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Abstract — Computation intensive kernels, such as convolutions, matrix multiplication and Fourier 

transform, are fundamental to edge-computing AI, signal processing and cryptographic applications. 

Interleaved-Multi-Threading (IMT) processor cores are interesting to pursue energy efficiency and low 

hardware cost for edge-computing, yet they need hardware acceleration schemes to run heavy 

computational workloads. Following a vector approach to accelerate computations, this study explores 

possible alternatives to implement vector coprocessing units in RISC-V cores, showing the synergy between 

IMT and data-level parallelism in the target workloads. 

 

 Interleaved multithreading (IMT), or barrel-

processing, is a simple and widely known program 

execution paradigm that alternates instructions 

belonging to different execution threads in the stages of 

a single-issue in-order processor pipeline [1,3,4]. In 

this scheme, while the throughput is limited to 1 

instruction per cycle (IPC), pipeline stalls due to inter-

instruction dependency are avoided without any 

hardware overhead for dependency management. As 

long as the application workload can be programmed 

as multiple threads, the IMT approach can sustain IPC 

= 1 with relatively high clock frequency and high 

energy efficiency, thanks to the hardware simplicity, 

which is a desirable goal in embedded edge-computing 

processors. 

Nonetheless, to execute computationally heavy 

applications on the extreme edge, any processor core 

needs hardware acceleration support. Two broad 

classes of hardware acceleration exist: hardware units 

that autonomously execute entire computation kernels 

upon memory-mapped commands from the processor 

core, and instruction acceleration units, sometimes 

referred to as coprocessors, that take over complex 

instructions and thus are directly sequenced by the core 

instruction stream. Coprocessors imply less 

communication overhead, yet they can be efficiently 

exploited only within Instruction Set Architectures 

(ISA) that allow extensions dedicated to particular 

computation domains, such as RISC-V [2]. 

Edge computing devices regard energy efficiency as 

the prime concern. This work addresses the 

introduction of vector coprocessor acceleration in IMT 

cores for extreme-edge-computing, showing that an 

IMT processor has an architectural design advantage 

over other cores with similar IPC, that allows 

exploiting hardware acceleration with higher energy 

efficiency and speed. 

In this context, we specifically address supporting 

accelerated vector operations, to execute ubiquitous 

computation kernels in edge computing applications: 

 2D convolution, covering the broad area of deep 

neural network applications [6]; 

 Fast Fourier Transform (FFT), typical of signal 

processing applications, for example in 5G IoT 

devices [8]; 

 Matrix multiplication (MatMul) used in a variety 

of fields, predominantly in cryptography. 

A typical scenario is to run homogenous workloads on 

all the threads applying the same algorithm on different 

input data, e.g. convoluting multiple image frames. 

Otherwise, one can take advantage of the multiple 

contexts provided in an IMT core and run a composite 
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workload running different algorithms, e.g. 

transmitting an encrypted stream of a preprocessed 

video/audio, by convoluting an image while analyzing 

an audio stream via FFT then encrypting the processed 

data using an algorithm that heavily relies on MatMul. 

In this study, we designed, implemented and evaluated 

a whole taxonomy of coprocessor acceleration schemes 

for IMT cores, analyzing them for performance, area, 

and energy efficiency on the above application cases. 

The contributions of this work are the following: 

 We provide designers with a quantitative 

comparison between different coprocessing 

schemes referring to different computation 

kernels; 

 Specifically, we identify the optimal balance 

between Thread Level Parallelism (TLP) and Data 

Level Parallelism (DLP) in the addressed 

scenarios; 

 We demonstrate the performance and energy 

efficiency of the IMT approach in the target 

application contexts by comparing it with 

processor cores in the same complexity range; 

 We show the potentials of an open hardware 

design based on the RISCV instruction set along 

with its open programming environment; 

BACKGROUND  
Many previous works reported the design of hardware 

accelerated cores in edge-computing applications.  

In [14], the authors report the design details of a low-

voltage microcontroller with subword-SIMD support. 

