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Abstract—Modern data-intensive applications demand high computation capabilities with strict
power constraints. Unfortunately, such applications suffer from a significant waste of both
execution cycles and energy in current computing systems due to the costly data movement
between the computation units and the memory units. Genome analysis and weather prediction
are two examples of such applications. Recent FPGAs couple a reconfigurable fabric with
high-bandwidth memory (HBM) to enable more efficient data movement and improve overall
performance and energy efficiency. This trend is an example of a paradigm shift to near-memory
computing. We leverage such an FPGA with high-bandwidth memory (HBM) for improving the pre-
alignment filtering step of genome analysis and representative kernels from a weather prediction
model. Our evaluation demonstrates large speedups and energy savings over a high-end IBM
POWERS9 system and a conventional FPGA board with DDR4 memory. We conclude that FPGA-
based near-memory computing has the potential to alleviate the data movement bottleneck for
modern data-intensive applications.

for genome analysis [23] and two compound
stencil kernels from the widely-used COSMO

Il MODERN COMPUTING SYSTEMS suffer from
a large gap between the performance and en-

ergy efficiency of computation units and memory
units. These systems follow a processor-centric
approach where data has to move back and forth
from the memory units using a relatively slow
and power-hungry off-chip bus to the computation
units for processing. As a result, data-intensive
workloads (e.g., genome analysis [1-15] and
weather modeling [16-19]) require continuous
memory-CPU-memory data movement, which
imposes an extremely large overhead in terms of
execution time and energy efficiency [20].

We provide in Figure 1 the roofline model [21]
on an IBM POWERY CPU (I1C922) [22] for the
state-of-the-art pre-alignment filtering algorithm
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(Consortium for Small-Scale Modeling) weather
prediction model [16]. A key observation is that
both applications have low arithmetic intensity
with complex memory access behavior. The pre-
alignment filtering algorithm, SneakySnake,
builds a special matrix (called a chip maze in
Section “Case Study 1: Pre-Alignment Filtering
in Genome Analysis”) used to calculate an opti-
mal solution for the pre-alignment filtering prob-
lem. SneakySnake calculates only portions of
this chip maze to maintain speed. This involves
irregular visits to different entries of the chip
maze, leading to a strong mismatch between the
nature of data access patterns and the layout
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of data in memory for SneakySnake. Such
a mismatch leads to limited spatial locality and
cache effectiveness, causing frequent data move-
ment between the memory subsystem and the
processing units. The weather kernels (vadvc
and hdiff) consist of compound stencils that
perform a series of element-wise computations
on a three-dimensional grid [24]. Such com-
pound kernels are dominated by DRAM-latency-
bound operations due to complex memory access
patterns. As a result, the performance of these
applications is significantly lower than the peak
CPU performance. This is a common trend in
various data-intensive workloads [25-53].
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Figure 1: Roofline for POWERY (1-socket) showing pre-
aligment filtering algorithm (SneakySnake), and verti-
cal advection (vadvc) and horizontal diffusion (hdiff)
kernels from the COSMO weather prediction model for
single-thread and 64-thread implementations. The plot
shows also the rooflines of the FPGAs used in our work
with peak DRAM and on-chip BRAM bandwidth.

In this work, our goal is to overcome
the memory bottleneck of two key real-world
data-intensive applications, genome analysis and
weather modeling, by exploiting near-memory
computation capability on modern FPGA acceler-
ators with high-bandwidth memory (HBM) [54]
that are attached to a host CPU. The use of FP-
GAs can yield significant performance improve-
ments, especially for parallel algorithms. Modern
FPGAs provide four key trends:

1) The integration of high-bandwidth memory
(HBM) on the same package with an FPGA
allows us to implement our accelerator logic
much closer to the memory with an or-
der of magnitude more bandwidth than tra-
ditional DDR4-based FPGA boards. Thus,

these modern FPGAs adopt a more data-
centric approach to computing.

2) FPGA manufacturers have introduced Ultra-
RAM (URAM) [55] along with the Block
RAM (BRAM) that offers large on-chip
memory next to the logic.

