

cannot cause a write-back conflict on the register file.

The MFU is allowed to read operands from the register

file but can write results only to local scratchpad

memories (SPMs). The LSU manages data transfers

to/from the data memory from/to the SPMs via

dedicated instructions.

The MFU executes vector arithmetic instructions,

whose latency is proportional to the vector length. A

hart requesting access to the busy MFU executes a self-

referencing jump until the MFU becomes free,

avoiding unnecessary stalls of other harts in the

pipeline that are independent from the MFU being

busy.
The custom instruction extension supported by the

MFU and LSU is summarized in Table 1. The

instructions implement vector operations without

relying on a vector register file, but rather on a memory

space mapped on the local SPMs, for maximum

flexibility. The programmer can move vector data at

any point of the SPM address space with no constraint

except the total capacity of the SPMs, which in turn is

a parameter of the microarchitecture design.

The coprocessor instructions are exposed to the

programmer as very simple intrinsic functions, fully

integrated into the RISC-V GCC compiler toolchain.

HARDWARE ACCELERATION SCHEMES
The MFU and SPMs are accessed through a

Scratchpad-Memory Interface (SPMI). The user can

configure the number of parallel lanes D in the MFU,

the number of MFUs F, the SPM capacity, the number

of SPMs N, the number of SPMIs M, and the sharing

scheme of MFUs and SPMI among harts. The MFU is

the engine that accelerates vector computations. It can

operate on different integer data element widths (8, 16,

32-bit) in subword-SIMD fashion, and also in element-

SIMD fashion when D is configured to multiply the

execution lanes for DLP. A typical vector arithmetic

operation has an initial latency between 4 and 8 cycles

to access the SPM.

Each SPM has one read and one write port. The

parameter D that defines the MFU lanes also

corresponds to the number of SPM banks; all the banks

of an SPM are accessed together as a single SPM line.

When the MFU executes a vector operation, it fetches

an entire SPM data line in every clock cycle, composed

of multiple vector elements. A bank read rotator aligns

the source operands coming from the SPM line, and a

bank write rotator aligns the destination data to the

correct banks in an SPM line. When the LSU fills the

SPM banks with data from the 32-bit data memory port,

a bank interleaver switches between the banks. The

reader may refer to [5] for internal details of the units

inside the MFU and SPMs.

Table 1 – Custom vector instruction extension

Assembly syntax – (r) denotes

memory addressing via register r

Short description

kmemld (rd),(rs1),(rs2) load vector into scratchpad region

kmemstr (rd),(rs1),(rs2) store vector into main memory

kaddv (rd),(rs1),(rs2) adds vectors in scratchpad region

ksubv (rd),(rs1),(rs2) subtract vectors in scratchpad region

kvmul (rd),(rs1),(rs2) multiply vectors in scratchpad region

kvred (rd),(rs1) reduce vector by addition

kdotp (rd),(rs1),(rs2) vector dot product into register

ksvaddsc (rd),(rs1),(rs2) add vector + scalar into scratchpad

ksvaddrf (rd),(rs1),rs2 add vector + scalar into register

ksvmulsc (rd),(rs1),(rs2) multiply vector + scalar into scratchpad

ksvmulrf (rd),(rs1),rs2 multiply vector + scalar into register

kdotpps (rd),(rs1),(rs2) vector dot product and post scaling

ksrlv (rd),(rs1),rs2 vector logic shift within scratchpad

ksrav (rd),(rs1),rs2 vector arithmetic shift within scratchpad

krelu (rd),(rs1) vector ReLu within scratchpad

kvslt (rd),(rs1),(rs2) compare vectors and create mask vector

ksvslt (rd),(rs1),rs2 compare vector-scalar and create mask

kvcp (rd),(rs1) copy vector within scratchpad region

Department Head

4 Submitted draft version

Furthermore, the coprocessor can be configured to

implement the following sharing schemes among harts:
Shared coprocessor: All the harts share a single

MFU/SPM subsystem. In the case of busy MFU, any

hart wanting to access it is stalled until the MFU

becomes free. In this scheme, parallel execution may

occur between coprocessor and non-coprocessor

instructions. Yet, the MFU/SPM may exploit pure DLP

acceleration, by multi-lane SIMD execution.