Our study is more general in investigating various 

SISD-SIMD-MIMD combinations in coprocessor 

design. The work in [13] is similar and investigates ad-

hoc ISA encoding and pipeline stage balancing for 

power efficiency and introduces a dedicated 

coprocessor interface. Yet, the authors do not elaborate 

on coprocessor architectures and performance. Our 

work further differs from [13,14] in targeting RISC-V 

compliance. 

In [7], the authors describe a RISC-V processor with 

DSP hardware support, targeting near-threshold 

voltage operation, and in the Diet-SODA design [9] a 

SIMD-oriented DSP accelerator also runs in near-

threshold regime. Our study is agnostic about supply or 

bias voltage tuning, purely addressing DLP and TLP 

balancing for energy efficiency in any physical 

implementation, including soft-cores on FPGA, as 

shown in our results.  

A hardware convolution engine for image processing is 

presented in [12], focusing on the optimal buffer design 

to store selected portions of the input image. The works 

in [10, 11] also present convolution accelerators, based 

on parallel hardware units and local data reuse. Our 

study adopts a different approach, based on multi-

purpose vector coprocessors equipped with scratchpad 

memories, coupled with an IMT processor, to hide 

memory latency. 

This work builds on the activity reported in [5], that 

was an initial effort into designing a mathematical 

accelerator for a RISC-V core, and in [4], that 

 
 

Figure 1 Klessydra T13 block organization 
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addressed the best performing pipeline organization for 

an IMT RISC-V core.  

THE KLESSYDRA-T IMT ARCHITECTURE 

The processing core discussed in this article, named 

Klessydra-T13, is a parametric design implementing an 

IMT four-stage-pipeline RISC-V processor. It supports 

the RV32IMA instruction set [2], augmented by a 

custom extension composed of a small subset of 

mathematical vector instructions. The Klessydra-T13 

core (Figure 1) realizes a pure IMT paradigm as defined 

by the following points: 

 Thread context switch at each clock cycle 

 in-order, single issue instruction execution  

 feed-forward pipeline (no hardware support for 

branching-hazard and data-hazard handling) 

 bare metal execution (RISCV M mode) 

The core interleaves three hardware threads (harts [2]) 

in the instruction pipeline. The register file, program 

counter, and CSR unit are replicated per hart. A 

hardware context counter (harc) switches between the 

hart program counters on a rotation basis to fetch 

instructions from the program memory. The three harts 

in the four pipeline stages provide a register file access 

fence, so that it never possible for any two instructions 

to manifest a dependency hazard in the pipeline.  

The T13 core includes multiple units in the execution 

stage, namely a Load/Store unit (LSU), a scalar 

execution unit (EXEC) and a vector-oriented multi-

purpose functional unit (MFU), which implements the 

coprocessing features. The LSU works in parallel with 

other units when executing store instructions, that 

cannot cause a write-back conflict on the register file. 

The MFU is allowed to read operands from the register 

file but can write results only to local scratchpad 

memories (SPMs). The LSU manages data transfers 

to/from the data memory from/to the SPMs via 

dedicated instructions. 

 

The MFU executes vector arithmetic instructions, 

whose latency is proportional to the vector length. A 

hart requesting access to the busy MFU executes a self-

referencing jump until the MFU becomes free, 

avoiding unnecessary stalls of other harts in the 

pipeline that are independent from the MFU being 

busy.  
The custom instruction extension supported by the 

MFU and LSU is summarized in Table 1. The 

instructions implement vector operations without 

relying on a vector register file, but rather on a memory 

space mapped on the local SPMs, for maximum 

flexibility. The programmer can move vector data at 

any point of the SPM address space with no constraint 

except the total capacity of the SPMs, which in turn is 

a parameter of the microarchitecture design.  

The coprocessor instructions are exposed to the 

programmer as very simple intrinsic functions, fully 

integrated into the RISC-V GCC compiler toolchain.   