3) Recent FPGA boards with new cache-
coherent interconnects (e.g., IBM Coherent
Accelerator Processor Interface (CAPI) [56],
Cache Coherent Interconnect for Accelera-
tors (CCIX) [57], and Compute Express Link
(CXL) [58]) employ a shared memory space
that allows tight integration of FPGAs with
CPUs at high bidirectional bandwidth (on
the order of tens of GB/s). This integration
allows the FPGA to coherently access the
host system’s memory using a pointer, rather
than requiring multiple copies of the data.

4) Newer FPGAs are manufactured with an
advanced technology node of 7-14nm Fin-
FET [59,60] that offers higher performance.

These four trends suggest that modern FPGA
architectures deliver unprecedented levels of in-
tegration and compute capability due to new
advances and features, which provides an oppor-
tunity to largely alleviate the memory bottleneck
of real-world data-intensive applications.

To this end, we demonstrate the capability of
near-HBM FPGA-based accelerators for two key
real-world data-intensive applications: (1) pre-
alignment filtering in genome analysis, (2) rep-
resentative kernels from a widely-used weather
prediction application, COSMO. Pre-alignment
filtering is one of the fundamental steps in most
genome analysis tasks, where up to 98% of input
genomic data is filtered out. Thus, accelerating
this step would benefit the overall end-to-end
execution time of genome analysis [1,5,7,11,23,
61, 62]. The weather kernels we evaluate are an
essential part of climate and weather modeling
and prediction [17], which is critical for a sus-
tainable life ecosystem [63].

Our accelerator designs make use of a hetero-
geneous memory hierarchy (consisting of URAM,
BRAM, and HBM). We evaluate the performance
and energy efficiency of our accelerators, perform
a scalability analysis, and compare them to a tra-
ditional DDR4-based FPGA board and a state-of-
the-art multi-core IBM POWERY system. Based
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on our analysis, we show that our full-blown
HBM-based designs of SneakySnake, vadvc,
and hdiff provide (1) 27.4%, 5.3%, and 12.7 %
higher speedup, and (2) 133x, 12X, and 35X
higher energy efficiency, respectively, compared
to a 16-core IBM POWERD system.

Near-memory Computation on FPGAs

We provide in Figure 2 a high-level schematic
of our integrated system with an FPGA-based
near-memory accelerator. The FPGA is connected
to two HBM stacks, each of which has 16 pseudo
memory channels [64]. A channel is exposed to
the FPGA as a 256-bit wide interface, and the
FPGA has 32 such channels in total. The HBM
IP provides 8 memory controllers (per stack) to
handle the data transfer to/from the HBM mem-
ory channels. This configuration enables high-
bandwidth and low-latency memory accesses for
near-memory computing. The FPGA is also con-
nected to a host CPU, an IBM POWER9 proces-
sor, using OCAPI (OpenCAPI) [65].
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Figure 2: Heterogeneous platform with an IBM POWERY9
system connected to an HBM-based FPGA board
via OCAPI. We also show components of an FPGA: flip-
flop (FF), lookup table (LUT), UltraRAM (URAM), and
Block RAM (BRAM).

The FPGA device implements an accelerator
functional unit (AFU) that interacts with the host
system through the TLx (Transaction Layer) and
the DLx (Data Link Layer), which are the CAPI
endpoints on the FPGA. An AFU comprises
multiple processing elements (PEs) that accelerate
a portion of an application.

Modern Data-Intensive Applications

Case Study 1: Pre-Alignment Filtering in
Genome Analysis

One of the most fundamental computational
steps in most genome analysis tasks is sequence

alignment [7, 8]. This step is formulated as
an approximate string matching (ASM) prob-
lem [11,66] and it calculates: (1) edit distance
(the minimum number of edits needed to convert
one sequence into the other) between two given
sequences [66,67], (2) type of each edit (i.e.,
insertion, deletion, or substitution), (3) location
of each edit in one of the two given sequences,
and (4) alignment score that is the sum of the
scores (calculated using a user-defined scoring
function) of all edits and matches between the
two sequences.