Thread-Dedicated coprocessors: A complete

MFU/SPM subsystem is appointed to each hart,

eliminating coprocessor contention. Stalls can only

happen if two instructions of the same hart request

MFU operation. This scheme can exploit DLP by

multi-lane SIMD execution and TLP by fully

symmetric MIMD execution, allowing multiple vector

instructions to execute in parallel.

Thread-Dedicated SPMI / Shared MFU: a dedicated

SPM address space is kept for each hart, while the harts

share one MFU at the functional unit level. This

scheme still allows inter-hart parallel execution of

coprocessor instructions, provided they use different

internal functional units of the MFU (e.g. adder,

multiplier). Harts requesting a busy internal unit in the

MFU get stalled until the contended unit becomes free.

This scheme can exploit DLP by multi-lane SIMD

execution, and also TLP in the form of a heterogeneous

MIMD execution.

The explored design parameters and corresponding

configurations, for reference in reporting performance

results, are the following:

 M=1, F=1, D=1: SISD

 M=1, F=1, D=2,4,8: Pure SIMD

 M=3, F=3, D=1: Symmetric MIMD

 M=3, F=3, D=2,4,8: Symmetric MIMD + SIMD

 M=3, F=1, D=1: Heterogenous MIMD

 M=3, F=1, D=2,4,8: Heterogenous MIMD + SIMD

We use N = 3 in MatMul and N=4 in convolutions and

FFT.

Finally, we refer to the T13 microarchitecture

configured with no hardware acceleration as Klessydra

T03.

PERFORMANCE RESULTS
We run a set of test programs composed of 2D

convolution, FFT, and MatMul kernels. We adopted

the widely used 3x3 filter size on matrix sizes of 4×4,

8×8, 16×16, and 32×32 elements for convolutions.

FFT was run on 256 samples, and MatMul on 64×64

element matrices. The element width was kept 32 bit in

fixed-point representation. The tests were organized as

follows:

Figure 2 DLP and TLP cycle-count boost in 2D

convolutions for different matrix sizes

0

1

2

3

4

5

6

4x4 8x8 16x16 32x32

Sp
ee

d
u

p
 r

el
at

iv
e

to
 S

IS
D

speedup of SIMD DLP=8 vs SISD

speedup of MIMD DLP=1 vs SISD

speedup of MIMD DLP=8 vs SISD

Table 2 – Summary of performance results and synthesis results. Green=best case; Red=worst case.

FFT MatMul

256 64x64

SISD 1 2488 6982 6 11 264 144.4 1105 3060 9727 34201 33033 728187 66043 80874 476771

2 2627 8400 6 15 264 146 895 2245 6261 20374 25647 602458 21976 60019 645705

4 3301 11366 6 23 264 137.2 824 1768 4607 13444 22812 543164 16850 29144 431773

8 4800 17331 12 39 264 137.7 824 1613 3692 10069 21555 484436 11324 22482 414420

Sym. MIMD 1 3512 10458 18 19 264 148.2 626 1493 3887 13536 18726 462066 20953 17824 292564

2 4712 15943 18 31 264 131.7 629 1190 3123 8681 16827 378748 16144 15839 222370

4 6753 25089 18 55 264 120 560 1190 2543 7148 15993 328962 15868 14942 182580

8 10854 43419 36 103 264 105.1 560 1152 2543 6006 15726 316270 15581 14613 168031

Het. MIMD 1 3012 10182 18 11 264 117.2 663 1521 4153 13565 22839 556463 27155 37111 265567