 
HARDWARE ACCELERATION SCHEMES 
The MFU and SPMs are accessed through a 

Scratchpad-Memory Interface (SPMI). The user can 

configure the number of parallel lanes D in the MFU, 

the number of MFUs F, the SPM capacity, the number 

of SPMs N, the number of SPMIs M, and the sharing 

scheme of MFUs and SPMI among harts. The MFU is 

the engine that accelerates vector computations. It can 

operate on different integer data element widths (8, 16, 

32-bit) in subword-SIMD fashion, and also in element-

SIMD fashion when D is configured to multiply the 

execution lanes for DLP. A typical vector arithmetic 

operation has an initial latency between 4 and 8 cycles 

to access the SPM. 

Each SPM has one read and one write port. The 

parameter D that defines the MFU lanes also 

corresponds to the number of SPM banks; all the banks 

of an SPM are accessed together as a single SPM line. 

When the MFU executes a vector operation, it fetches 

an entire SPM data line in every clock cycle, composed 

of multiple vector elements. A bank read rotator aligns 

the source operands coming from the SPM line, and a 

bank write rotator aligns the destination data to the 

correct banks in an SPM line. When the LSU fills the 

SPM banks with data from the 32-bit data memory port, 

a bank interleaver switches between the banks. The 

reader may refer to [5] for internal details of the units 

inside the MFU and SPMs. 

Table 1 – Custom vector instruction extension  

Assembly syntax – (r) denotes 

memory addressing via register r 

Short description 

kmemld (rd),(rs1),(rs2) load vector into scratchpad region 

kmemstr (rd),(rs1),(rs2) store vector into main memory  

kaddv (rd),(rs1),(rs2) adds vectors in scratchpad region 

ksubv (rd),(rs1),(rs2) subtract  vectors in scratchpad region 

kvmul (rd),(rs1),(rs2) multiply vectors in scratchpad region 

kvred (rd),(rs1) reduce vector by addition  

kdotp (rd),(rs1),(rs2) vector dot product into register 

ksvaddsc (rd),(rs1),(rs2) add vector + scalar into scratchpad 

ksvaddrf (rd),(rs1),rs2 add vector + scalar into register 

ksvmulsc (rd),(rs1),(rs2) multiply vector + scalar into scratchpad 

ksvmulrf (rd),(rs1),rs2 multiply vector + scalar into register 

kdotpps (rd),(rs1),(rs2) vector dot product and post scaling 

ksrlv (rd),(rs1),rs2 vector logic shift within scratchpad 

ksrav (rd),(rs1),rs2 vector arithmetic shift within scratchpad 

krelu (rd),(rs1) vector ReLu within scratchpad 

kvslt (rd),(rs1),(rs2) compare vectors and create mask vector 

ksvslt (rd),(rs1),rs2 compare vector-scalar and create mask  

kvcp (rd),(rs1) copy vector within scratchpad region 
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Furthermore, the coprocessor can be configured to 

implement the following sharing schemes among harts:  
Shared coprocessor: All the harts share a single 

MFU/SPM subsystem. In the case of busy MFU, any 

hart wanting to access it is stalled until the MFU 

becomes free. In this scheme, parallel execution may 

occur between coprocessor and non-coprocessor 

instructions. Yet, the MFU/SPM may exploit pure DLP 

acceleration, by multi-lane SIMD execution. 

Thread-Dedicated coprocessors: A complete 

MFU/SPM subsystem is appointed to each hart, 

eliminating coprocessor contention. Stalls can only 

happen if two instructions of the same hart request 

MFU operation. This scheme can exploit DLP by 

multi-lane SIMD execution and TLP by fully 

symmetric MIMD execution, allowing multiple vector 

instructions to execute in parallel.  

Thread-Dedicated SPMI / Shared MFU: a dedicated 

SPM address space is kept for each hart, while the harts 

share one MFU at the functional unit level. This 

scheme still allows inter-hart parallel execution of 

coprocessor instructions, provided they use different 

internal functional units of the MFU (e.g. adder, 

multiplier). Harts requesting a busy internal unit in the 

MFU get stalled until the contended unit becomes free. 

This scheme can exploit DLP by multi-lane SIMD 

execution, and also TLP in the form of a heterogeneous 

MIMD execution.  