Sequence alignment is a computationally-
expensive step as it usually uses dynamic pro-
gramming (DP)-based algorithms [6, 11, 68-71],
which have quadratic time and space complex-
ity (ie., O(m?) for a sequence length of m).
In genome analysis, an overwhelming major-
ity (>98%) of the sequence pairs examined
during sequence alignment are highly dissimi-
lar and their alignment results are simply dis-
carded as such dissimilar sequence pairs are
usually not useful for genomic studies [61, 72,
73]. To avoid examining dissimilar sequences
using computationally-expensive sequence align-
ment algorithms, genome analysis pipelines typ-
ically use filtering heuristics that are called pre-
alignment filters [7,23,73-76]. The key idea of
pre-alignment filtering is to quickly estimate the
number of edits between two given sequences
and use this estimation to decide whether or not
the computationally-expensive DP-based align-
ment calculation is needed — if not, a significant
amount of time is saved by avoiding DP-based
alignment. If two genomic sequences differ by
more than an edit distance threshold, E, then
the two sequences are identified as dissimilar se-
quences and hence DP calculation is not needed.

SneakySnake [23] is a recent highly-
parallel and highly-accurate pre-alignment filter
that works on modern high-performance com-
puting architectures such as CPUs, GPUs, and
FPGAs. The key idea of SneakySnake is to
reduce the ASM problem to the single net routing
(SNR) problem [77] in VLSI. The goal of the
SNR problem is to find the shortest routing path
that interconnects two terminals on the bound-
aries of VLSI chip layout while passing through
the minimum number of obstacles. Solving the
SNR problem is faster than solving the ASM



problem, as calculating the routing path after
facing an obstacle is independent of the cal-
culated path before this obstacle (checkpoints
in Figure 3). This provides two key benefits:
1) It obviates the need for using computationally-
costly DP algorithms to keep track of the subpath
that provides the optimal solution (i.e., the one
with the least possible routing cost). 2) The
independence of the subpaths allows for solving
many SNR subproblems in parallel by judiciously
leveraging the parallelism-friendly architecture of
modern FPGAs and GPUs to greatly speed up
the SneakySnake algorithm. The number of
obstacles faced throughout the found routing path
represents a lower bound on the edit distance
between two sequences, and hence this number
is used to make accurate filtering decisions by
SneakySnake.

checkpoint 1

checkpoint 2 checkpoint 3

Figure 3: An example of the SneakySnake chip maze for
a reference sequence R = ‘GGTGCAGAGCTC’, a query
sequence 0= ‘GGTGAGAGTTGT’, and an edit distance
threshold (E) of 3. Our SneakySnake algorithm quickly
finds an optimal signal net (highlighted in orange) with
3 obstacles, each of which is located at the end of each
arrow (subpath), and hence SneakySnake decides that
sequence alignment for R and Q is needed, as the number
of obstacles < E.

The SneakySnake algorithm includes three
main steps [23]: 1) Building the chip maze.
The chip maze, Z, is a matrix where each of
its entries represents the pairwise comparison
result of a character of one sequence with another
character of the other sequence, as we show
in Figure 3. Given two genomic sequences of
length m, a reference sequence R[1...m] and a
query sequence Q[1...m], and an edit distance
threshold E, SneakySnake calculates the entry
Z[i,j] of the chip maze as follows:

0, if i=E+1, QljI =RIjl,
0, ifi>E+1, Qlj+i—-E-1]=R[jl, M
L,

otherwise

where an entry of value ‘1’ represents an obstacle,
an entry of value ‘0’ represents an available path,
1<i<@2E+1),and 1 <j<m.

2) Finding the longest available path in
each row of the chip maze. SneakySnake
finds the longest available path, which represents
the longest common subsequence between two
given sequences. It counts the consecutive en-
tries of value O in each row starting from the
previous checkpoint until it faces an obstacle,
and then it examines the next rows in the same
way. Once it examines all rows, SneakySnake
compares the lengths of the found segments of
consecutive zeros and considers the longest seg-
ment as the chosen path (arrows highlighted in
orange in Figure 3), and places a checkpoint
right after the obstacle that follows the chosen
path. SneakySnake then starts the count from
this checkpoint for each row of the chip maze.
Thus, the CPU-based implementation consists of
irregular memory access patterns.

3) Finding the estimated number of edits.
SneakySnake estimates the number of edits
to be equal to the number of obstacles found
along the shortest routing path (3 obstacles for
our example in Figure 3, each of which is lo-
cated at the end of each chosen subpath). Thus,
SneakySnake repeats the second step until
either there are no more available entries to
be examined, or the total number of obstacles
passed through exceeds the allowed edit distance
threshold (i.e., E).