2 3871 15577 18 15 264 128.9 638 1274 3280 9167 18468 425978 15973 24611 251201

4 5015 23282 18 23 264 122 573 1213 2688 7473 16887 360863 16042 19175 181290

8 7325 42944 36 39 264 108.6 573 1079 2580 6285 17604 328178 13921 17298 187877

1418 4281 0 7 176 221.1 1819 5737 20714 79230 47256 2679304 138959 46733 2775779

2527 7674 0 6 0 91.4 1377 4247 15088 57020 37344 1360854 81534 37350 1369572

1933 5275 0 1 0 117.2 2510 8111 29583 113793 61158 4006241 197010 61163 4043376

Klessydra T03

RI5CY

ZeroRiscy

MatMul

64x64

K
le

ss
y

d
r
a

 T
1

3

Het. MIMD +

SIMD

LUT
B-

RAM
DSP

LUT-

RAM

FFT

256

Microarchitecture

Sym. MIMD

+ SIMD

SIMD

Core Configuration DLP

FPGA Element Utilization Max

freq

MHz
FF

Conv

4x4

Conv

8x8

Conv

16x16

Conv

32x32

Conv

32x32

Composite WorkloadHomogeneous Workload

Synthesis results Average Cycle Count per Computation Kernel

Submitted draft version 5

 homogeneous workload, running multiple

instances of the same kernel on multiple harts, on

different input data.

 composite workload, running convolutions,

FFTs, and MatMul repeatedly on three respective

harts.

The performance was measured by taking the average

cycle count to execute one computation kernel. Table 2

summarizes the results, which are discussed below.

Cycle count: With small matrix convolutions, the

accelerated core reached up to 3× cycle count speed-up

over a non-accelerated IMT core (Klessydra T03), and

2× speed-up over single-threaded, DSP-extended core

(RI5CY [7]).

As expected, large matrix convolutions and MatMul

obtain more considerable advantage from vector-

accelerated cores, quantified in 13× cycle count speed-

up relative to Klessydra T03, 9× relative to the RI5CY

core and 19× relative to ZeroRiscy. In contrast, FFT

takes benefit from TLP and reduced data memory

accesses rather than from DLP.

Figure 2 quantifies the contribution of DLP and TLP

for convolutions on different matrix sizes. For small

vectors, TLP inherently exhibits better contributions to

speed-up than DLP, while as the vector size grows, the

DLP boost dominates. Implementations exploiting both

TLP and DLP performed much better than pure DLP

also with large matrices. A key outcome is that a single

core IMT processor can exploit both DLP and TLP and

follow the grey curve, while a single-threaded core

exploiting only DLP acceleration follows the blue

curve.

Notably, the heterogeneous MIMD coprocessor, that

has 3 times less functional units than the fully

symmetric MIMD, employed only 1% to 7% more

cycles than the latter.

Maximum clock frequency: All the cores under

analysis were implemented as FPGA soft-cores. The

clock speed exhibited the sharpest drops as the TLP

grew larger: in the heterogeneous MIMD scheme, the

crossbar mapping the SPMI output data on the shared

MFU units became the critical path for D=4,8.

Pipelining the crossbar to reduce the critical path,

introduces hardware overhead, compromising the area

advantage of the heterogeneous MIMD configuration.

Absolute execution time: The cycle count and the

operating frequency allow calculating the total

execution time. Figure 3 compares the actual execution

time speed-up relative to the ZeroRiscy core, taken as

the reference when each core operates at its maximum

frequency. In pure SIMD configurations, the speed-up

grows linearly with the DLP for the explored DLP

range. Yet, exploiting TLP, by going from a

SISD/SIMD to symmetric and heterogenous MIMD,

improved the speedup in all cases, despite the

frequency drop associated with the MIMD coprocessor.

Thanks to exploiting both TLP and DLP, the symmetric

MIMD+SIMD schemes exhibit the lowest execution

times, reaching up to 17× speed-up over Zeroriscy for

Convolution 32x32 and up to 13× speed-up for the

composite workload. Notably, the heterogeneous

MIMD configurations maintain an almost perfect

overlap with the symmetric MIMD.

The non-accelerated Klessydra-T03, while employing

a higher cycle count than RI5CY due to the absence of

DSP and hardware-loop extensions, exhibits an

absolute performance advantage over RI5CY thanks to

a more than double frequency attained by the pure IMT

microarchitecture. When compared to ZeroRiscy, T03

exhibits both lower cycle count and higher frequency.

Hardware Resource Utilization: In cost-constrained

applications, it is crucial to find an optimal balance

between speed-up and area overhead. The

heterogenous MIMD + SIMD scheme with D = 2

resulted to be a possible best choice with all test

programs.