The explored design parameters and corresponding 

configurations, for reference in reporting performance 

results, are the following: 

 M=1, F=1, D=1:       SISD 

 M=1, F=1, D=2,4,8: Pure SIMD 

 M=3, F=3, D=1:       Symmetric MIMD  

 M=3, F=3, D=2,4,8: Symmetric MIMD + SIMD 

 M=3, F=1, D=1:       Heterogenous MIMD  

 M=3, F=1, D=2,4,8: Heterogenous MIMD + SIMD 

We use N = 3 in MatMul and N=4 in convolutions and 

FFT. 

Finally, we refer to the T13 microarchitecture 

configured with no hardware acceleration as Klessydra 

T03. 

  

PERFORMANCE RESULTS 
We run a set of test programs composed of 2D 

convolution, FFT, and MatMul kernels. We adopted 

the widely used 3x3 filter size on matrix sizes of 4×4, 

8×8, 16×16, and 32×32 elements for convolutions. 

FFT was run on 256 samples, and MatMul on 64×64 

element matrices. The element width was kept 32 bit in 

fixed-point representation. The tests were organized as 

follows: 

 

 
 

Figure 2  DLP and TLP cycle-count boost in 2D 

convolutions for different matrix sizes 
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 homogeneous workload, running multiple 

instances of the same kernel on multiple harts, on 

different input data.  

 composite workload, running convolutions, 

FFTs, and MatMul repeatedly on three respective 

harts.  

The performance was measured by taking the average 

cycle count to execute one computation kernel. Table 2 

summarizes the results, which are discussed below. 

 

Cycle count: With small matrix convolutions, the 

accelerated core reached up to 3× cycle count speed-up 

over a non-accelerated IMT core  (Klessydra T03), and 

2× speed-up over single-threaded, DSP-extended core 

(RI5CY [7]).  

As expected, large matrix convolutions and MatMul 

obtain more considerable advantage from vector-

accelerated cores, quantified in 13× cycle count speed-

up relative to Klessydra T03, 9× relative to the RI5CY 

core and 19× relative to ZeroRiscy. In contrast, FFT 

takes benefit from TLP and reduced data memory 

accesses rather than from DLP. 

Figure 2 quantifies the contribution of DLP and TLP 

for convolutions on different matrix sizes. For small 

vectors, TLP inherently exhibits better contributions to 

speed-up than DLP, while as the vector size grows, the 

DLP boost dominates. Implementations exploiting both 

TLP and DLP performed much better than pure DLP 

also with large matrices. A key outcome is that a single 

core IMT processor can exploit both DLP and TLP and 

follow the grey curve, while a single-threaded core 

exploiting only DLP acceleration follows the blue 

curve. 

Notably, the heterogeneous MIMD coprocessor, that 

has 3 times less functional units than the fully 

symmetric MIMD, employed only 1% to 7% more 

cycles than the latter.  

 

Maximum clock frequency: All the cores under 

analysis were implemented as FPGA soft-cores. The 

clock speed exhibited the sharpest drops as the TLP 

grew larger: in the heterogeneous MIMD scheme, the 

crossbar mapping the SPMI output data on the shared 

MFU units became the critical path for D=4,8. 

Pipelining the crossbar to reduce the critical path, 

introduces hardware overhead, compromising the area 

advantage of the heterogeneous MIMD configuration.  

 

Absolute execution time: The cycle count and the 

operating frequency allow calculating the total 

execution time. Figure 3 compares the actual execution 

time speed-up relative to the ZeroRiscy core, taken as 

the reference when each core operates at its maximum 

frequency. In pure SIMD configurations, the speed-up 

grows linearly with the DLP for the explored DLP 

range. Yet, exploiting TLP, by going from a 

SISD/SIMD to symmetric and heterogenous MIMD, 

improved the speedup in all cases, despite the 

frequency drop associated with the MIMD coprocessor. 

Thanks to exploiting both TLP and DLP, the symmetric 

MIMD+SIMD schemes exhibit the lowest execution 

times, reaching up to 17× speed-up over Zeroriscy for 

Convolution 32x32 and up to 13× speed-up for the 

composite workload. Notably, the heterogeneous 

MIMD configurations maintain an almost perfect 

overlap with the symmetric MIMD.  