Case Study 2: Weather Modeling and
Prediction

Accurate and fast weather prediction using
detailed weather models is essential to make
weather-dependent decisions in a timely man-
ner. The Consortium for Small-Scale Modeling
(COSMO) [16] built one such weather model to
meet the high-resolution forecasting requirements
of weather services. The COSMO model is a non-
hydrostatic atmospheric prediction model that is
widely used for meteorological purposes and re-
search applications [24, 63].

The central part of the COSMO model (called
dynamical core or dycore) solves the Euler equa-
tions on a curvilinear grid [78] and applies 1) im-
plicit discretization (i.e., parameters are depen-
dent on each other at the same time instance [79])
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in the vertical dimension and 2) explicit dis-
cretization (i.e., a solution depends on the pre-
vious system state [79]) in the two horizontal
dimensions. The use of different discretizations
leads to three computational patterns [80]: 1) hor-
izontal stencils, 2) tridiagonal solvers in the ver-
tical dimension, and 3) point-wise computation.
These computational kernels are compound sten-
cil kernels that operate on a three-dimensional
grid [24,81]. A stencil operation updates values
in a structured multidimensional grid (row, col-
umn, depth) based on the values of a fixed local
neighborhood of grid points. Vertical advection
(vadvc) and horizontal diffusion (hdiff) are
two such compound stencil kernels found in the
dycore of the COSMO weather prediction model.
They are similar to the kernels used in other
weather and climate models [82-84].

These kernels are representative of the data
access patterns and algorithmic complexity of the
entire COSMO model, and are similar to the
kernels used in other weather and climate mod-
els [18]. As shown in Figure 1, their performance
is bounded by access to main memory due to
their irregular memory access patterns and low
arithmetic intensity that altogether result in an
order-of-magnitude lower performance than the
peak CPU performance.

The horizontal diffusion kernel iterates over a
3D grid performing Laplacian and flux stencils
to calculate different grid points as shown in
Figure 4. A single Laplacian stencil accesses the
input grid at five memory offsets, the result of
which is used to calculate the flux stencil. hdiff
has purely horizontal access patterns and does
not have dependencies in the vertical dimension.
Thus, it can be fully parallelized in the verti-
cal dimension. Vertical advection has a higher
degree of complexity since it uses the Thomas
algorithm [85] to solve a tridiagonal matrix of
weather data (called fields, such as, air pressure,
wind velocity, and temperature) along the vertical
axis. vadvc consists of a forward sweep that is
followed by a backward sweep along the vertical
dimension. vadvc requires access to the weather
data, which are stored as array structures while
performing forward and sweep computations. Un-
like the conventional stencil kernels, vertical ad-
vection has dependencies in the vertical direction,
which leads to limited available parallelism and

Laplacian
Stencil

Flux
Stencil

Output

Figure 4: Horizontal diffusion kernel composition us-
ing Laplacian and flux stencils in a two dimensional
plane [19].

irregular memory access patterns. For example,
when the input grid is stored by row, accessing
data elements in the depth dimension typically
results in many cache misses [86].

Accelerator Implementation

We design and implement an accelerator on
our HBM-based FPGA-board (Figure 2) for each
of the three kernels (SneakySnake, vadvc,
and hdiff) in our two case studies. We use a
High-Level Synthesis (HLS) [87] design flow to
implement and map our accelerator design. We
describe the design and the execution flow for
our HBM-based accelerators.

Figure 5 shows the end-to-end data transfer
from the host DRAM to the processing ele-
ment on an FPGA. We make use of streams
(hls::stre amsl) to connect different dataflow
tasks that allow consumer functions to operate
before the producer functions have been com-
pleted. Streaming simplifies address management
as the data samples are sent in sequential order
between two modules. Before feeding data to a
processing element, we use the on-chip hetero-
geneous memory hierarchy to unpack the stream
data in a way that matches the data access pattern
of an application. Therefore, we implement our
accelerator design following a dataflow approach
in five steps.

First, the input data stored in the DRAM of
the host system (@ in Figure 5) is transferred
to the FPGA over a 1024-bit wide OCAPI inter-
face (@) by a data-fetch engine. A single cache
line stream of float32 datawidth would have

'We use Vivado HLS C++ template class hls::stream to
implement FIFO-based streaming interfaces.
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Figure 5: Data transfer flow from the host DRAM to the on-board FPGA memory via POWER9 cache lines.
Heterogeneous memory partitioning of on-chip memory blocks enable low read/write latencies across the FPGA

memory hierarchy.