The non-accelerated T03 exhibits only a slightly more

significant footprint than the tiny ZeroRiscy core,

despite the replicated register file to support multi-

threading, thanks to the LUT-RAM implementation of

the registers.

Energy Efficiency: The average energy per

algorithmic operation (multiplications and additions) is

a general measure of the energy efficiency attained by

a processor core in implementing an algorithm

computation. Figure 4 reports the outcome of this

Figure 3 Execution time speed-up with respect to Zeroriscy

core, taken as reference. For the composite test the average

kernel speed-up is reported.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Conv.2D 4x4

Conv.2D 8x8

Conv.2D 16x16

Conv.2D 32x32

FFT 256

MatMul 64x64

Composite

Speed-up

Department Head

6 Submitted draft version

analysis, referring to the soft-core implementations.

The results are presented as the reduction in nJ/op

relative to Zeroriscy, taken as reference, which

exhibited 4.24 nJ/op as the best case in the analyzed

workloads.

The most energy efficient designs resulted to be the

symmetric MIMD and heterogenous MIMD schemes,

again exhibiting an almost complete overlap and

reaching over 85% energy saving related to the

reference Zeroriscy. Despite having the smallest area

footprint, the pure SIMD schemes resulted in a larger

energy consumption, due to low exploitation of TLP.

Larger Filters: convolutional neural networks

primarily employ 3×3 filters (VGG16) but also larger

ones (e.g. 11×11 in Alexnet, 5×5 in Googlenet). Large

masks such as 7×7 are used in Sobel, Gaussian

smoothing, median filtering. We evaluated the vector

coprocessor schemes with filters ranging from 5×5 to

11×11, on 32×32 element matrices. Table 3 shows the

speed-up and energy efficiency trends continue as the

filter dimensions grow larger, favoring higher DLP.

The improvement referring to ZeroRiscy grows up to

15× when using 11×11 filters.

The symmetric and heterogeneous MIMD+SIMD

schemes, with D=2, maintain similar performance and

energy results throughout the analyzed cases. The

results confirm that an IMT core capable of MIMD

acceleration increasingly performs better than a single-

thread SIMD acceleration.

CONCLUSIONS

The scientific outcome of this study can be

summarized in the following list of evidence:

 The MIMD-SIMD vector coprocessor schemes

enable tuning the TLP and DLP contribution and

obtain the best results in absolute performance

and energy efficiency, reaching >15× speed-up

and -85% energy per operation.

 Kernels that are less effectively vectorizable can

still benefit from acceleration through SPMs and

TLP, in an IMT core, reaching 2×-3× speed-up.

 Fully symmetric and heterogeneous MIMD give

very similar results, showing that coprocessor

contention can be effectively mitigated by

functional unit heterogeneity, allowing hardware

resource saving. From the same observation, we

can state that functional unit contention is less

impacting than SPM contention, in all the

kernels.

 Pure DLP acceleration always gives inferior

results than a balanced TLP/DLP acceleration.

An IMT microarchitecture can benefit from TLP

and DLP acceleration in a single core.

 In the absence of hardware acceleration, IMT still

exhibits an absolute performance advantage over

Figure 4 Average energy per algorithmic operation,

normalized to the case of the Zeroriscy soft-core, taken as

reference.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Conv.2D 4x4 Conv.2D 8x8

Conv.2D 16x16 Conv.2D 32x32

FFT 256 MatMul 64x64

Composite

Normalized energy/op

Table 3 Higher order filter evaluation results for cycle count, total time at max frequency and total energy.

Green=best case; Red=worst case.