The non-accelerated Klessydra-T03, while employing 

a higher cycle count than RI5CY due to the absence of 

DSP and hardware-loop extensions, exhibits an 

absolute performance advantage over RI5CY thanks to 

a more than double frequency attained by the pure IMT 

microarchitecture. When compared to ZeroRiscy, T03 

exhibits both lower cycle count and higher frequency.  

 

Hardware Resource Utilization: In cost-constrained 

applications, it is crucial to find an optimal balance 

between speed-up and area overhead. The 

heterogenous MIMD + SIMD scheme with D = 2 

resulted to be a possible best choice with all test 

programs. 

The non-accelerated T03 exhibits only a slightly more 

significant footprint than the tiny ZeroRiscy core, 

despite the replicated register file to support multi-

threading, thanks to the LUT-RAM implementation of 

the registers.  

Energy Efficiency: The average energy per 

algorithmic operation (multiplications and additions) is 

a general measure of the energy efficiency attained by 

a processor core in implementing an algorithm 

computation. Figure 4 reports the outcome of this 

 

 
 

Figure 3  Execution time speed-up with respect to Zeroriscy 

core, taken as reference. For the composite test the average 

kernel speed-up is reported. 
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analysis, referring to the soft-core implementations. 

The results are presented as the reduction in nJ/op 

relative to Zeroriscy, taken as reference, which 

exhibited 4.24 nJ/op as the best case in the analyzed 

workloads. 

The most energy efficient designs resulted to be the 

symmetric MIMD and heterogenous MIMD schemes, 

again exhibiting an almost complete overlap and 

reaching over 85% energy saving related to the 

reference Zeroriscy. Despite having the smallest area 

footprint, the pure SIMD schemes resulted in a larger 

energy consumption, due to low exploitation of TLP. 

Larger Filters: convolutional neural networks 

primarily employ 3×3 filters (VGG16) but also larger 

ones (e.g. 11×11 in Alexnet, 5×5 in Googlenet). Large 

masks such as 7×7 are used in Sobel, Gaussian 

smoothing, median filtering. We evaluated the vector 

coprocessor schemes with filters ranging from 5×5 to 

11×11, on 32×32 element matrices. Table 3 shows the 

speed-up and energy efficiency trends continue as the 

filter dimensions grow larger, favoring higher DLP. 

The improvement referring to ZeroRiscy grows up to 

15× when using 11×11 filters. 

The symmetric and heterogeneous MIMD+SIMD 

schemes, with D=2, maintain similar performance and 

energy results throughout the analyzed cases. The 

results confirm that an IMT core capable of MIMD 

acceleration increasingly performs better than a single-

thread SIMD acceleration.  

 

CONCLUSIONS 

The scientific outcome of this study can be 

summarized in the following list of evidence: 

 The MIMD-SIMD vector coprocessor schemes 

enable tuning the TLP and DLP contribution and 

obtain the best results in absolute performance 

and energy efficiency, reaching >15× speed-up 

and -85% energy per operation.  

 Kernels that are less effectively vectorizable can 

still benefit from acceleration through SPMs and 

TLP, in an IMT core, reaching 2×-3× speed-up. 

 Fully symmetric and heterogeneous MIMD give 

very similar results, showing that coprocessor 

contention can be effectively mitigated by 

functional unit heterogeneity, allowing hardware 

resource saving. From the same observation, we 

can state that functional unit contention is less 

impacting than SPM contention, in all the 

kernels. 

 Pure DLP acceleration always gives inferior 

results than a balanced TLP/DLP acceleration. 

An IMT microarchitecture can benefit from TLP 

and DLP acceleration in a single core. 

 In the absence of hardware acceleration, IMT still 

exhibits an absolute performance advantage over 

 
Figure 4 Average energy per algorithmic operation, 

normalized to the case of the Zeroriscy soft-core, taken as 

reference. 
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Table 3 Higher order filter evaluation results for cycle count, total time at max frequency and total energy.  

Green=best case; Red=worst case. 
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single-thread execution thanks to the simplified 

hardware structure. 

The Klessydra-T parametric cores are available as open 

source designs on GitHub at https://perma.cc/6FYD-

AF68 .
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