32 data elements. The data-fetch engine reads
1024-bit wide POWERY cache line data over
the OCAPI interface and pushes the data into
a 1024-bit buffer before converting it to 256-
bit HBM pseudo-channel bitwidth. For weather
prediction, the input data is the atmospheric data
collected from weather simulations based on the
atmospheric model resolution grid. For genome
analysis, the input data is the reference and read
sequences for the pre-alignment filtering step of
the genome analysis pipeline. Second, following
the initial buffering (@), the HBM-write engine
maps the data onto the HBM memory (@). We
partition the data among HBM channels (@) to
exploit data-level parallelism and to scale our
design. Our evaluated workloads have limited
locality, so to exploit locality, we cache certain
parts of data into a register file made of LUTs
and FFs (@). Third, we assign a dedicated HBM
memory channel to a specific processing element
(PE); therefore, we enable as many HBM chan-
nels as the number of PEs. This allows us to
use the high HBM bandwidth effectively because
each PE fetches from an independent 256-bit
channel, which provides low-latency and high-
bandwidth data access to each PE. An HBM-
read engine reads data from a dedicated HBM
memory channel and assigns data to a specialized
PE. The HBM channel provides 256-bit data,
which is a quarter of the OCAPI bitwidth (1024-
bit). Therefore, to match the OCAPI bitwidth, we

introduce a stream converter logic that converts a
256-bit HBM stream to a 1024-bit wide stream,
which is equal to the maximum OCAPI bitwidth.

Fourth, each PE performs computation
(SneakySnake for genome analysis, and
vadvc or hdiff for weather prediction) on
the transferred data. In SneakySnake, we
equally divide the number of read and reference
sequences among the PEs. In vadvc and
hdiff, each PE operates on a block of the input
grid. For Sneak_ySnakez, each row in the chip
maze is stored as a register array of length equal
to the read length. The registers are accessed
simultaneously throughout the execution. In
every iteration, we count consecutive zeros in
each row until we find an obstacle (i.e., until we
come across a 1). Following this, we shift all
the bits by the maximum number of zeros in the
chip maze. This shifting allows us to overcome
the irregular array accesses while finding the
longest possible path in the chip maze. Fifth,
once the calculated results are available, the
HBM-write engine writes calculated results to its
assigned HBM memory channel, after which the
write-back engine transfers the data back to the
host system for further processing.

We create a specialized memory hierarchy
from the pool of heterogeneous FPGA memories

2We open-source our HBM+OCAPI-based SneakySnake
accelerator  implementations  (both  single-channel-single
PE and multi-channel-single PE): https:/github.com/CMU-
SAFARI/SneakySnake/tree/master/SneakySnake-HLS-HBM
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(i.e., on-chip BRAM and URAM, and in-package
HBM). By using a greedy algorithm, we deter-
mine the best-suited hierarchy for each kernel.
Heterogeneous partitioning of on-chip memory
blocks reduces read and write latencies across
the FPGA memory hierarchy. To optimize a PE,
we apply three optimization strategies. First, we
exploit the inherent parallelism in a given algo-
rithm using hardware pipelining. Second, we par-
tition data arrays onto multiple physical on-chip
memories (BRAM/URAM) instead of a single
large memory to avoid stalling of our pipelined
design, since the on-chip BRAM/URAM have
only two read/write ports. On-chip memory re-
shaping is an effective technique for improving
the bandwidth of BRAMSs/URAMs. Third, we
partition the input data between PEs, therefore, all
PEs exploit data-level parallelism. We apply all
three optimizations using source-code annotations
via Vivado HLS #pragma directives [88].