T13 SIMD 2 53 362 51 101 694 97 166 1136 159 247 1689 237

T13 SIMD 8 25 179 34 46 335 65 75 543 105 111 803 155

T13 Sym MIMD 2 20 148 27 36 272 49 57 436 79 84 641 117

T13 Sym MIMD 8 12 113 29 19 183 47 30 284 73 43 408 105

T13 Het MIMD 2 21 159 28 38 291 52 60 467 83 89 687 122

T03 (no accel.) - 247 1120 216 515 2328 448 881 3985 767 1369 6191 1191

RISCY - 180 1971 252 385 4218 539 663 7252 928 1000 10949 1400

ZeroRiscy - 319 2721 226 675 5754 479 1130 9637 802 1698 14482 1205

Filter (5x5) Filter (7x7) Filter (9x9) Filter (11x11)

T [us] E [uJ]
T

[us]

E

[uJ]
E [uJ]

E

[uJ]

Cycle

Cnt

×1000

Cycle

Cnt

×1000

Cycle

Cnt

×1000

Cycle

Cnt

×1000

T

[us]
T [us]

Core DLP

Submitted draft version 7

single-thread execution thanks to the simplified

hardware structure.

The Klessydra-T parametric cores are available as open

source designs on GitHub at https://perma.cc/6FYD-

AF68 .

 REFERENCES
1. Bechara, C. et al.., 2011, December. A small footprint

interleaved multithreaded processor for embedded systems.
In 2011 18th IEEE International Conference on Electronics,

Circuits, and Systems (pp. 685-690). IEEE.

2. RISC-V Instruction Set specifications. [Online]
https://riscv.org/specifications/

3. Cheikh, A. et al, 2017, September. The microarchitecture of

a multi-threaded RISC-V compliant processing core family
for IoT end-nodes. In International Conference on

Applications in Electronics Pervading Industry,

Environment and Society(pp. 89-97). Springer, Cham.

4. Olivieri, M., et al., "Investigation on the optimal pipeline

organization in RISC-V multi-threaded soft processor

cores", In 2017 New Generation of CAS (NGCAS), pp. 45-
48. IEEE, 2017

5. Cheikh, A., et al., 2019, September. Efficient Mathematical

Accelerator Design Coupled with an Interleaved Multi-
threading RISC-V Microprocessor. In International

Conference on Applications in Electronics Pervading

Industry, Environment and Society (pp. 529-539). Springer,
Cham.

6. Samie, F.; Bauer, L.; Henkel, J. “From Cloud Down to

Things: An Overview of Machine Learning in Internet of
Things”. IEEE Internet Things J. 2019, 4662, 1.

7. Gautschi, M., et al., "Near-threshold RISC-V core with DSP

extensions for scalable IoT endpoint devices." IEEE Trans.
on Very Large Scale Integration (VLSI) Systems 25, no. 10

(2017): 2700-2713.

8. F. Luo, C.J. Zhang, ed., Signal Processing for 5G:

Algorithms and Implementations, Wiley, New York, 2016.
9. Seo, S., et al., 2010, August. Diet SODA: A power-efficient

processor for digital cameras. In Proceedings of the 16th

ACM/IEEE international symposium on Low power
electronics and design (pp. 79-84).

10. Chen, Y.H., Krishna, T., Emer, J.S., Sze, V., 2016. Eyeriss:

An energy-efficient reconfigurable accelerator for deep
convolutional neural networks. IEEE journal of solid-state

circuits, 52(1), pp.127-138.

11. Du, L., et al., 2017. A reconfigurable streaming deep

convolutional neural network accelerator for Internet of

Things. IEEE Transactions on Circuits and Systems I:

Regular Papers, 65(1), pp.198-208.
12. Conti, F., Benini, L., "A ultra-low-energy convolution

engine for fast brain-inspired vision in multicore clusters."

In 2015 Design, Automation & Test in Europe Conference
& Exhibition (DATE), pp. 683-688. IEEE, 2015.

13. Lim, K., Jeong, S., Kim, Y., Yang, H.S., 2001,

CalmRISC™: A low power microcontroller with efficient
coprocessor interface. Microprocessors and Microsystems.

25, pp.247–261.

14. F. Botman, J. deVos, S. Bernard, F. Stas, J. Legat, D. Bol,
"Bellevue: A 50MHz variable-width SIMD 32bit

microcontroller at 0.37V for processing-intensive wireless

sensor nodes," 2014 IEEE Intl Symposium on Circuits and
Systems (ISCAS), Melbourne, 2014, pp.1207-1210.