Evaluation

We evaluate our accelerator designs for
SneakySnake, vadvc, and hdiff in terms
of performance, energy consumption, and FPGA
resource utilization on two different FPGAs, and
two different external data communication inter-
faces between the CPU and the FPGA board.
We implement our accelerator designs on both
1) an Alpha-Data ADM-PCIE-9H7 card [89] fea-
turing the Xilinx Virtex Ultrascale+ XCVU37P-
FSVH2892-2-¢ [60] with 8GiB HBM?2 [54] and
2) an Alpha-Data ADM-PCIE-9V3 card [90] fea-
turing the Xilinx Virtex Ultrascale+ XCVU3P-
FFVC1517-2-1 with 8GiB DDR4 [60], connected
to an IBM POWERY host system. For the ex-
ternal data communication interface, we use
both CAPI2 [56] and the state-of-the-art OCAPI
(OpenCAPI) [65] interface. We compare these
implementations to execution on a POWER9
CPU with 16 cores (using all 64 hardware
threads). We run SneakySnake using the first
30,000 real genomic sequence pairs (text and
query pairs) of 100bp_2 dataset [23], which is
widely used as in prior works [9,62,73,75,76].
The length of each sequence is 100 bp (base-
pair) long. For weather prediction, we run our
experiments using a 256 X 256 x 64-point domain
similar to the grid domain used by the COSMO
model.

Performance Analysis

We provide the execution time of
SneakySnake, vadvc, and hdiff on
the POWERY9 CPU with 64 threads and the
FPGA accelerators (both DDR4-based and
HBM-based) in Figure 6 (a), (b), and (c),
respectively. For both FPGA designs, we scale
the number of PEs from 1 to the maximum
number that we can accommodate on the
available FPGA resources. On the DDR4-based
design, the maximum number of PEs is 4, 4,
and 8 for SneakySnake, vadvc, and hdiff,
respectively. On the HBM-based design, we can
fit up to 12, 14, and 16 PEs for SneakySnake,
vadvc, and hdiff, respectively. Based on our
analysis, we make four key observations.

First, the full-blown HBM+OCAPI-based im-
plementations (with the maximum number of
PEs) of SneakySnake, vadvc, and hdiff
outperform the 64-thread IBM POWERY9 CPU
version by 27.4x, 5.3x, and 12.7X, respec-
tively. We achieve 28%, 37%, and 44% higher
performance for SneakySnake, vadvc, and
hdiff, respectively, with OCAPI-based HBM
design than CAPI2-based HBM design due to the
following two reasons: 1) OCAPI provides double
the bitwidth (1024-bit) of the CAPI2 interface
(512-bit), which provides a higher bandwidth to
the host CPU, i.e., 22.1/22.0 GB/s R/W versus
13.9/14.0 GB/s; and 2) with OCAPI, memory
coherency logic is moved onto the IBM POWER
CPU, which provides more FPGA area and allows
us to run our accelerator logic at a higher clock
frequency (250MHz for OCAPI versus 200MHz
for CAPI2).

Second, for a single PE, the DDR4-CAPI2-
based FPGA accelerator design is faster than the
HBM-CAPI2-based design for all three kernels.
This is because the HBM-based design uses one
HBM channel per PE, as the bus width of the
DDR4 channel (512 bits) is larger than that of
an HBM channel (256 bits). Therefore, the HBM
channel has a lower transfer rate of 0.8-2.1 GT/s
(Gigatransfers per second) than for a DDR4 chan-
nel (2.1-4.3 GT/s) with a theoretical bandwidth
of 12.8 GB/s and 25.6 GB/s per channel, respec-
tively. One way to match the DDR4 bus width is
to have a single PE fetch data from multiple HBM
channels in parallel. As shown in Figure 6, in our
multi-channel setting (HBM_multi+OCAPI), we
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Figure 6: Performance for (a) SneakySnake, (b) vadvc, and (¢) hdiff as a function of accelerator PE count on the
HBM- and DDR4-based FPGA boards. Energy efficiency for (d) SneakySnake, (¢) vadve, and (f) hdiff and on
HBM- and DDR4-based FPGA boards. We also show the single socket (64 threads) performance and energy efficiency
of an IBM POWERSY host system for SneakySnake, vadve, and hdiff. For HBM-based design, we implement our
accelerator with both the CAPI2 interface and the state-of-the-art OpenCAPI (OCAPI) interface (with both single

channel and multiple channels per PE).

use 4 HBM pseudo channels per PE to meet the
bitwidth of the OCAPI interface. We observe that
by fetching more data from multiple channels,
compared to our single-channel-single PE design,
we achieve 1.4x,1.2x, and 1.8x performance
improvement for SneakySnake, vadvc, and
hdiff, respectively.

Third, as we increase the number of PEs, we
divide the workload evenly across PEs. As a re-
sult, we observe linear scaling in the performance
of HBM-based designs, where each PE reads and
writes through a dedicated HBM channel. For
multi-channel designs, we are able to accommo-
date only 3 PEs for the three evaluated kernels
(i.e., 12 HBM channels) because adding more
HBM channels leads to timing constraint viola-
tions. We observe that the best-performing multi-
channel-single PE design (i.e., using 3 PEs with
12 HBM channels for all three workloads) has
1.1x,4.7x%, and 3.1 x lower performance than the
best-performing single-channel-single PE design
(i.e., 12 PEs for SneakySnake, 14 PEs for
vadve, and 16 PEs for hdiff, respectively).

This observation shows that there is a tradeoff
between (1) enabling more HBM pseudo channels
to provide each PE with more bandwidth, and
(2) implementing more PEs in the available area.
For SneakySnake, in our dataflow design, data
transfer time dominates the computation time;
therefore, adding more PEs does not lead to
a linear reduction in performance. For vadvc
and hdiff, both data transfer and computation
take a comparable amount of time. Therefore, in
such workloads, we are able to achieve a linear
execution time reduction with the number of PEs.

Fourth, the performance of the DDR4-based
designs scales non-linearly for vadvc and
hdi £ £ with the number of PEs, as all PEs access
memory through the same channel. Multiple PEs
compete for a single memory channel, which
causes frequent memory stalls due to contention
in the memory channel. For SneakySnake,
which is the most memory-bound of the three
kernels, we observe a constant execution time
with the increase in PEs. With a single PE,
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memory access time hides all computation time.
Increasing the number of PEs reduces the time
devoted to computation, but not the memory
access time because there is a single channel.
Therefore, memory bandwidth saturates with a
single PE, and the total execution time does not
reduce with the number of PEs.

We conclude that FPGA-based near-memory
computing provides significant speedup (between
5.3x-27.4x) to key data-intensive applications
over a state-of-the-art CPU (POWERDY).

Energy Efficiency Analysis

We provide energy efficiency results for
SneakySnake, vadvc, and hdiff on the two
FPGA designs and the POWERY CPU in Fig-
ure 6 (d), (e), and (f), respectively. We express
energy efficiency in Mseq/s/Watt (i.e., millions
of read sequences per second per Watt) for
SneakySnake, and in terms of GFLOPS/Watt
for hdiff and vadvc. For power measurement
on the POWERY system with an FPGA board,
we use the AMESTER tool® to monitor built-
in power sensors. We measure the active power
consumption, i.e., the difference between the total
power of a complete socket (including processor,
memory, fans, and I/O) when running an appli-
cation and when idle. Based on our analysis, we
make five key observations.

First, our full-blown HBM+OCAPI-
based accelerator designs (with 12 PEs for
SneakySnake, 14 PEs for vadvc, and 16
PEs for hdiff) improve energy efficiency
by 133x, 12x, and 35X compared to the
POWERY9 system for SneakySnake, vadvc,
and hdiff, respectively.

Second, the DDR4-CAPI2-based designs are
slightly more energy efficient (1.1x to 1.5X%)
than the HBM-CAPI2-based designs when the
number of PEs is small. This observation is
in line with our discussion about performance
with small PE counts in the previous section.
However, as we increase the number of PEs,
the HBM-based designs provide higher energy
efficiency since they make use of multiple HBM
channels. Third, compared to our single-channel-
single PE design, our multi-channel-single PE
design provides only 1.1x, 1x, and 1.5x higher

3https://github.com/open-power/amester

energy efficiency for SneakySnake, vadvc,
and hdiff, respectively. This is because using
more channels leads to higher power consumption
(~1 Watt per channel) even though we get higher
bandwidth per PE by using multiple channels.

Fourth, the energy efficiency of the HBM-
based design for hdiff increases with the num-
ber of PEs until a saturation point (8 PEs). How-
ever, the energy efficiency of SneakySnake and
vadvc (HBM+CAPI2) designs decreases after
using more than 4 PEs, and that of the vadvc
(HBM+OCAPT) design decreases after using more
than 8 PEs. This is because every additional HBM
channel increases power consumption by ~ 1
Watt (for the HBM AXI3 interface operating at
250MHz with a logic toggle rate of ~ 12.5%). In
case of vadvc, there is a large amount of control
flow that leads to large and inefficient resource
consumption when increasing the PE count. This
causes a high increase in power consumption
with 14 PEs.

Fifth, as we increase the number of PEs, per-
formance of SneakySnake increases, whereas
energy efficiency may not follow the same trend.
This is because SneakySnake spends signifi-
cant amount of execution time in fetching data
from memory, as mentioned in the discussion on
performance analysis. Thus, this may lead to a
reduction in energy efficiency, depending upon
the number of HBM channels used.

We conclude that increasing the number of
PEs and enabled HBM channels does not always
increase energy efficiency. However, data-parallel
kernels like hdiff can achieve much higher
performance in an energy-efficient manner with
more PEs and HBM channels.

FPGA Resource Utilization

We list the resource utilization of
SneakySnake, vadvc, and hdiff on
the FPGA board with HBM memory in Table 1.
We make three observations. First, BRAM
utilization is significantly higher than utilization
of other resources. The reason is that we use
hls::streams to implement input and output
to different functions. Streams are FIFOs,
which are implemented with BRAMs. Second,
SneakySnake performs all computations using
flip-flops (FF) and lookup table registers (LUT).
It does not require digital signal processing units
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(DSP) since it does not execute floating-point
operations. Third, resource consumption of
vadvc is much higher than that of hdiff
because it has higher computation complexity
and requires a larger number of input parameters
for the compound stencil computation. We
observe that there are enough resources to
accommodate more than 16 PEs for hdiff, but
in this work, we use only a single HBM stack
due to timing constraint violations. Therefore,
in this work, the maximum number of PEs
is 16 to match 16 memory channels offered
by a single HBM stack.

Table 1: FPGA resource utilization in the full-blown
HBM+OCAPI-based designs for SneakySnake (12 PEs),
vadvc (14 PEs), and hdiff (16 PEs).

Algorithm BRAM DSP FF LUT URAM

SneakySnake 58% 0% 18% 70% 1%

vadve 90% 39% 37% 55% 53%

hdiff 96% 4% 10% 15% 8%
Discussion

This paper presents our recent efforts to
leverage near-memory computing capable FPGA-
based accelerators to accelerate three major ker-
nels taken from two data-intensive applications:
(1) pre-alignment filtering in genome analysis,
and (2) horizontal diffusion and vertical advection
stencils from weather prediction. We identify key
challenges for such acceleration and provide solu-
tions to them. We summarize the most important
insights and takeaways as follows.

First, our evaluation shows that High-
Bandwidth Memory-based near-memory FPGA
accelerator designs can improve performance by
5.3x-27.4x and energy efficiency by 12x-133x
over a high-end 16-core IBM POWER9 CPU.

Second, our HBM-based FPGA accelerator
designs employ a dedicated HBM channel per PE.
This avoids memory access congestion, which is
typical in DDR4-based FPGA designs and en-
sures memory bandwidth scaling with the number
of PEs. As a result, in most of the data-parallel
applications, performance scales linearly with the
number of PEs.

Third, the maximum performance of our
HBM-based design is reached using the maxi-
mum PE count that we can fit in the reconfig-
urable fabric, with each PE having a dedicated

HBM channel. However, adding more PEs could
lead to timing constraint violations for HBM-
based designs. HBM-based FPGAs consist of
multiple super-logic regions (SLRs) [91], where
an SLR represents a single FPGA die. All HBM
channels are connected only to SLRO, while other
SLRs have indirect connections to the HBM
channels. Therefore, for a large design, if a PE
is implemented in a non-SLRO region, it might
make timing closure difficult.

Fourth, the energy efficiency of our HBM-
based designs tends to saturate (or even reduces)
as we increase the number of PEs beyond some
point. The highest energy efficiency is achieved
with a PE count that is smaller than the highest-
performing PE count. The major reason for a
decrease in the energy efficiency is the increase in
power consumption with every additional HBM
channel.

We hope that the near-memory acceleration
efforts for genome analysis and weather predic-
tion we described and the challenges we iden-
tified and solved provide a foundation for accel-
erating modern and future data-intensive applica-
tions using powerful near-memory reconfigurable
accelerators.
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